首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate the effect of initial cooling time at 5°C during semen cryopreservation on post‐thaw quality and reproductive performance of rabbit semen. Pooled semen samples (n = 6) were divided into two subsamples and cooled at 5°C for 45 or 90 min. After cooling, the semen samples were diluted to a ratio of 1:1 (v:v) with a freezing extender composed of Tris‐citrate‐glucose (TCG) containing 16% of dimethylsulfoxide and 0.1 mol/L sucrose. The semen was subsequently loaded in 0.25 ml straws, equilibrated at 5°C and frozen in liquid nitrogen vapor. After thawing, sperm motility, viability, osmotic resistance, acrosome and DNA integrity were assessed. Our results indicate that the longer cooling time, that is, 90 min before cryopreservation significantly improves sperm post‐thaw viability, motility and fertility. In fact, reproductive performances obtained with semen frozen after a 90 min cooling time were similar to those produced by fresh semen insemination. Hence, the present research provides an effective freezing protocol for rabbit semen that will allow for the creation of a sperm cryobank for the conservation of Italian rabbit genetic resources, as well as the use of frozen semen doses in commercial farms.  相似文献   

2.
Although glycerol is the cryoprotectant most commonly used in stallions, it has also a considerable toxicity for equine sperm. It was the aim of this study to analyse the quality of frozen‐thawed stallion semen after complete or partial replacement of glycerol in the freezing extender by alternative cryoprotectants. We hypothesized that partial or total replacement of glycerol by cryoprotectants occurring in cold‐resistant frog, insect or plant species results in similar or better semen quality after freezing–thawing. As basic medium, the commercial Ghent basic extender was used and either supplemented with glucose and urea, trehalose and proline, or trehalose and betaine. Based on a series of preliminary experiments, semen was frozen in either commercial Ghent cryopreservation extender (Ghent control), Ghent glucose–urea extender or a Ghent combined extender (glucose–urea, trehalose‐betaine and trehalose‐proline; volume ratio of 2:1:2) in a computer‐controlled rate freezer. After freezing–thawing, semen was analysed for motility, membrane integrity, phosphatidylserine translocation, mitochondrial membrane potential and chromatin condensation. No differences between Ghent control and Ghent glucose–urea extender were seen, while all endpoints except DNA integrity were negatively affected in Ghent combined extender (e.g., progressive motility: Ghent 49.2 ± 3.7, Ghent glucose–urea 46.5 ± 4.6, Ghent combined 24.4 ± 2.8%; p < .001). In conclusion, glycerol concentration in a commercial freezing extender for equine spermatozoa can be successfully reduced when urea as an additive cryoprotectant is added and the glucose concentration is elevated. However, total glycerol replacement with urea, betaine, proline and trehalose was less successful.  相似文献   

3.
为了建立重庆板角山羊精液的细管冷冻保存方法,实验进行了不同冷冻稀释液(配方Ⅰ、Ⅱ、Ⅲ)、不同冷冻保存剂(甘油、EG)及不同离心速度(1000、1200、1400r/min)对重庆板角山羊细管精液冷冻保存效果的研究,结果表明:配方Ⅱ对重庆板角山羊精液的冻后活率显著优于配方Ⅰ和Ⅲ(P<0.05)。在配方Ⅱ中添加相同剂量(5%)的EG和甘油,精液冻后活率差异不显著(P>0.05)。以1200r/min的速度对山羊鲜精作离心处理后,冻后活率相对于对照组有所提高,但差异不显著(P>0.05)。  相似文献   

4.
A total of 42 ejaculates were used in the experiment; six ejaculates per stallion, obtained from seven Pure Spanish stallions (PRE), were split and frozen in freezing media with different concentrations and combinations of cryoprotectant (CPA): (i) Cáceres (skim milk based extender) containing 2.5% glycerol (2.5GL), (ii) Cáceres containing 1.5% glycerol and 1.5% dimethylformamide (1.5%GL–1.5%DMFA), (iii) Cáceres extender supplemented with 1.5% glycerol and 2.5% dimethylformamide (1.5%GL–2.5%DMFA) and (iv) Cáceres extender supplemented with 4% dimethylformamide (4%DMFA). After at least 4 weeks of storage in liquid nitrogen (LN), straws were thawed and semen analysed by computer‐assisted sperm analysis and flow cytometry (membrane lipid architecture (Merocyanine 540), integrity and sublethal damage (YoPro‐1) and mitochondrial membrane potential (JC‐1)). After thawing, better results were observed in samples frozen in 4%DMFA or in combinations of 1.5%GL–2.5%DMFA, in fact total motility increased by 16% in the 4%DMFA group compared to 2.5%GL (P < 0.05). Also, there was an increment in the percentage of progressive motile sperm in the 1.5%GL–2.5%DMFA group (9.8% 2.5GL vs 19% in the 1.5%GL–2.5%DMFA group p < 0.05); also, samples frozen in the 4%DMFA group had more intact (YoPro‐1 negative) sperm post‐thawing, 29.3% in 2.5%GL vs 36.7% in 4%DMFA group (p < 0.05). Membrane lipid architecture was not affected by any of the cryoprotectants tested, while samples frozen in 4%DFMA had a lower percentage of mitochondria with lower membrane potential. It is concluded that DMFA improves the outcome of cryopreservation of stallion spermatozoa mainly reducing sublethal cryodamage.  相似文献   

5.
This study was to evaluate the combinatorial effect (14 treatments, A–N) of different Equex STM paste concentrations, cryoprotectants and the straw‐freezing method on the post‐thaw boar semen quality. Two ejaculates were collected from each of nine boars (three boars from each of three breeds). Semen was diluted in extenders with different concentrations of Equex STM paste and different cryoprotectants [glycerol or dimethylacetamide (DMA)] before cryopreserving via liquid nitrogen or dry ice. Motility, viability, percentage of spermatozoa with intense acrosomal staining and with normal morphology of post‐thaw sperm were evaluated. The qualities of thawed semen were best preserved in treatment H (extender with 0.5% Equex STM paste and 5% glycerol and freezing by dry ice) and were worst in treatment B (extender with 0% Equex STM paste and 5% DMA and freezing by dry ice). Significant difference (p < 0.05) was present in post‐thawed sperm motility (63% vs 27%), sperm viability (70% vs 33%) and sperm acrosomal integrity rate (68% vs 29%) between treatments H and B. However, sperm proportion with normal morphology showed no significant difference among treatments (66% vs 66%; p > 0.05). Moreover, statistical analysis suggests that no significant difference was present in semen quality among breed or individual donors (p > 0.05). These findings suggest that Equex STM paste improved the cryosurvival efficiency of boar sperm, and the favourable straw‐freezing method changes between glycerol and DMA.  相似文献   

6.
The cryopreserved camel semen is often associated with poor quality and fertility. This study aimed to improve the dromedary frozen semen quality by comparing the efficiency of four cryoprotectant agents (CPAs) on sperm freezability. Semen samples were collected from seven male Maghrabi camels, diluted with Shotor diluent supplemented with glycerol (Sh‐G), dimethyl formamide (DMF, Sh‐DF), dimethyl sulfoxide (DMSO, Sh‐DS) or ethylene glycol (EG, Sh‐EG), all at 6% final concentration, and the samples were subjected to cryopreservation. The results revealed the superiority of Sh‐DF over Sh‐G and Sh‐DS in terms of post‐thaw motility (55.83 ± 2.20 vs. 47.50 ± 4.33 and 45.00 ± 2.89%, respectively), sperm membrane (49.00 ± 0.58, 39.33 ± 3.33 and 42.67 ± 1.45%, respectively) and acrosomal integrities (53.00 ± 0.58, 57.33 ± 0.88 and 52.33 ± 1.45%, respectively). Sh‐EG group showed the lowest post‐thaw motility, plasma membrane and acrosome integrities (12.50 ± 1.44, 22.67 ± 1.45 and 30.67 ± 1.45, respectively). In conclusion, the protocols of dromedary camel semen cryopreservation could be enhanced using 6% DMF as a cryoprotectant agent.  相似文献   

7.
To improve the Boer goat semen quality during cryopreservation process, three experiments were carried out to investigate the effect of (i) different concentration of ascorbic acid supplementation (ii) rate of cooling with chilled semen characteristics and (iii) method of freezing on post‐thaw Boer goat sperm using Tris‐based extender. Ascorbic acid at 8.5 mg/ml improved the sperm parameters (motility, integrity of membrane and acrosome, morphology and viability), compared to control in cooled samples (p < 0.05). With regard to other concentrations and post‐thawed parameters, ascorbic acid at 2.5–8.5 mg/ml led to higher percentages of sperm motility and integrities of membrane and acrosome when compared to control (p < 0.05). Slow cooling rises to higher percentages of sperm motility, acrosome integrity and viability, in comparison with fast cooling, in terms of cooled and frozen samples (p < 0.05). Programmable freezing method produced the higher percentages of sperm motility, integrities of membrane and acrosome and viability when compared to the freezing method of polystyrene box during goat sperm freezing (p < 0.05). In conclusion, chilled and post‐thawed sperm quality of Boer goat was improved when a Tris‐based extender supplemented with ascorbic acid was used at stages of different cooling rates and freezing methods.  相似文献   

8.
The present study aimed to compare cat sperm quality after thawing using two different temperatures (37 and 70°C) and to investigate the effects of post‐thaw dilution on the sperm quality and longevity of ejaculated cat spermatozoa. Six ejaculates of each of six male cats were collected using an electroejaculator (total 36 ejaculates). The semen was frozen in 0.25‐ml straws using a Tris egg yolk extender containing Equex STM paste. Four straws prepared from each ejaculate were thawed at four different occasions; (i) at 37°C for 15 s, (ii) at 37°C for 15 s and diluted 1 : 2 with Tris buffer (v/v), (iii) at 70°C for 6 s, (iv) at 70°C for 6 s and diluted 1 : 2 with Tris buffer (v/v). The percentages of motile spermatozoa, the scores of progressive motility, the percentages of spermatozoa with intact plasma membrane (using SYBR‐14/EthD‐1 stains) and intact acrosome (using fluorescein isothiocyanate conjugated peanut agglutinin/propidium iodide stains) were evaluated in fresh semen at 0, 2, 4 and 6 h after thawing. The thawing temperature had no effect on any sperm parameters throughout the incubation period (p > 0.05). The dilution after thawing improved sperm motility, progressive motility and acrosome integrity (p < 0.05). The thawing of cat spermatozoa and subsequently diluting with Tris buffer resulted in an immediate (at 0 h) overall (combined over temperature) percentage of motile sperm of 64.8 ± 10.7 (mean ± SD), a score of progressive motility of 4.0 ± 0.5, a percentage of spermatozoa with intact plasma membrane of 64.4 ± 12.1 and intact acrosome of 44.8 ± 20.2. In conclusion, frozen cat semen can be thawed either at 37 or 70°C and post‐thaw dilution is recommended to reduce the toxic effect of some ingredients in the extender during post‐thaw incubation.  相似文献   

9.
This study investigated the effects of long‐term extenders on post‐thaw sperm quality characteristics following different holding times (HT) of boar semen at 17 and 10°C. Sperm‐rich fractions, collected from five boars, were diluted in Androhep® Plus (AHP), Androstar® Plus (ASP), Safecell® Plus and TRIXcell® Plus (TCP) extenders. The extended semen samples were held for 2 hr at 17°C (HT 1) and additionally for 24 hr at 10°C (HT 2), after they were evaluated and frozen. CASA sperm motility and motion patterns, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome integrity were assessed in the pre‐freeze and frozen‐thawed semen. The Vybrant Apoptosis Assay Kit was used to analyse the proportions of viable and plasma membrane apoptotic‐like changes in spermatozoa. Results indicated that boar variability, extender and HT significantly affected the sperm quality characteristics, particularly after freezing‐thawing. Differences in the pre‐freeze semen were more marked in the sperm motion patterns between the HTs. Pre‐freeze semen in HT 2 showed significantly higher VCL and VAP, whereas no marked effects were observed in the sperm membrane integrity and viability (YO‐PRO‐1?/PI?) among the extenders. Post‐thaw sperm TMOT and PMOT were significantly higher in the AHP and ASP extenders of HT 2 group, whereas VSL, VCL and VAP were markedly lower in the TCP extender. Furthermore, spermatozoa from the AHP‐ and ASP‐extended semen of HT 2 group were characterized by higher MMP, PMI and NAR acrosome integrity following freezing‐thawing. In most of the extenders, the incidence of frozen‐thawed spermatozoa with apoptotic‐like changes was greater in HT 1. The findings of this study indicate that holding of boar semen at 10°C for 24 hr in long‐term preservation extenders modulates post‐thaw sperm quality characteristics in an extender‐dependent manner. These results will further contribute to the improvement in the cryopreservation technology of boar semen.  相似文献   

10.
This study aimed to evaluate various concentrations of egg yolk (5, 10, or 20%) in combination with different concentrations of glycerol (3% or 6%) added to a Tris‐based extender on the post‐thaw characteristics of sperm obtained from Tayassu tajacu. For this purpose, semen from 10 sexually male mature collared peccaries was collected by electroejaculation and evaluated for sperm motility, vigour, viability, morphology and functional membrane integrity. The ejaculates were initially extended in Tris‐fructose plus egg yolk (5%, 10% or 20%). After cooling, the semen was added to Tris‐egg yolk plus glycerol (6% or 12%), resulting in a final concentration of 3% or 6% glycerol of the extender. Straws were frozen using liquid nitrogen and thawed in a water bath at 37°C for 30 s. The frozen–thawed semen was evaluated as reported for fresh semen. After thawing, a significant decrease was verified for sperm motility and vigour, for all the samples in comparison with fresh semen. However, no differences were evidenced among treatments for any sperm characteristics evaluated (p > 0.05), except for the combination between 10% egg yolk and 6% glycerol, which provided the worst preservation of functional membrane integrity (p < 0.05). The interactions between higher concentrations of egg yolk (20%) and glycerol (6%) and also between lower concentrations of the same substances (5% egg yolk and 3% glycerol) added to the Tris‐based extender negatively affected the preservation of the normal sperm morphology after thawing (p < 0.05). In conclusion, the use of Tris‐based extender added to 10% or 20% egg yolk plus 3% glycerol is recommended for effective sperm cryopreservation in collared peccaries.  相似文献   

11.
为加强濒危珍稀动物种质资源的保护,开展了濒危珍稀禽类—红腹锦鸡的人工授精研究。2005年5月26日~6月8日,对8只红腹锦鸡用手按摩其背、尾部采精12次。初测其精液品质,结果表明,采精量平均(0.114±0.016)mL(0.01~0.2 mL),每毫升精液中精子平均3.2亿个(3.0~3.3亿),活力9级以上,pH值6.5,偏酸性,淡乳白色(半透明似冲熟的藕粉),微腥。鲜精分别加11%蔗糖—卵黄稀释液(3号液);11%蔗糖—0.1%柠檬酸三钠—卵黄稀释液(5号液);5%葡萄糖—卵黄稀释液(8号液)。精子活力达8~9级。用3%柠檬酸三钠—卵黄稀释液(2号液)稀释,精子活力2级。冷冻时,用11%蔗糖溶液100 mL中加16 mL鲜卵黄,加5 mL甘油,配制的3号冷冻稀释液稀释,解冻后,精子活力达4级。优于试验中选拟的其它配方(加入5 mL甘油的5号冷冻液,解冻后精子活力为3级;加入5 mL甘油的8号冷冻液,解冻后未见活的精子)。如果冷冻稀释液中甘油改为6 mL,则解冻后精子全部死亡。  相似文献   

12.
Breeding mares with cryopreserved semen requires specialized equipment for storage and thawing and more intensive mare management. The objectives of this study were (1) evaluate the longevity of frozen stallion semen once it had been thawed, extended, and maintained at 5°C for 48 hours in a passive cooling container, and (2) determine fertility potential of frozen semen that had been thawed, extended, and used to inseminate mares after 24 hours of cooled storage. Eight ejaculates were collected and aliquots were cooled in either INRA96 and CryoMax LE minus cryoprotectant at a concentration of 50 million total sperm/mL. The remainder of the ejaculate was frozen in CryoMax LE extender at a concentration of 200 million total sperm/mL. Semen was thawed using 1 of 3 thawing protocols, and diluted to a concentration of 50 million total sperm/mL in either INRA96 or CryoMax LE minus cryoprotectant and cooled to 5°C. Sperm motility was evaluated at 24 and 48 hours. Eight mares were inseminated over two estrous cycles using frozen semen that had been thawed, extended in INRA96, and cooled for 24 hours. There was no difference in progressive motility at 24 or 48 hours of cooled-storage post-thaw between the 3 thawing protocols. An overall per cycle pregnancy rate of 56% (9/16 cycles) was achieved using frozen-thawed semen that had been extended and cooled for 24 hours. In summary, frozen stallion sperm was thawed, extended, and cooled to 5°C for 24 hours and still maintained adequate (>30%) sperm motility and fertility.  相似文献   

13.
The present study evaluated the effects of cryoprotectants, semen diluents and thawing temperature during Ghagus chicken semen cryopreservation. Four different experiments were conducted; Experiment 1—semen was cryopreserved using 6% dimethylacetamide (DMA) and 2% dimethylsulphoxide (DMSO) in Sasaki diluent (SD) and Lake and Ravie diluent (LR), Experiment 2 and 3—semen was cryopreserved using 8% ethylene glycol (EG) in SD, LRD and Red Fowl Extender (RFE), Experiment 4—semen was cryopreserved using 6% dimethylformamide (DMF) in SD, LR and Beltsville poultry semen extender (BPSE). Semen was cryopreserved in 0.5 ml French straws. Thawing was done at 5°C for 100 s in ice water in Experiments 1, 2 and 4, whereas in Experiment 3 thawing was done at 37°C for 30 s. The post-thaw sperm motility, viable sperm and acrosome-intact sperm were significantly (p < .05) lower in cryopreserved samples in all the experiments. No fertile eggs were obtained from cryopreserved samples in Experiments 1 and 2, except for 8% EG RFE treatment where the fertility was 0.83%. In Experiments 3 and 4, highest fertility was obtained in LR treatment 48.12 and 30.89%, respectively. In conclusion, using cryoprotectant EG (8%) and thawing at 37°C for 30 s, and DMF(6%) resulted in acceptable level of fertility in Ghagus chicken. Though the diluents influenced post-thaw in vitro semen parameters, the fertility was not affected. In addition, results indicated that thawing temperature may be a critical stage in the cryopreservation protocol.  相似文献   

14.
This study investigates the effects of iodixanol supplementation in varied concentrations to Tris egg yolk (TEY) extender on the quality and fertilization ability of frozen–thawed sperm of Thai native bulls. Each ejaculate was divided into four different groups, as follows: sperm were treated with TEY extender (control group) and TEY extender supplemented with three different concentrations of iodixanol (1.25%, 2.50% and 5.00%). Semen straws were frozen in liquid nitrogen vapor. After thawing, sperm motility characteristics, viability, plasma membrane integrity and acrosome integrity were determined. Also, frozen–thawed spermatozoa from all groups were used for in vitro fertilization and artificial insemination (AI) in natural estrus Thai native cows. The results showed that the post‐thaw quality of the 2.50% iodixanol group was superior to the other iodixanol groups (< 0.05). However, iodixanol had no beneficial effect on post‐thaw sperm in vitro fertilization ability and pregnancy rate after AI (> 0.05). It can be concluded that the supplementation of 2.50% iodixanol extender significantly improves the progressive motility, viability, plasma membrane integrity and acrosome integrity of cryopreserved semen from Thai native bulls, but it has no beneficial effect on in vitro fertilization ability and pregnancy rate after AI.  相似文献   

15.
During the cryopreservation process, the level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), in the sperm plasma membrane decreases significantly because of lipid peroxidation, which may contribute to sperm loss quality (i.e. fertility) of frozen–thawed semen. The aim of this study was to investigate the effect of supplementation of DHA (fish oil) in freezing extender II on frozen–thawed semen quality. Semen from 20 boars of proven motility and morphology, were used in this study. Boar semen was split into four groups, in which the lactose–egg yolk (LEY) extender used to resuspend the centrifuged sperm pellet was supplemented with various levels of fish oil to reach DHA level of 1X (group I, control, no added fish oil), 6X (group II), 12X (group III) and 18X (group IV). Semen solutions were frozen by using a controlled rate freezer. After cryopreservation, frozen semen was thawed and evaluated for progressive motility, viability by using SYBR‐14/Ethidiumhomodimer‐1 (EthD‐1) staining and acrosome integrity by using FITC‐PNA/EthD‐1 staining. There was a significantly higher (p < 0.001) percentage of progressive motility, viability and acrosome integrity in DHA (fish oil) supplemented groups than control group. Generally, there seemed to be a dose‐dependent effect of DHA, with the highest percentage of progressive motility, viability and acrosome integrity in group‐III. In conclusion, supplementation of the LEY extender with DHA by adding fish oil was effective for freezing boar semen as it resulted in higher post‐thaw plasma membrane integrity and progressive motility.  相似文献   

16.
The objective of the present study was to investigate the influence of different sucrose‐based extenders on the motility, morphology, viability and acrosomal integrity of epididymal cat spermatozoa cryopreserved by ultra‐rapid freezing method. Nine cats were castrated, and collected semen was diluted 1 : 1 with Dulbecco`s phosphate‐buffered saline‐BSA1%‐based extender supplemented with different sucrose concentrations (0, 0.25, 0.4 and 0.6 m ). After ultra‐rapid freezing, samples were thawed and sperm motility, morphology, viability and acrosome status were assessed. At thawing, the number of progressively motile (p < 0.01) and morphologically normal (p < 0.01) sperm was higher in the sucrose‐supplemented groups than in the sucrose‐free group. Viability of spermatozoa cryopreserved without sucrose was significantly reduced. In extender supplemented with 0.4 m sucrose, spermatozoa viability showed higher values (57.0 ± 4.7; p < 0.01). No significant differences were detected among groups for sperm acrosome integrity. Results support that cat sperm survive after ultra‐rapid freezing using sucrose as a cryoprotectant, and the best results were achieved when 0.4 m of sucrose was used. This is the first report on sperm ultra‐rapid freezing of cat sperm and further studies on extenders, sperm management or cryovials should be carried out to improve sperm cryosurvival.  相似文献   

17.
OBJECTIVE: Duck and chicken egg yolk were compared for their protective effects against cold shock during the cryopreservation of stallion sperm in a lactose-EDTA-glycerol cryodiluent. DESIGN: A completely randomised design was used. Procedure Ejaculates from five stallions (n = 14 ejaculates) were split and diluted to either 20 or 200 x 10(6) sperm/mL in a lactose-EDTA extender containing either duck or chicken egg yolk. The extended semen was then frozen in liquid nitrogen. The percentage of sperm total motility and forward progressive motility were assessed before freezing and at 0 and 1 hr after thawing. Morphology data were also collected at 0 and 1 hr post thaw. RESULTS: Total and forward progressive motility were higher when the sperm were frozen in the presence of duck rather than chicken egg yolk. Furthermore, the total and forward progressive motility and percentage of morphologically normal sperm were higher when frozen at a concentration of 200 than 20 x 10(6)/mL. CONCLUSION: The results of this study demonstrate that the motility parameters of stallion sperm are improved when the semen is frozen in lactose EDTA extender supplemented with duck egg yolk rather than chicken egg yolk. Moreover, sperm motility and the percentage of morphologically normal sperm were higher after freezing at a concentration of 200 x 10(6)/ml rather than 20 x 10(6)/ml.  相似文献   

18.
The aim of this study was to determinate the semen quality of frozen–thawed samples that were chilled for up to 2 days before freezing. The ejaculates (n = 18) from six dogs were collected, pooled and divided into six aliquots. The first aliquot (C, control) was frozen in liquid nitrogen using a conventional protocol to reach a final concentration of 100 × 106 spermatozoa/ml, 20% egg yolk and 5% glycerol. The remaining five aliquots were diluted with a chilled extender (Tris‐glucose and 20% egg yolk) and cooled at 4°C as follows: R1, the semen was cooled for 1 h; R6, the semen was cooled for 6 h; R12, the semen was cooled for 12 h; R24, the semen was cooled for 24 h and R48, the semen was cooled for 48 h. After the chilling period, a second extender was added (Tris‐glucose, 20% egg yolk, 10% glycerol and Equex at 1%) to reach a final composition similar to aliquot C, and then, the semen samples (R1, R6, R12, R24 and R48) were frozen in liquid nitrogen. The post‐thaw sperm quality was assessed in 30 straws from each experimental group. After freezing–thawing, the total sperm motility (approximately 60–70%) in the semen chilled for up to 48 h did not show any differences from the samples frozen by the conventional cryopreservation method (63.2%). No significant differences were detected in the percentages of abnormal sperm cells among the fresh semen, the control group and the frozen samples after the different cooling times. Finally, the post‐thaw percentages of damaged acrosomes showed a very uniform distribution, with mean values ranging between 7% and 10.5%. The results clearly demonstrated that cooling the semen up to 48 h before freezing did not produce a decrease in the semen quality when was compared with semen frozen by a traditional procedure.  相似文献   

19.
Pregnancy rates in donkeys after artificial insemination with cryopreserved semen are still low, compared to the horse species. Addition of autologous seminal plasma to frozen‐thawed semen appeared to improve pregnancy rates. The aims of this study were to evaluate (1) sperm motility and plasma membrane integrity after thawing (T0) and after one and 2 h (T1 and T2) of post‐thaw incubation in either 0% (SP0) or 70% (SP70) autologous seminal plasma and (2) sperm motility, plasma membrane integrity and DNA quality (%COMP‐αt) after thawing (T0) and after 2 and 4 h (T2 and T4) of post‐thaw incubation in either 0% (SP0), 5% (SP5) or 20% (SP20) homologous seminal plasma. In experiment 1, seminal plasma decreased total and progressive sperm motility and plasma membrane intact spermatozoa immediately after dilution and at all following time points (p < 0.05). In experiment 2, total and progressive motility did not differ between treatments immediately after dilution and between SP0 and SP5 at T2, while they were lower in both SP5 and SP20 than in SP0 at T4. Plasma membrane intact sperm cells did not differ between SP0 and SP5 and were lower in SP20 at all time points. DNA quality was not affected by treatment immediately after dilution and was significantly worse for SP20 after 4 h of incubation (p < 0.05). The post‐thaw addition of seminal plasma at the tested concentrations did not improve donkey frozen semen characteristics in vitro over time.  相似文献   

20.
Boar cryopreserved semen is scarcely used for artificial insemination due to its quality which is largely reduced by membrane lipid peroxidation. This present study was designed to improve the post‐thawed boar semen quality by determining the optimal level of sericin supplementation (antioxidants) in semen extender. Five levels of sericin supplementation between 0% and 1% (w/v) were examined. Semen was frozen by the liquid nitrogen vapor method, thawed slowly at 5°C for 5 min, and used for the evaluation of sperm quality. The results indicated 0.5%–1% sericin supplementation was more effective on maintenance of sperm viability, acrosome integrity, and mitochondrial functions during freezing–thawing. Moreover, 0.75% sericin supplementation was most protective toward total sperm motility and sperm progressive motility. Additionally, 0.25%–0.75% sericin supplementation significantly suppressed increases in the index of lipid peroxidation. In conclusion, 0.75% sericin is recommended as an alternative component of the freezing extender to improve cryopreserved boar semen. However, further research using AI will be necessary to demonstrate that this indication can be applied to the production of offspring in the farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号