首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用QuEChERS前处理与液相色谱-串联质谱 (LC-MS/MS) 技术,建立了糙米中氟唑环菌胺残留的分析方法。样品采用V(乙腈) : V(水)=80 : 20混合溶液涡旋提取,经PSA分散固相萃取净化,LC-MS/MS测定,外标法定量。结果表明:在0.001~0.1 mg/L范围内,氟唑环菌胺的质量浓度与对应的峰面积间线性关系良好,R2 > 0.996。在0.004、0.01和0.1 mg/kg添加水平下,氟唑环菌胺在糙米中的回收率为83%~95%,相对标准偏差 (RSD) 为3.9%~12%。以最小添加浓度确定氟唑环菌胺在糙米中的定量限 (LOQ) 为0.004 mg/kg,远低于国际食品法典委员会规定的最大残留限量 (MRL) 0.01 mg/kg。所建方法操作简单、准确度和灵敏度高,可用于糙米中氟唑环菌胺残留的检测。对中国6个省 (市) 40个糙米样品进行检测,氟唑环菌胺的残留量均低于LOQ 0.004 mg/kg。膳食风险评估结果表明,氟唑环菌胺目前在中国水稻上使用对一般人群的的健康风险很低。  相似文献   

2.
建立了气相色谱-三重四极杆串联质谱 (GC-MS/MS)检测留兰香、桂皮、薄荷和月桂叶中乙氧氟草醚、唑草酮、乙螨唑残留的分析方法。4种香辛料用超纯水饱和,乙腈提取,无水硫酸镁及氯化钠盐析,氨基/石墨化碳黑 (NH2-Carb) 固相萃取柱净化,多反应监测模式,气相色谱-串联质谱测定。结果表明:乙氧氟草醚在0.002 5~2 mg/L范围内,唑草酮和乙螨唑在0.01~2 mg/L范围内,3种农药的进样质量浓度与对应的峰面积间呈良好的线性关系,r > 0.99;乙氧氟草醚在0.025、0.5和2 mg/kg 3个添加水平下,在4种香辛料中的平均回收率在86%~112%之间,相对标准偏差 (RSD)在2.4%~9.6%之间;唑草酮在0.2、0.5和2 mg/kg 3个添加水平下的平均回收率在87%~114%之间,RSD在2.4%~11%之间;乙螨唑在0.5、2和5 mg/kg 3个添加水平下的平均回收率在86%~116%之间,RSD在3.2%~11%之间。乙氧氟草醚、唑草酮和乙螨唑在4种香辛料中的定量限 (LOQ) 分别为0.025、0.2和0.5 mg/kg。  相似文献   

3.
苯噻草胺在稻田水及土壤中的消解动态   总被引:1,自引:1,他引:0  
研究建立了稻田水和土壤中苯噻草胺残留的检测方法。稻田水经过滤后直接进高效液相色谱-串联质谱(HPLC-MS/MS)仪分析,方法的线性范围为0.1~10 μ g/L,相关系数(R2)为0.999 3,检出限(LOD)为0.03 μ g/L,定量限(LOQ)为0.1 μ g/L;当样品中苯噻草胺的添加水平为0.1~10 μ g/L时,平均回收率在98.4%~103.2%之间,相对标准偏差(RSD)在1.9%~3.4%之间。土壤经乙腈提取,硅胶固相萃取柱净化后用高效液相色谱(带二极管阵列检测器,HPLC-DAD)仪检测,方法的线性范围为0.1 ~2 mg/L,R2为0.998 5,LOD为0.006 mg/kg,LOQ为0.02 mg/kg;当样品中苯噻草胺的添加水平为0.02~1 mg/kg时,平均回收率在75.2%~86.1%之间,RSD在3.3%~7.5%之间。采用所建立方法对北京、南京两地2009年苯噻草胺在稻田水及土壤中的消解动态进行了检测。结果表明:其在稻田水及土壤中的消解动态曲线符合一级动力学方程;苯噻草胺在稻田水中消解迅速,半衰期分别为2.1 d(北京)和1.6 d(南京);其在土壤中的消解速率两地间差异较大,且比水中的慢,半衰期分别为12.3 d(北京)和3.7 d(南京)。  相似文献   

4.
建立了同时检测水中五氟磺草胺和噁唑酰草胺残留量的超高效液相色谱-串联质谱(UPLC-MS/MS)分析方法。待测水样经酸化的二氯甲烷提取,ACQUITY UPLC BEH C_(18)液相色谱柱分离,水和乙腈作为流动相梯度洗脱,在电喷雾离子源电离、多反应监测(MRM)模式下进行测定,外标法定量。该方法在0.001~1.00mg/L浓度范围内线性关系良好,相关系数(R~2)0.993 4,检出限均为0.002mg/L。2个不同加标水平的平均回收率为89.7%~109.0%,相对标准偏差为7.1%~7.8%。实验结果表明,该方法快速、准确、灵敏,适用于水中五氟磺草胺和噁唑酰草胺2种农药残留的同时快速确证检测。  相似文献   

5.
采用高效液相色谱-串联质谱法(HPLC-MS/MS),建立了稻田水、土壤、水稻植株、稻秆、稻壳及糙米基质中吡嘧磺隆和苯噻酰草胺的残留分析方法。样品经20 m L V(乙腈)∶V(水)=70∶30的混合溶液提取,提取液用20 mg石墨化碳黑(GCB)与30 mg乙二氨基-N-丙基硅烷(PSA)净化,HPLC-M S/M S检测。吡嘧磺隆在上述各基质中的添加回收率在76%~107%之间,相对标准偏差(RSD)在1.5%~14%之间,定量限为0.004~0.01 mg/kg;苯噻酰草胺的添加回收率在77%~101%之间,RSD在2.4%~13%之间,定量限为0.001~0.01 mg/kg。实现了对两种除草剂同时简便、快速测定的要求。采用该方法测定了26%吡嘧磺隆·苯噻酰草胺水面扩展粒剂在稻田施用后,其有效成分吡嘧磺隆和苯噻酰草胺在实际样品中的残留量。结果表明,两种除草剂均属于易降解农药,在本试验条件下其在糙米中的残留量均低于我国最大残留限量(MRL)(吡嘧磺隆0.1 mg/kg;苯噻酰草胺0.05 mg/kg)。  相似文献   

6.
QuEChERS-气相色谱-串联质谱法测定黄瓜中10种农药残留   总被引:2,自引:0,他引:2  
建立了黄瓜中氟啶虫酰胺、丁苯吗啉、氟吡菌酰胺、氟啶虫胺腈、环酰菌胺、氟吡菌胺、唑嘧菌胺、氟吗啉、烯肟菌酯和烯肟菌胺10种农药残留的QuEChERS-气相色谱-串联质谱检测方法。样品采用QuEChERS方法,经乙腈涡旋振荡提取,无水硫酸镁和氯化钠盐析后,取5 mL提取液,加入含125 mg PSA、900 mg无水MgSO4和25 mg GCB的组合净化剂进行净化,采用Agilent HP-5 MS Ultra Inert色谱柱分离,气相色谱-串联质谱仪多反应监测 (MRM) 模式测定,基质匹配标准曲线外标法定量。结果表明:在检测浓度范围内,10种农药的质量浓度与其对应的峰面积间呈良好线性关系,决定系数均大于0.99;10种农药的平均回收率在76%~105%之间,相对标准偏差在4.0%~12%之间,定量限在0.001~0.05 mg/kg之间。该方法简便、快速、可靠,适用于黄瓜中10种农药残留的快速检测和分析确证。  相似文献   

7.
建立了QuEChERS-高效液相色谱-串联质谱 (QuEChERS-HPLC-MS/MS) 测定丙炔氟草胺在食品 (苹果、葡萄、柑橘、甘蓝、小麦、大豆)、土壤和水中残留量的方法,并分析了其在土壤中的消解动态。样品经乙腈均质提取,采用C18、N-丙基乙二胺 (PSA)、石墨化碳黑 (GCB) 和无水硫酸镁混合净化剂分散萃取处理,以C18色谱柱分离,采用电喷雾正离子 (ESI+) 扫描,多反应监测模式 (MRM) 检测,基质匹配标准溶液外标法定量。结果表明:在0.01~5 mg/kg范围内,丙炔氟草胺在苹果、葡萄、柑橘、甘蓝、小麦、大豆、土壤及水8种基质中的峰面积与其质量浓度间呈良好的线性关系 (R2 > 0.997 6)。在0.01、0.1和1 mg/kg添加水平下,丙炔氟草胺在8种基质中的日内平均回收率为82%~104%,相对标准偏差 (RSD) (n = 5) 为1.1%~7.8%;日间平均回收率为77%~109%,RSD (n = 15) 为0.1%~9.2%。方法的定量限 (LOQ) 为0.000 3~0.003 2 mg/kg,均低于美国、中国、日本及欧盟等国家和地区的最大残留限量值 (MRLs)。本方法简便、稳定、灵敏,能够满足实际检测需求。同时,对大田土壤分析的结果表明,丙炔氟草胺在土壤中的半衰期为23.9 d,属易降解农药。  相似文献   

8.
为明确茚嗪氟草胺及其代谢物indaziflam-diaminotriazine(IND-D),indaziflam-carboxylic acid(IND-C),indaziflam-triazine-indanone(IND-T),indaziflam-hydroxyethyl(IND-H),indaziflam-olefin(IND-O)在柑橘和土壤中的残留消解动态及最终残留,样品采用乙腈提取,二氯甲烷净化,液相色谱串联质谱法(LC-MS/MS)检测。茚嗪氟草胺,IND-C,IND-T,IND-H和IND-O在柑橘(果皮、果肉、全果)和土壤中的最低检测浓度(LOQ)为0.01 mg/kg,IND-D的LOQ为0.02 mg/kg。残留消解动态试验结果表明,茚嗪氟草胺在柑橘园土壤中的半衰期为15.07~16.12 d,在柑橘中的残留量低于LOQ,其代谢物在柑橘和土壤中的残留量皆低于LOQ。最终残留试验结果表明,500 g/L茚嗪氟草胺悬浮剂分别按有效成分用量100 g/hm 2和150 g/hm 2于杂草出苗前定向封闭施药1次,柑橘收获期(药后86 d)茚嗪氟草胺及其代谢物在柑橘和土壤中的残留量皆低于LOQ。  相似文献   

9.
丙炔氟草胺在大豆和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
通过在山东德州、黑龙江哈尔滨和辽宁海城2年3地的田间试验,采用QuEChERS-高效液相色谱-串联质谱 (QuEChERS-HPLC-MS/MS) 法,研究了丙炔氟草胺在大豆和土壤中的残留及消解动态。结果表明: 在0.000 3、0.01和0.1 mg/kg添加水平下,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的日内平均添加回收率为89%~112%,日内相对标准偏差(RSD) (n = 5) 为1.3%~5.3%;日间平均添加回收率为85%~110%,日间RSD (n = 15) 为0.40%~4.8%。丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的定量限 (LOQ) 均为0.000 3 mg/kg,能够满足农药残留限量标准的要求。丙炔氟草胺在大豆植株和土壤中的消解动态均符合一级反应动力学方程,在大豆植株和土壤中的消解半衰期分别为 5.8~11.8 d和 15.8~24.8 d。采用480 g/L丙炔氟草胺悬浮剂按推荐高剂量 (有效成分60 g/hm2) 及其1.5倍推存剂量 (有效成分90 g/hm2) 于播后苗前施药1次,收获期采样时,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的最终残留量均低于中国国家标准中规定的丙炔氟草胺在大豆上的最大残留限量 (0.02 mg/kg)。  相似文献   

10.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)测定麦叶和麦穗中噻虫嗪及其代谢物噻虫胺残留的痕量、快速检测方法.麦叶或麦穗中噻虫嗪及其代谢物噻虫胺用乙腈提取,NH2/Carb固相萃取柱净化,内标法定量.结果表明:噻虫嗪和噻虫胺在0.001~~0.5 mg/L范围内线性关系良好,相关系数r大于0.99;噻虫嗪和噻虫...  相似文献   

11.
2-溴-4-氟乙酰苯胺 (2-bromo-4-fluoroacetanilide,BFAA) 是多种N-苯基酰胺类化合物合成的中间体,也是合成农药时的主要杂质。本研究建立了一种快速、特异的超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测方法,用于测定大鼠血浆、组织、尿液和粪便中的2-溴-4-氟乙酰苯胺含量,以获得该化合物的吸收、分布及排泄等动力学信息。大鼠经不同剂量的2-溴-4-氟乙酰苯胺灌胃和静脉注射染毒处理后,取血浆及不同组织样品,经蛋白质沉淀法处理后采用所建立的UPLC-MS/MS方法测定,分别计算2-溴-4-氟乙酰苯胺的血药浓度达峰时间 (tmax)、血药峰浓度 (Cmax) 和药-时曲线下面积 (AUC(0-t)) 等血浆毒物动力学参数和绝对生物利用度 (F),考察了药物在组织中的分布和经尿液、粪便排泄的特征。血浆毒物动力学研究表明:大鼠灌胃后药物可被迅速吸收,给予200、500和1000 mg/kg的2-溴-4-氟乙酰苯胺后,其 tmax 值分别为 (0.2 ± 0.1)、(0.4 ± 0.2) 和 (0.5 ± 0.3) h;Cmax 和 AUC(0-t) 值分别为 (32.4±5.0)、(45.2±1.8)、(38.5±3.2) mg/L和(121.2±40.9)、(393.3±51.1)、(321.9±38.0) (mg/L)·h;F 值在 34.1%~83.3% 之间。其血浆药-时曲线具有双峰现象,推测可能存在重吸收或肠-肝循环。组织分布研究表明:2-溴-4-氟乙酰苯胺在组织中分布较广,且主要分布在小肠、胃和脂肪中;此外在脑和睾丸中发现了少量该化合物,表明其可以穿过血脑屏障和睾丸屏障;24 h后大部分组织中已检测不到该化合物,表明其总体不存在蓄积现象;靶向分配系数均小于1.0,提示2-溴-4-氟乙酰苯胺对组织无明显的选择性。排泄研究结果表明:2-溴-4-氟乙酰苯胺经尿液和粪便的排泄主要发生在0~48 h内,分别占总排泄量的93%和92%;经尿液和粪便的总排泄量为 (80.6 ± 29.8) μg,仅占总染毒量的 (0.03 ± 0.01) %,提示经尿液和粪便的排泄并非2-溴-4-氟乙酰苯胺母体化合物主要的体内消除途径。  相似文献   

12.
本研究首次建立了一种超高效液相色谱-串联质谱法(UHPLC-MS/MS)同时测定柑橘中草甘膦及其代谢物N-乙酰草甘膦?氨甲基磷酸(AMPA)和N-乙酰AMPA?样品经过0.5%甲酸水提取, 以十八烷基硅烷键合硅胶柱(C18)净化, 利用水和200 mmol/L碳酸氢铵溶液(含0.1%氨水)作为流动相梯度洗脱, 在多反应监测模式下定量分析?结果表明, 草甘膦及其代谢物在0.05~1 mg/kg范围内线性关系良好, 相关系数均大于0.99; 草甘膦及其3个代谢物在柑橘全果和果肉基质中3个加标水平下回收率为 70.5%~109.5%, 相对标准偏差(RSD)为0.6%~10.1%, 定量限为0.05 mg/kg?本方法的前处理样品无需衍生, 简便?快捷?高效?准确可靠, 可用于柑橘中草甘膦及其代谢物N-乙酰草甘膦?AMPA和N-乙酰AMPA的定量检测?  相似文献   

13.
建立了QuEChERS-液相色谱-质谱联用 (LC-MS/MS) 同时测定铁皮石斛茎和叶中氯虫苯甲酰胺和吡唑醚菌酯残留量的分析方法,并采用该方法研究了这2种农药在铁皮石斛中的消解动态及最终残留量。样品经乙腈提取,用N-丙基乙二胺 (PSA)、C18和石墨化碳 (PC) 净化。正离子电离,多反应监测模式,LC-MS/MS测定,外标法定量。结果表明:在0.10~60 mg/kg添加水平下,氯虫苯甲酰胺在铁皮石斛茎和叶中的平均回收率为74%~90%,相对标准偏差 (RSD) 为3.2%~4.1%;吡唑醚菌酯在铁皮石斛茎和叶中的平均回收率为75%~104%, RSD为1.7%~4.4%。样品中氯虫苯甲酰胺和吡唑醚菌酯的定量限 (LOQ) 均为 0.1 mg/kg。氯虫苯甲酰胺和吡唑醚菌酯在铁皮石斛中消解较慢,120 d时,氯虫苯甲酰胺在铁皮石斛茎和叶中的降解率分别为40%和72%,吡唑醚菌酯在铁皮石斛茎和叶中的降解率分别为80%和94%。吡唑醚菌酯在铁皮石斛叶中的消解半衰期为38.1 d。5%氯虫苯甲酰胺悬浮剂按有效成分37.5 g/hm2施药1~2次,施药间隔为7 d,当采收间隔期为30 d时,氯虫苯甲酰胺在茎和叶中的残留量均小于3 mg/kg。25%吡唑醚菌酯水分散粒剂按有效成分187.5 g/hm2施药2~3次,施药间隔为7 d,当采收间隔期为90 d时,吡唑醚菌酯在茎和叶中的残留量均小于8 mg/kg。  相似文献   

14.
为检测灭蝇胺在茶树菇及培养基质 (菌棒) 上、中、下3部分的残留量及消解动态,以50%灭蝇胺可溶性粉剂为供试药剂,对灭蝇胺在茶树菇及其菌棒中的最终残留及消解动态进行研究。样品经甲醇提取,加入氯化钠后高速离心净化,采用液相色谱-串联质谱法测定,外标法定量。结果表明:在0.002~0.05 mg/L和0.01~0.2 mg/L线性范围内,灭蝇胺的质量浓度与其峰面积间线性关系良好,R2分别为0.997和0.998。在0.01、0.1和1 mg/kg 3个添加水平下,灭蝇胺在茶树菇和菌棒中的平均回收率为72%~110%,相对标准偏差为2%~6%。灭蝇胺在茶树菇上的降解符合一级反应动力学模型,半衰期为5.46 d;其在菌棒中残留主要集中在上段,占菌棒总残留量的65.8%~93.2%。50%灭蝇胺可溶性粉剂按有效成分2289~3433.5 g/hm2的剂量,在茶树菇上采用手动喷雾施药3~4次,距最后一次施药后3 d时,灭蝇胺在茶树菇中的残留量在0.10~0.17 mg/kg之间,低于美国规定的灭蝇胺在食用菌上的最大残留限量 (1.0 mg/kg)。  相似文献   

15.
为研究吲唑磺菌胺在烟草中的残留消解特征,建立了采用Qu ECh ERS前处理与液相色谱-串联质谱(LC-MS/MS)检测相结合的烟叶中吲唑磺菌胺残留量的分析方法。样品经乙腈提取,N-丙基乙二胺(PSA)吸附剂净化,液相色谱-串联三重四级杆质谱法检测,外标法定量。结果表明:在0.01、0.1和10 mg/kg 3个添加水平下,吲唑磺菌胺在鲜烟叶和干烟叶中的平均回收率分别为88%~93%和93%~107%,相对标准偏差(RSD)分别为2.5%~13.9%和6.7%~7.4%,定量限(LOQ)分别为0.01和0.02 mg/kg。利用该方法分别于2013年和2014年检测了山东和四川烟叶中吲唑磺菌胺的残留消解动态和最终残留量。结果表明:吲唑磺菌胺在烟叶中的半衰期为5.1~9.8 d;按照有效成分105和157.5 g/hm2的剂量,分别施药3次和4次,距末次施药14 d后,烟叶中吲唑磺菌胺残留量为LOQ~5.95 mg/kg。  相似文献   

16.
采用液相色谱-串联质谱仪(LC-MS/MS)建立了香蕉和葡萄中苯锈啶残留的分析方法。样品采用乙腈振荡提取,N-丙基乙二胺(PSA)分散固相萃取净化,ESI(+)电离方式,在多反应监测模式(MRM)下选择m/z 274.3→147.1为定量离子对进行检测。结果表明,在香蕉和葡萄基质中苯锈啶的平均回收率在94.1%~118.2%之间,相对标准偏差在1.6%~8.8%之间,方法定量限(LOQ)为0.01 mg/kg。该方法操作简便,适用于苯锈啶主要登记作物中的残留检测。  相似文献   

17.
梁林  潘金菊  刘伟 《农药学学报》2012,14(6):659-663
采用分散固相萃取法进行样品前处理,建立了超高效液相色谱-电喷雾串联四极杆质谱(UPLC-MS/MS)同时快速检测玉米及其土壤中烟嘧磺隆和2甲4氯残留的方法。样品经乙腈-甲酸[V(乙腈):V(甲酸)=99.9:0.1]提取,C18基质固相分散(DSPE)净化后,采用UPLC-MS/MS、多反应监测模式(MRM)检测,外标法定量。结果显示,烟嘧磺隆和2甲4氯进样质量浓度与峰面积间线性关系良好,在0.005~0.1 mg/kg添加水平范围内,烟嘧磺隆和2甲4氯在不同基质中的平均回收率分别为74.6%~98.0%和81.3%~100.1%,相对标准偏差(RSD)分别为1.1%~3.4%和1.7%~10.5%,定量限(LOQ)均为0.005 mg/kg。  相似文献   

18.
采用QuEChERS及固相萃取样品前处理方法,结合液相色谱-三重四极杆串联质谱技术(LC-MS/MS),以负离子扫描和多反应监测模式(MRM),建立了菠菜、土壤及水体中螺虫乙酯及4种代谢物(B-enol、B-keto、B-mono和B-glu)残留的检测方法。通过对质谱检测条件的优化表明,以乙腈-0.5%甲酸水溶液作为流动相,采用梯度洗脱时,色谱分离度及灵敏度最好。通过对样品前处理条件的考察,发现选用0.1%甲酸-乙腈溶液作为提取溶剂,经50 mg的m(PSA):m(GCB)=1:1净化处理后,在0.05、0.5和1 mg/kg添加水平下,螺虫乙酯及4种代谢物在菠菜中的回收率为81%~103%,相对标准偏差(RSD)为1.7%~7.9%;在土壤样品中的回收率为82%~98%,RSD为1.9%~7.6%。采用NH2柱作为固相萃取柱,用10 mL二氯甲烷洗脱,在0.005、0.05和0.5 mg/L添加水平下,螺虫乙酯及4种代谢物在水体中的回收率为82%~95%,RSD为1.5%~6.2%。在0.002~1 mg/L范围内,螺虫乙酯及4种代谢物的质量浓度与对应的峰面积间呈现良好的线性关系,r在0.996 7~0.999 7之间。检出限(S/N=3)分别为螺虫乙酯(0.000 2~0.000 3 mg/kg),B-enol(0.000 1~0.000 3 mg/kg),B-keto(0.000 4~0.000 6 mg/kg),B-mono(0.000 4~0.000 7 mg/kg),B-glu(0.000 2~0.000 6 mg/kg);定量限(S/N=10)分别为螺虫乙酯(0.000 6~0.001 mg/kg),B-enol(0.000 3~0.001 mg/kg),B-keto(0.001 2~0.001 6 mg/kg),B-mono(0.001 2~0.001 9 mg/kg),B-glu(0.000 6~0.001 3 mg/kg)。方法分析结果符合农药残留检测要求,适用于菠菜、土壤及水体中螺虫乙酯及4种代谢物残留的同时检测。  相似文献   

19.
建立了QuEChERS技术结合气相色谱-串联质谱 (GC-MS/MS) 同时检测花椒中115种农药残留的快速分析方法。样品采用优化的QuEChERS前处理方法处理,在多反应监测模式下用GC-MS/MS检测,基质匹配内标法定量分析。结果表明:在0.002~0.4 mg/L范围内,115种农药的质量浓度与内标物质量浓度的比值和对应的目标物峰面积与内标物峰面积的比值间呈良好的线性关系,相关系数r均大于0.99;定量限为0.01~0.02 mg/kg;在0.01、0.02、0.05、0.1和0.2 mg/kg 5个添加水平下,115种农药的平均回收率为51%~150%,RSD为0.8%~34%,其中80种农药的平均回收率在70%~120%之间,满足农药残留分析要求。该方法操作简便快捷、具有良好的准确度、精密度和灵敏度,为花椒中多种农药残留的快速筛查提供了可靠的分析手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号