首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt-affected soils are widespread, particularly in arid climates, but information on nutrient dynamics and carbon dioxide (CO2) efflux from salt-affected soils is scarce. Four laboratory incubation experiments were conducted with three soils. To determine the influence of calcium carbonate (CaCO3) on respiration in saline and non-saline soils, a loamy sand (6.3% clay) was left unamended or amended with NaCl to obtain an electrical conductivity (EC) of 1.0 dS?m?1 in a 1:5 soil/water extract. Powdered CaCO3 at rates of 0%, 0.5%, 1.0%, 2.5%, 5.0% and 10.0% (w/w) and 0.25-2 mm mature wheat residue at 0% and 2% (w/w) were then added. Cumulative CO2-C emission from the salt amended and unamended soils was not affected by CaCO3 addition. To investigate the effect of EC on microbial activity, soil respiration was measured after amending a sandy loam (18.8% clay) and a silt loam (22.5% clay) with varying amount of NaCl to obtain an EC1:5 of 1.0–8.0 dS?m?1 and 2.5 g glucose C?kg?1 soil. Soil respiration was reduced by more than 50% at EC1:5?≥?5.0 dS?m?1. In a further experiment, salinity up to an EC1:5 of 5.0 dS?m?1 was developed in the silt loam with NaCl or CaCl2. No differences in respiration at a given EC were obtained between the two salts, indicating that Na and Ca did not differ in toxicity to microbial activity. The effect of different addition rates (0.25–2.0%) of mature wheat residue on the response of respiration to salinity was investigated by adding NaCl to the silt loam to obtain an EC1:5 of 2.0 and 4.0 dS?m?1. The clearest difference between salinity levels was with 2% residue rate. At a given salinity level, the modelled decomposition constant ‘k’ increased with increasing residue addition rate up to 1% and then remained constant. Particulate organic carbon left after decomposition from the added wheat residues was negatively correlated with cumulative respiration but positively correlated with EC. Inorganic N (NH 4 + -N and NO 3 ? -N) and resin P significantly decreased with increasing salinity. Resin P was significantly decreased by addition of CaCl2 and CaCO3.  相似文献   

2.

Purpose

An addition of biochar mixed into the substrate of constructed wetlands may alleviate toxicity of metals such as cadmium (Cd) to emergent wetland plants, leading to a better performance in terms of pollutant removal from wastewater. The objective of this study was to investigate the impact of biochars on soil Cd immobilization and phytoavailability, growth of plants, and Cd concentration, accumulation, and translocation in plant tissues in Cd-contaminated soils under waterlogged conditions.

Materials and methods

A glasshouse experiment was conducted to investigate the effect of biochars derived from different organic sources (pyrolysis of oil mallee plants or wheat chaff at 550 °C) with varied application amounts (0, 0.5, and 5 % w/w) on mitigating Cd (0, 10, and 50 mg kg?1) toxicity to Juncus subsecundus under waterlogged soil condition. Soil pH and CaCl2/EDTA-extractable soil Cd were determined before and after plant growth. Plant shoot number and height were monitored during the experiment. The total root length and dry weight of aboveground and belowground tissues were recorded. The concentration of Cd in plant tissues was determined.

Results and discussion

After 3 weeks of soil incubation, pH increased and CaCl2-extractable Cd decreased significantly with biochar additions. After 9 weeks of plant growth, biochar additions significantly increased soil pH and electrical conductivity and reduced CaCl2-extractable Cd. EDTA-extractable soil Cd significantly decreased with biochar additions (except for oil mallee biochar at the low application rate) in the high-Cd treatment, but not in the low-Cd treatment. Growth and biomass significantly decreased with Cd additions, and biochar additions did not significantly improve plant growth regardless of biochar type or application rate. The concentration, accumulation, and translocation of Cd in plants were significantly influenced by the interaction of Cd and biochar treatments. The addition of biochars reduced Cd accumulation, but less so Cd translocation in plants, at least in the low-Cd-contaminated soils.

Conclusions

Biochars immobilized soil Cd, but did not improve growth of the emergent wetland plant species at the early growth stage, probably due to the interaction between biochars and waterlogged environment. Further study is needed to elucidate the underlying mechanisms.  相似文献   

3.
This study was conducted to evaluate whether biochar, produced by pyrolysis at 300°C from rice husk and grape pomace (GP), affects plant growth, P uptake and nutrient status. A 3-month period of ryegrass (Lolium perenne L.) cultivation was studied on two Mediterranean agricultural soils. Treatments comprised control soils amended only with compost or biochar, and combinations of biochar plus compost, with the addition of all nutrients but P (FNoP) or without any fertilization at all (NoF). Application of both types of biochar or/with compost, in the presence of inorganic fertilization except P, significantly increased (< 0.05) dry matter yield of ryegrass (58.9–77.6%), compared with control, in sandy loam soil, although no statistically significant increase was observed in loam soil. GP biochar and GP biochar plus compost amended loam soil harvests gave higher P uptake than control, in the presence of inorganic fertilization except P, whereas in sandy loam soil, a statistical increase was recorded only in the last harvest. In addition, Mn and Fe uptake increased with the addition of the amendments in both soils, while Ca increased only in the alkaline loam soil. Biochar addition could enhance ryegrass yield and P uptake, although inorganic fertilization along with soil condition should receive special attention.  相似文献   

4.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

5.

Purpose

Biochar application has been shown to be effective in improving soil fertility and sequestering soil contaminants. However, the impact of biochar amendments on the environmental fate of pesticides and the bioavailability of pesticides to living organisms in the soil environment is still not fully understood.

Materials and methods

Dissipation of fomesafen and its bioavailability to corn (Zea mays L.) and the earthworm Eisenia fetida in an agricultural soil amended with three different rates of rice hull biochar (0.5, 1, and 2 % (w/w)) under laboratory conditions was investigated.

Results and discussion

Biochar amendment significantly increased the DT50 of fomesafen from 34 days in unamended soil to 160 days in 2 % biochar-amended soil. Furthermore, biochar amendment decreased fomesafen concentration in soil pore water resulting in lower plant uptake of the pesticide. In this case, total plant residue and soil pore water concentrations of fomesafen in 2 % biochar-amended soil decreased to 0.29 % and 0.28–45 % of that in the control, respectively. Similar results were obtained for bioavailability of fomesafen in earthworms, as the earthworm residue and soil pore water concentration of fomesafen in 2 % biochar-amended soil declined to 0.38–45 and 0.47–0.50 % compared to the level of the control, respectively.

Conclusions

As biochar could markedly reduce the concentration of fomesafen in soil pore water and subsequently reduce plant and earthworm uptake of fomesafen from contaminated soil, biochar amendment could be considered an appropriate option for immobilizing fomesafen in soils, protecting nontarget organisms from fomesafen contamination.
  相似文献   

6.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

7.
Plant growth responses to biochar addition: an Australian soils perspective   总被引:1,自引:0,他引:1  
The use of biochar as an agricultural amendment has attracted much attention owing to its potential to improve soil condition and plant growth; however, production outcomes are often uncertain. Although soil type is a major driver of plant productivity, there are relatively few biochar studies that directly compare plant growth responses across a range of soil types. We tested the wheat growth response to biochar derived from poultry litter and from wheat straw applied at 1, 5 and 10 t ha?1 (approximately 0.13, 0.67 and 1.33 % w/w) in four soils representing major agricultural regions in Australia: an acidic arenosol (Western Australian cereal belt), an acidic rhodic ferralsol (Northern New South Wales), a neutral vertisol (Queensland cropping) and an alkaline haplic calcisol (Eyre Peninsula in South Australia). In the neutral vertisol, where plant growth was vigorous in the control treatments, biochar had little impact, whereas in the alkaline calcisol, there was a small significant increase in shoot biomass at high (10 t ha?1) application rates. Plant growth responses in the acidic soils were most evident but demonstrated a strong contrast to one another. In the acidic arenosol, negative growth impact correlated with increasing electrical conductivity, while in the acidic ferralsol a small rate-dependent increase in pH correlated with relatively large gains in biomass, possibly due to improved phosphorus nutrition and alleviated Al toxicity. Moving towards effective integration of biochar as a management tool will not only require stratification based on soil types, but wider consideration of the main plant production constraints, such as pH, pertinent to a particular system.  相似文献   

8.

Purpose

Soil amendment with biochar can result in decreased bulk density and soil penetration resistance, and increased water-holding capacity. We hypothesized that adding biochar could moderate the reductions in infiltration rates (IR) that occur during high-intensity rainstorms in seal-prone soils, and hence result in reduced runoff and erosion rates. The objectives were to (i) evaluate biochar potential to improve infiltration and control soil erosion, and (ii) investigate the mechanisms by which biochar influences infiltration rate and soil loss.

Materials and methods

Rainfall simulation experiments were conducted on two physicochemically contrasting, agriculturally significant, erosion-prone soils of Israel that are candidates for biochar amendment: (i) non-calcareous loamy sand, and (ii) calcareous loam. Biochar produced from mixed wood sievings from wood chip production at a highest treatment temperature of 620 °C was used as the amendment at concentrations from 0 to 2 wt%.

Results and discussion

In the non-calcareous loamy sand, 2 % biochar was found to significantly increase final IR (FIR) by 1.7 times, and significantly reduce soil loss by 3.6 times, compared with the 0 % biochar control. These effects persisted throughout a second rainfall simulation, and were attributed to an increase in soil solution Ca and decrease in Na, and a subsequently decreased sodium adsorption ratio (SAR). In the calcareous loam, biochar addition had no significant effect on FIR but did reduce soil loss by 1.3 times. There were no biochar-related chemical changes in the soil solution of the calcareous loam, which corresponds to the lack of biochar impact on FIR. Surface roughness of the calcareous loam increased as a result of accumulation of coarse biochar particles, which is consistent with decreased soil loss.

Conclusions

These results confirm that biochar addition may be a tool for soil conservation in arid and semi-arid zone soils.
  相似文献   

9.

Purpose

Polychlorinated biphenyls (PCBs) are persistent soil contaminants that resist biodegradation and present serious risks to living organisms. The presence of biochar in soils can lower the availability of PCBs to biota. In this study, the effect of biochar enrichment in soils on bioaccumulation of PCBs was investigated.

Materials and methods

We applied two types of biochar including pine needle biochar (PC) and wheat straw biochar (WC), and an activated carbon (AC) to soil (2 % w/w) and employed two alternative methods to quantified rates of bioaccumulation: a living bioassay (using earthworm, Eisenia fetida, as a model organism) and a triolein-embedded cellulose acetate membrane (TECAM).

Results and discussion

Our results show that the application of biochar or AC greatly reduced the uptake of PCBs (particularly less-chlorinated PCBs) by earthworms (the reduction in total PCBs concentration was up to 40.0 and 49.0 % for PC and WC treatments, while 71.6 % for AC application). We found that the bioaccumulation factors (BAFs) for PCBs in the earthworms in biochar/AC-enriched soils were strongly correlated with O:C ratio of the biochar/AC (R 2?=?0.998, p?<?0.05). We observed that BAFs increased at log K OW below 6.3 and decreased at log K OW values greater than 6.3. We demonstrated that the concentration of PCBs in TECAM membranes were positively correlated with the concentration of PCBs earthworms in soil.

Conclusions

TECAM offers an efficient and cost-effective method for predicting the bioavailability of PCBs in field-contaminated soils undergoing sorbent-based remediation.
  相似文献   

10.

Purpose

Diethyl phthalate (DEP) is one of the most commonly used plasticizers as well as a soil contaminant. Using biochar to remediate soils contaminated with DEP can potentially reduce the bioavailability of DEP and improve soil properties. Therefore, a laboratory study was conducted to evaluate the effect of biochar on soil adsorption and desorption of DEP.

Materials and methods

Two surface soils (0–20 cm) with contrasting organic carbon (OC) contents were collected from a vegetable garden. Biochars were derived from bamboo (BB) and rice straw (SB) that were pyrolyzed at 350 and 650 °C. Biochars were added to two types of soil at rates of 0.1 and 0.5 % (w/w). A batch equilibration method was used to measure DEP adsorption-desorption in biochar treated and untreated soils at 25 °C. The adsorption and desorption isotherms of DEP in the soils with or without biochar were evaluated using the Freundlich model.

Results and discussion

The biochar treatments significantly enhanced the soil adsorption of DEP. Compared to the untreated low organic matter soil, the soils treated with 0.5 % 650BB increased the adsorption by more than 19,000 times. For the straw biochar treated soils, the increase of DEP adsorption followed the order 350SB?>?650SB. However, for the bamboo biochars, the order was 650BB?>?350BB. Bamboo biochars were more effective than the straw biochars in improving soils’ adsorption capacity and reducing the desorption ability of DEP.

Conclusions

Adding biochar to soil can significantly enhance soil’s adsorption capacity on DEP. The 650BB amended soil showed the highest adsorption capacity for DEP. The native soil OC contents had significant effects on the soils’ sorption capacity treated with 650BB, whereas they had negligible effects on the other biochar treatments. The sorption capacity was affected by many factors such as the feedstock materials and pyrolysis temperature of biochars, the pH value of biochar, and the soil organic carbon levels.  相似文献   

11.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

12.
Application of crop residues and its biochar produced through slow pyrolysis can potentially increase carbon (C) sequestration in agricultural production systems. The impact of crop residue and its biochar addition on greenhouse gas emission rates and the associated changes of soil gross N transformation rates in agricultural soils are poorly understood. We evaluated the effect of wheat straw and its biochar applied to a Black Chernozemic soil planted to barley, two growing seasons or 15 months (at the full-bloom stage of barley in the second growing season) after their field application, on CO2 and N2O emission rates, soil inorganic N and soil gross N transformation rates in a laboratory incubation experiment. Gross N transformation rates were studied using the 15N isotope pool dilution method. The field experiment included four treatments: control, addition of wheat straw (30 t ha?1), addition of biochar pyrolyzed from wheat straw (20 t ha?1), and addition of wheat straw plus its biochar (30 t ha?1 wheat straw + 20 t ha?1 biochar). Fifteen months after their application, wheat straw and its biochar addition increased soil total organic C concentrations (p?=?0.039 and <0.001, respectively) but did not affect soil dissolved organic C, total N and NH4 +-N concentrations, and soil pH. Biochar addition increased soil NO3 ?-N concentrations (p?=?0.004). Soil CO2 and N2O emission rates were increased by 40 (p?p?=?0.03), respectively, after wheat straw addition, but were not affected by biochar application. Straw and its biochar addition did not affect gross and net N mineralization rates or net nitrification rates. However, biochar addition doubled gross nitrification rates relative to the control (p?2 and N2O emissions and enhance soil C sequestration. However, the implications of the increased soil gross nitrification rate and NO3 ?-N in the biochar addition treatment for long-term NO3 ?-N dynamics and N2O emissions need to be further studied.  相似文献   

13.
Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field plots with or without biochar (20 Mg ha?1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P?=?0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased by 11 % (P??1, applied during two consecutive years, substantiated that biochar was not inhibitory to PAO and ASA as reference plots consistently showed lowest activities. For PAO, it was found that soil pH, rather than biochar rates, was a driving environmental variable. For ASA, the methodological approach was challenged by product sorption, but results did not suggest that biochar significantly stimulated the enzyme activity. Crop yields of maize in field experiments with 10–100 Mg biochar ha?1 were unaffected by biochar except for a negative effect of the highest annual rates of 50 Mg ha?1 in the first year after application. In conclusion, the present wood-based biochar poorly affected the measured microbial processes and generally resulted in similar crop yields in reference and biochar-amended soil plots.  相似文献   

14.
A large proportion of phosphate fertilizer applied to calcareous soils reacts with calcium. Changes in soil phosphorus (P) availability after single application of biochar and phosphate-solubilizing bacteria have been reported. However, interaction of biochar (increasing soil pH) and phosphate-solubilizing bacteria (decreasing soil pH) on P availability in calcareous soil is not well known. An incubation experiment was conducted to study how the interactive effects of biochars (produced from wheat straw and cow manure at 300°C and 500°C with residence time of 1, 3 and 6 h) at different rates (0, 5 and 10 t ha?1) and phosphate-solubilizing Pseudomonas sp. IS8b2 affected on content of soil available P after 0, 60, 120 and 180 days of incubation (DOI) in a calcareous soil. After 60 DOI, the maximum value of available P (50.31 mg kg?1) was observed in the compound treatment of Pseudomonas sp. IS8b2 and wheat straw biochar (10 t ha?1) produced at 500°C with residence time of 3 h. We conclude that the combination use of wheat straw biochar and phosphate-solubilizing bacterium is promising to potentially improve soil P availability in calcareous soil, but further research at field scale is needed to confirm this.  相似文献   

15.
The use of biochar in agriculture to achieve the dual benefits of improving soil quality whilst sequestering carbon (C) has received much attention. However, in low-intensity broadacre agricultural systems where yield is constrained by rainfall and costs associated with phosphorus (P) fertiliser, the application of biochar at rates commonly reported (>10 t ha?1) are likely to be prohibitively expensive where yield benefits cannot be guaranteed. In marginal areas where calcareous soils dominate, biochar application has no liming effect, reducing its value compared to application in acidic soils. In the present study, we use a field experiment to investigate the interaction between P fertilisation and biochar banding at low application rates (<1 t ha?1) on wheat yield and soil P fractionation (assessed by a modified Hedley method) in a highly alkaline Haplic Calcisol in a dryland broadacre cropping system. Our results demonstrate no statistically significant effect of low rate biochar banding on wheat yield in this highly P-constrained soil, but a significant effect of both biochar and fertiliser on P fractionation in both years of the study. Higher P fertiliser rates significantly increased wheat yield in all biochar treatments. The interactions between biochar, P fertiliser and P fractionation indicate shifts in potential P availability both as a result of P fertilisation and also biochar application. Further work is required in low productivity calcareous systems such as that studied here to elucidate the potential for biochar amendment to improve productivity and sequester C.  相似文献   

16.
The effect of plant-derived humic acid (PDHA) and coal-derived humic acid (CDHA) on wheat growth was tested on two alkaline calcareous soils in pots. Humic acid derived from plant and coal materials was applied at the rate 0 (control), 50 and 100 kg/ha to wheat in pots carrying two soils viz. clayey loam soil and sandy loam soil separately. Data was collected on plant growth parameters such as spike weight, grain and straw weight, and plant nutrients (macronutrients and micronutrients). Results showed that spike weight increased by 19%, 15%, and 26%, and 11% with application of PDHA at the rate of 50 and 100 mg/kg in clayey loam and sandy loam soil, respectively. Grain yield show an increase of 21% and 11% over control with application of PDHA and CDHA at the rate of 50 mg/kg on both soils, respectively, and 10% and 22% with application of PDHA and CDHA at the rate of 100 mg/kg on both soils.  相似文献   

17.
In saline soils under semi-arid climate, low matric and osmotic potential are the main stressors for microbes. But little is known about the impact of water potential (sum of matric and osmotic potential) and substrate composition on microbial activity and biomass in field collected saline soils. Three sandy loam soils with electrical conductivity of the saturated soil extract (ECe) 3.8, 11 and 21 dS m?1 (hereafter referred to EC3.8, EC11 and EC21) were kept at optimal water content for 14 days. After this pre-incubation, the soils were either left at optimal water content or dried to achieve water potentials of ?2.33, ?2.82, ?3.04 and ?4.04 MPa. Then, the soils were amended with 20 g?kg?1 pea or wheat residue to increase nutrient supply. Carbon dioxide emission was measured over 14 days; microbial biomass C was measured at the end of the experiment. Cumulative respiration decreased with decreasing water potential and was significantly (P?<?0.05) lower in soils at water potential ?4 MPa than in soils at optimal water content. The effect of residue type on the response of cumulative respiration was inconsistent; with residue type having no effect in the saline soils (EC11 and EC21) whereas in the non-saline soil (EC3.8), the decrease in respiration with decreasing water potential was less with wheat than with pea residue. At a given water potential, the absolute and relative (in percentage of optimal water content) cumulative respiration was lower in the saline soils than in the non-saline soil. This can be explained by the lower osmotic potential and the smaller microbial biomass in the saline soils. However, even at a similar osmotic potential, cumulative respiration was higher in the non-saline soil. It can be concluded that high salt concentrations in the soil solution strongly reduce microbial activity even if the water content is relatively high. The stronger relative decrease in microbial activity in the saline soils at a given osmotic potential compared to the non-saline soil suggests that the small biomass in saline soils is less able to tolerate low osmotic potential. Hence, drying of soil will have a stronger negative effect on microbial activity in saline than in non-saline soils.  相似文献   

18.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

19.
Changes in soil properties and yield response in relation to tillage and residue management treatments in an irrigated groundnut (Arachis hypogea L.)—wheat (Triticum aestivum, L.) rotation on a sandy soil (1972–1974) and on a sandy loam soil (1974–1976) were evaluated. Tillage treatments (T1 and T2) did not cause significant changes in soil properties. Incorporation of crop residues (5 t residue per ha per crop, T3) caused a substantial increase in organic C, available N, and NaHCO3 -extractable P contents in the top 15 cm of both soils. Residue management treatments (T3, T4 and T5) showed no significant effect on soil bulk density and exchangeable K. Crop yields under no-tillage (T1) and conventional tillage (control, T2) were comparable on sandy soil but on the sandy loam soil, no-tillage yielded significantly lower than conventional tillage. Compared with the control, incorporation of crop residues (T3) caused higher yields on sandy soil for groundnut and wheat by 34.1 and 47.4%, respectively, and on sandy loam by 17.1 and 7.2%, respectively. Mulching with crop residues conserved soil moisture and reduced maximum soil temperature (1.5–5.3°C in groundnut and 1.5–2.9°C in wheat) but other measured soil properties were not significantly affected. Significant yield increase due to residue mulching (T4) was observed in sandy soil but it was significantly less than when total crop residue was incorporated (T3). Increased wheat root-weight density in the top 15 cm soil with residue mulching was not reflected in grain yield. Compared with the incorporation of the total amount of crop residue (T3), incorporation of half the amount and application of the other half as mulch (T5) caused lower yields — on sandy soil for groundnut and wheat by 31.5 and 15.7%, respectively, and on sandy loam by 4.8 and 3.6%, respectively.  相似文献   

20.
Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30% w/w) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号