首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

A greenhouse experiment was conducted to determine the bioavailability of copper (Cu) in clay loam and sandy clay loam soil. Lettuce (Lactuca sativa) and spinach (Spinacia oleracea) were grown in pots for 45 d. When mature, plants were treated for 15 additional days with 0, 100, 250, 500, or 1000 mg Cu kg?1 as CuSO4·5H2O. After harvest, Cu in soils and plant tissues was determined. In soils, applied Cu raised total and EDTA-extractible Cu. Results also revealed that the amounts of Cu extracted from sandy clay loam soil (80%) were higher than those extracted from clay loam soil (70%). In plants, increasing soil Cu concentration increased plant concentration of the metal. Plant species vary in their capacity for Cu accumulation: Lettuce has a relatively higher potential for Cu uptake and translocation than does spinach. Cu accumulation also differs among plant organs. In lettuce, metal accumulation is higher in roots than in shoots, where 60% to 80% of the total Cu of the plant is located in the roots. However, in spinach, there is no significant difference in Cu content between roots and shoots. The transfer of the metal from soil to plant is higher for plants grown on sandy clay loam soil. For a given rate of applied Cu, metal content in plant tissues is higher on sandy clay loam soil due to its higher transfer coefficient (CT) from soil to plant. Nevertheless, all crops studied showed a positive linear relationship between extractible soil Cu and plant Cu.  相似文献   

2.
ABSTRACT

The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil.  相似文献   

3.
To date, evidence of the potential effects of burning practices on soil properties in Tunisia is limited. In order to address this issue, we carried out laboratory investigations of the effects of burning on soil aggregate stability (AS) and water repellency (WR) of a clayey and a sandy loam Fluvisol soils. The treatments included low (100°C, LT), medium (300°C, MT) and high (600°C, HT), heating temperatures. Unburned (0°C, UB) soil samples were used as a control. Two breakdown mechanisms, fast wetting (FW) and mechanical breakdown (MB), were used for the measurement of AS. The latter is expressed by calculating the mean weight diameter (MWD). The water drop penetration time (WDPT) was used to evaluate the soil WR. The results showed that the unburned clayey and sandy loam soils are poorly aggregated. The HT and MT treatments significantly (p < 0.05) increased MWD of both soils, compared to UB samples, following the FW stability test. A lesser increase of MWD was observed with the MB test. The LT treatment did not significantly (p < 0.05) affect the soils AS. For the unburned clayey soil, the FW and MB tests gave significantly (p < 0.05) different MWDs . In contrast, the unburned sandy loam soil had similar MWDs under both tests. As for water repellency, the sandy loam soil was initially wettable and the clayey soil slightly water repellent. Burning treatments did not affect the sandy loam soil behavior but caused a decrease of clayey soil WR.  相似文献   

4.
浅层地下水中的腐植酸与人体健康密切相关,腐植酸在土壤中的迁移影响土壤和地下水中腐植酸含量。采用土柱模拟实验,研究了不同条件下腐植酸的迁移规律。结果表明,腐植酸的出水浓度随时间逐渐升高,最后趋于稳定;同一时间段内,初始浓度为15mg·L-1时的出水浓度比10mg·L-1时高,且早24h达到稳定浓度;淋滤液pH为9时的出水浓度比pH为4时高,且早16h达到稳定浓度;粉质粘土柱对腐植酸的吸附和阻滞作用大于砂壤土柱,出水浓度较低,晚32h达到稳定浓度;土层厚为5cm的土柱出水浓度高于15cm土柱,早32h达到稳定浓度。分析认为,土壤对腐植酸的吸附作用是出水浓度变化的主要原因,腐植酸和土壤的理化性质是影响腐植酸在土壤中迁移的主要因素。  相似文献   

5.
不同pH条件下腐植酸对土壤中砷形态转化的影响   总被引:6,自引:1,他引:5  
为了探索在不同pH条件下腐植酸对土壤中砷形态转化及生物毒性的影响,应用油菜盆栽试验,检测砷加入土壤后15 d、45 d、90d土壤中AE-As(水溶态、可交换态和碳酸盐结合态)Fe,Mn-As(铁/锰氧化物结合态),O,S-As(有机物及硫化物结合态),Res-As(残渣态)的含量及油菜生物量.结果表明,外源水溶态砷加入土壤后均迅速向相对稳定的形态转化,15 d时A3H1(pH9.5,腐殖酸用量为0g/kg)和A3H4(pH9.5,腐殖酸用量20 g/kg)处理的AE-As含量分别为13.40 mg/kg、9.23 mg/kg,转化率分别为78.7%、82.51%;在90 d时,A3H4处理的AE-As、Fe,Mn-As含量分别为6.28 mg/kg、1.23 mg/kg,仅为处理A3H1处理的53.9%和10.7%,O,S-As、Res-As含量分别为20.24 mg/kg、41.21 mg/kg,是处理A3H1的165%和127%.说明腐植酸更有利于土壤中AE-As向其他相对稳定的形态转化,主要体现在O,S-As的增加,腐植酸对碱性土壤中砷向较稳定形态转化的促进作用更加显著,而且与腐植酸的施用量呈正相关.外源砷在碱性条件下对植物的毒害更大,腐植酸用量在10 g/kg土时就可以有效降低砷的毒害.  相似文献   

6.
[目的]探究马铃薯淀粉渣对土壤保肥特性及玉米幼苗生长的影响,为马铃薯淀粉渣的利用提供依据。[方法]采用室内人工气候箱模拟自然环境和用淋洗管模拟田间淋洗的方法,测定沙壤土中施入0,1.00,5.00,10.00,20.00,30.00g/kg的马铃薯淀粉渣对土壤容重、土壤总孔隙度、土壤含水量;土壤淋洗出的硝态氮、铵态氮、速效磷和速效钾含量及玉米幼苗株高、茎粗和干鲜重等指标。[结果]马铃薯淀粉渣施用量为30g/kg时,土壤容重降幅达7.24%,土壤总孔隙度、土壤含水量升幅分别为10.15%,21.25%;土壤淋洗出的硝态氮、铵态氮、速效磷和速效钾含量降幅分别为97.13%,91.03%,63.85%和66.4%;玉米幼苗株高较对照降低8.90%,茎粗较对照增加25.53%,幼苗的干、鲜重分别比对照提高13.47%,15.79%。[结论]马铃薯淀粉渣施用量为30.00g/kg时,改善了土壤理化性状,增强了保肥能力,明显促进玉米幼苗干物质的积累。  相似文献   

7.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

8.
Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to be explored. A greenhouse experiment using annual ryegrass(Lolium multiflorum L.) was performed with an experimental design of three completely randomized blocks of two soils and 29 treatments: one control without P and two levels of 9 and 26 kg total P ha~(-1) from 14 different sources: twelve SIAs(not contaminated by trace metals) from the US and Canada, one commercial synthetic fertilizer(triple superphosphate(TSP)), and one commercial rock phosphate(RP). Higher ryegrass biomass levels were achieved at the higher fertilization rate(26 kg total P ha~(-1))and when using the SIAs with the highest P solubility percentage(PSP)(≥ 54% of total P). The biomass increases following SIA application were as high as 29% and 59% more than the control for the sandy loam and clayey soil, respectively, but 40% less than in TSP for both soils. A similar behavior was observed for P uptake, with a maximum increase of 26% for the clayey soil, and 165% for the sandy loam soil. The ryegrass biomass and P uptake increases due to SIA application were larger than those due to RP application in the clayey soil, but similar to those in the sandy loam soil. The SIAs with a PSP of ≥ 54% significantly increased soil available P stocks and saturation. According to our findings, we conclude that the SIAs from municipal and agrifood industries have a potential for P agricultural recycling, but their efficiencies vary.  相似文献   

9.
Abstract

A glasshouse investigation was undertaken to evaluate the natural potential of fenugreek (Trigonella foenumgraecum L.), spinach (Spinacia oleracea L.), and raya (Brassica campestris L.) for cleanup of chromium (Cr)–contaminated silty loam and sandy soils. Four kilograms of soil per treatment in earthen pots was treated with five levels of chromium [0, 1.25, 2.5, 5.0, and 10.0 mg Cr kg?1 soil through dipotassium chromate (K2Cr2O7], equilibrated for 21 days at field-capacity moisture content, and then fenugreek, spinach, and raya were grown for 60 days after seeding. The concentration of diethylene triamine pentaacetic acid (DTPA)‐extractable Cr increased significantly with increasing rate of Cr application in both soils, but the increase was higher in sandy soil than in silty loam soil. The DTPA‐extractable Cr in both soils decreased after harvesting of crops compared to its concentration in soil before sowing of the crops. The decrease in DTPA‐extractable Cr concentration was highest in soil growing raya and least in the fenugreek‐growing soil. The percent reduction in dry‐matter yield (DMY) with increasing levels of added Cr in comparison to the zero‐Cr control was highest for fenugreek (49 and 52%) followed by spinach (36 and 42%) and lowest for raya (29 and 34%) in silty loam soil and sandy soil, respectively. Also, the percent reduction in mean shoot yield of all crops was higher in sandy soil (41%) compared to silty loam soil (36%), when the rate of applied Cr was increased from 0 to 10 mg Cr kg?1 soil. The DMY of both shoot and root was highest for raya and lowest for fenugreek. The Cr concentration in fenugreek, spinach, and raya increased with increasing level of added Cr in both soils. The concentration of Cr in both shoot and root was highest in raya, followed by spinach and fenugreek. The overall mean uptake of Cr in shoot was almost four times and in root was about two times higher in raya compared to fenugreek. The findings indicated that family Cruciferae (raya) was most tolerant to Cr toxicity, followed by chenopodiacea (spinach) and Leguminosae (fenugreek). Because raya removed the highest amount of Cr from soil, it could be used for pytoremediation of mildly Cr‐contaminated soils.  相似文献   

10.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

11.
Loam and sandy soils, and the earthworm casts produced with 14C-labelled plant material in both soils, were incubated in airtight glass vessels with and without enchytraeids to evaluate the effects of soil fauna on the distribution and fragmentation of organic matter. After 1, 3, and 6 weeks, the amount of C mineralised was determined in soils and earthworm casts, and the soil was fractionated into particulate organic matter (POM), the most active pool of soil organic matter, after complete physical dispersion in water. The percentage weight of fine fractions (0-50 µm) was 67.4% in the loam soil. Sand (coarse, i.e. 150-2,000 µm and fine 50-150 µm) represented 87.2% of total weight in sandy soil, while the percentages of C (PC) were 23.2% in coarse POM (2,000-150 µm) and 11.9% in fine POM (150-50 µm). These percentages were higher than those in loam soil, i.e. 3.4% (coarse POM) and 5.4% (fine POM). The PC in coarse POM (9.50%) and fine POM (16.4%) remained higher in casts from sandy soil than in casts from loam soil (4.7% in coarse and 14.3% in fine POM). The highest percentages of 14C-labelled leaves were found in fine fractions, 55.9% in casts from loam soil and 48.8% in casts from sandy soil. The C mineralisation of the added plant material was higher in casts from the sandy soil (20.3%) than from the loam soil (13.5%). Enchytraeids enhanced C mineralisation in the bulk sandy soil, but did not affect the mineralisation of added plant material in either soil. The main enchytraeid effect was enhancement of the humification process in the bulk sandy soil, the casts from this soil, and the bulk loam soil.  相似文献   

12.
This study aimed at quantifying nitrogen (N) and potassium (K) released from winery solid waste (WSW) composts during laboratory incubation to address deficiency in two texturally distinct soils. Composts had 4, 10, 20, 30, 40% (w/w) of filter materials (FMs) mixed with grape marc and pruning canes. The composts were mixed with the soils at equivalent rate of 200 kg N ha?1 and incubated for 42 days. Quantitatively higher (p < 0.05) ammonium N content was recorded in sandy than sandy loam soil during the incubation duration while exchangeable K was increased in K-deficient sandy soil. Cumulative total mineralized N (TMN) measured during the incubation duration ranged from 59 mg kg?1 to 672 mg kg?1 depending on compost type and soil texture while a 10-fold increase in compost FMs content resulted in 144% and 139% increases in cumulative mineralized K in sandy and sandy loam textured soil, respectively. Percent N mineralized from the composts relative to the amount applied during the incubation duration was less than 54% reflecting the composts and soils inherent characteristics. The high ammonium N and K mineralized suggests that farmers must be cautious in utilizing these composts for field crops production due to the potential environmental risks.  相似文献   

13.
腐殖酸生物活性肥料对冬小麦生长及土壤微生物活性的影响   总被引:18,自引:2,他引:18  
施用腐殖酸生物活性肥料对冬小麦生长和土壤微生物活性的试验结果表明,于等量无机养分水平下,施用腐殖酸生物活性肥料冬小麦群体发育平稳,改善植株性状明显,增强抗逆性能。与施用无机复混肥和习惯施肥处理相比,施用腐殖酸生物活性肥料,冬小麦穗长分别增加0.4和0.5cm,旗叶面积分别增加0.7和1.1cm2,次生根条数分别增加1.3和2.2条。产量构成因素中有效穗数,穗粒数和千粒重施用生物活性肥处理也明显高于无机复混肥和习惯施肥,其产量分别增加9.0%和15.2%,差异达显著水平。同时腐殖酸生物活性肥料能够促进土壤有益微生物繁衍,使土壤微生物数量明显增加,提高土壤脲酶、蔗糖酶、磷酸酶和过氧化氢酶活性,对提高肥效,增强土壤肥力,改善作物营养环境有一定作用。  相似文献   

14.
In agricultural fields soil compaction is a major cause of physical degradation. Degree of compactness (DC) is a useful parameter for characterizing compaction and the response of crops for different soils. The objectives of this study were: (1) to identify the critical DC and PR values for soybean [Glycine max (L.) Merrill] using plant growth variables and (2) to verify the relationship between DC and PR, and assess which parameter is recommended for the evaluation of soil compaction. The study was conducted in a greenhouse in a completely randomized factorial design of 4 textures × 5 compaction levels for sandy loam and sandy clay loam soils, and 3 compaction levels for the clayey and very clayey soils. Soil samples were collected from the surface of a Xantic Kandiudox from the NE region of the State of Pará, Brazil. The DC was calculated from the maximum bulk density obtained by the Proctor test, and the PR curve was determined in undisturbed samples equilibrated in different matric potentials. The growth and development of the soybean was favored in the DC range of 80 to 85%, regardless of soil texture. The critical degree of compactness for the growth of soybean was around 98% regardless of soil texture, while the critical values for penetration resistance at field capacity varied according to soil texture and bulk density and were 28.2, 5.6, 3.5, and 5.2 MPa for the sandy loam, sand clay loam, clayey and very clayey soils, respectively. The root length was the plant growth variable most susceptible to soil compaction. Change in soil penetration resistance was poorly related with change in degree of compactness showing that one parameter cannot be replaced by the other. Because PR is quickly determined in field and have a direct relationship with plant growth, for the soils evaluated in this study we recommend the use of soil PR to assess the state of soil compaction.  相似文献   

15.
ABSTRACT

Integrated management of soil organic matter and nutritional status of crop plants is essential to sustain the production of organic farming systems. Thus, a 2–year field experiment was conducted to examine the effects of soil additions (192 kg N ha–1, humic+192 kg N ha–1, humic+144 kg N ha–1 and humic+96 kg N ha–1) and foliar applications (amino acids, Azotobacter+yeast, and amino acids plus Azotobacter+yeast) as various fertilizer resources on growth and yield of wheat. Results showed that humic+192 kg N ha–1 × amino acids plus Azotobacter+yeast were the effective combination for producing the highest values of flag leaf area, total dry weight, tiller number m–2, spike weight m–2, and grain yield ha–1. Under foliar application of amino acids plus Azotobacter+yeast, reducing N supply from recommended rate (192 kg N ha–1) to 144 kg N ha–1+ humic achieved higher values of all yield traits, with a saving of 25% of applied mineral nitrogen as well as enhancing nitrogen use efficiency.  相似文献   

16.
ABSTRACT

Long-term irrigation with untreated industrial sewage effluents causes accumulation of high concentrations of chromium (Cr) and other heavy metals in soil and subsequently in crop plants (especially leafy vegetables), which can be phytotoxic to plants and/or a health hazard to animals and humans. Greenhouse experiments were conducted to determine the effects of Cr application on the growth of spinach (Spinacia oleracia L.) and to develop critical toxic ranges of Cr in plants and in soil. The study involved growing of spinach variety ‘Punjab Green’ in a greenhouse on silty clay loam and sandy soils equilibrated with different levels of applied Cr (0, 1.25, 2.5, 5, 10, 20, 40, 80, 160, and 320 mg Cr kg? 1 soil). Plants were harvested at: three growth stages 45, 60, and 90 days after sowing (DAS). Critical toxic ranges were estimated by regressing and plotting data on ammoniumbicarbonate-diethylenetriaminepenta-acetic acid (AB-DTPA) extractable Cr in soil or Cr concentration in plants versus dry-matter yield (DMY) of spinach at the three growth stages. Toxic ranges, i.e., slightly toxic (80%–90%), moderately toxic (70%–80%), and extremely toxic (< 70%) in terms of DMY relative to the attainable maximum DMY, were established for both soils and for plants at all three growth stages. There was no germination of spinach with applied Cr at 320 mg Cr kg? 1 rate in silty clay loam soil and at 40 mg Cr kg? 1 rate in sandy soil due to Cr toxicity. Roots accumulated more Cr in comparison with shoots. Chromium concentrations of 0.47–1.93 mg Cr kg? 1 soil in silty clay loam soil, 0.13–0.94 mg Cr kg? 1 soil in sandy soil, 1.08–5.40 mg Cr kg? 1 plant DM in silty clay loam soil and 0.54–11.7 mg Cr kg? 1 plant DM in sandy soil were found to be toxic. The critical toxicity ranges of Cr thus established in this study could help in demarcating Cr toxicity in soils and in plants such as spinach and other leafy vegetables due to irrigation of soils with untreated sewage water contaminated with chromium.  相似文献   

17.
The information of soil compaction effects on growth and yield of crops for saline and waterlogged soils is scanty. A pot experiment was conducted on a sandy clay loam soil during 2001–2002 to study the interactive effects of soil compaction, salinity and waterlogging on grain yield and yield components of two wheat (Triticum aestivum) genotypes (Aqaab and MH-97). Compaction was achieved at 10% moisture level by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing the required amount of NaCl in soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction aggravated the adverse effect of salinity on grain yield and different yield components of both the wheat genotypes. Average reduction in grain yield was 44% under non-compact saline conditions against 76% under compact saline conditions. Similarly, the reduction was about 20% more for 100 grain weight and shoot length, 30% more for number of spikelets per spike, 37% more for number of tillers per plant, and 32% more for straw weight in compact saline treatment than in non-compact saline treatment. Compaction alone caused a reduction of 36% in grain yield. The effect of waterlogging on grain yield and yield components was mostly not changed significantly due to compaction. Rather waterlogging mitigated the effect of compaction for most of the yield components except for number of spikes per plant. Therefore, as for normal soils, the cultivation of salt-affected soils should employ implements and techniques which minimize compaction of root zone soil. The effect of soil compaction can also be minimized by light irrigations with short intervals and by using a stress tolerant crop genotype.  相似文献   

18.
The concern for groundwater pollution by agrichemicals through solute movement within the soil is widespread. Zeolite is a type of soil amendment that is utilized to improve physical properties of soil and ameliorate polluted soil. The high negative charge of the zeolite and its open space structure allows adsorption and access of heavy metals and other cations and anions. The objectives of this research were (i) to determine the effects of different application rates of zeolite (0, 2, 4, and 8 g kg?1) on the immobile water content and mass exchange coefficient in a loam soil and then (ii) to determine the effects of optimum application rate of zeolite on the immobile water content and mass exchange coefficient of sandy loam and clay loam soils in saturated conditions by a mobile and immobile (MIM) model. In a disturbed soil column, a method was proposed for determination of MIM model parameters, that is, immobile water content (θim), mass exchange coefficient (α), and hydrodynamic dispersion coefficient (Dh). Breakthrough curves were obtained for different soil textures with different zeolite applications in three replicates, by miscible displacement of chloride (Cl?1) in disturbed soil column. Cl?1 breakthrough curves were evaluated in terms of the MIM model. The results showed that the pore water velocity calculated based on the total soil volumetric water content (θim+ θm) and real pore water velocity calculated based on the mobile water content (θm) increased in the loam soil with an increase in zeolite application rate, so that, between these different rates of zeolite application, the maximum value of pore water velocity and real pore water velocity occurred at zeolite application rates of 8.6 and 11.5 g kg?1, which are indicated as the optimum application rates. However, the comparison between different soils showed that the zeolite application rate of 8 g kg?1 could increase pore water velocity of sandy loam and loam soils by 31% more than that of clay loam soil. The immobile water content and mass exchange coefficient of loam soil were correlated with the zeolite application rate and reduced with an increase in the rate of applied zeolite. In a comparison between different soils at zeolite application rate of 8 g kg?1, the immobile water contents of the zeolite-treated soil decreased by 57%, 60%, and 39% on sandy loam, loam, and clay loam soils, respectively, compared with the untreated soil. Furthermore, zeolite application could reduce mass exchange coefficient by 9%, 43%, and 21% on sandy loam, loam, and clay loam soils, respectively. A positive linear relationship was found between θim and α. Zeolite application increased real pore water velocity of sandy loam soil by 39% and 46% compared with loam and clay loam soils, respectively. In other studies there was a decrease in ammonium and nitrate leaching due to the zeolite application, and therefore, an increase in real pore water velocity due to zeolite application in sandy loam soil, as compared with the loam and clay loam soils, may not show more rapid movement of solute and agrichemicals to the groundwater.  相似文献   

19.
Three arid soils (clay loam (CL), sandy clay (SC), and sandy loam (SL)) were amended with pecan waste products (ground pecan shells (PSHs), ground pecan husks (PHUs), and ground pecan shell biochar (PSB)), at a rate of 45 Mg/ha, packed inside cylindrical rings and kept in a humid chamber for 4 weeks. Measurements taken included volumetric moisture content as the soil dried out for 7 days, wet aggregate stability (WAS), permanganate oxidizable carbon (POXC), nitrate-nitrogen, extractable phosphorus (Olsen-P), and water-extractable potassium (K). Significant effects of soil texture, soil amendment, and their interaction were observed for all measurements. Generally, the amendments led to significant improvement in Olsen-P, K, POXC, and WAS, while amendments’ impacts on soils of different textures varied. Short-term moisture retention was dependent on soil texture, with PHU and PSB treatments having higher soil moisture retention in SL and CL soils but not in SC soil.  相似文献   

20.
高钾用量和根区施肥可提升皖南不同质地土壤烟叶钾含量   总被引:1,自引:0,他引:1  
钾是烟叶的品质元素之一,提升烟叶钾含量一直是我国烟草行业关注的重点之一。本文选取安徽烤烟主产区皖南宣城市砂土与黏土两类典型土壤,以云烟97为试验材料,研究田间条件下不同高钾用量水平与施肥方式对烟叶钾含量的影响。研究结果表明,在耕层土壤全层混施方式下,随着施钾量增加(0、300、600、900、1 200、1 800、2400mg/kg,以纯K计),两种质地土壤烟叶钾含量均显著上升,呈先快速增加而后缓慢增加的趋势。在钾肥用量低于1 200 mg/kg时,每增加钾肥用量100 mg/kg,砂土和黏土烟叶不同部位钾含量分别平均增加2.4 g/kg和1.0 g/kg。更高钾肥用量可使砂土烟叶钾平均含量提升到44.0 g/kg,黏土则只能提升到26.2 g/kg。两类土壤钾肥效果差异极大的原因与土壤固钾能力有关,土壤速效钾含量与烟叶钾含量呈线性相关,而黏土钾肥固定率平均为71%,远高于砂土的25%,这是两种质地土壤钾肥肥效差异的根本原因。在常规同等钾肥用量条件下(K2O25kg/667m2),氮磷钾根区集中施用较常规条施显著促进了烟叶对钾的吸收,提升了烟叶钾含量,而且砂土的效果要好于黏土,其原因也与根区施肥可显著提升烟叶根区土壤速效钾含量有关。以上结果表明,选择固钾能力弱的土壤,提高钾肥用量并改进施肥方法可以有效提升皖南烟叶钾的含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号