首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 223 毫秒
1.
建立了同时测定小麦及其土壤中双氟磺草胺和氯氟吡氧乙酸残留的QuEChERS-超高效液相色谱-串联质谱方法,并采用该方法研究了低温冷藏条件下双氟磺草胺和氯氟吡氧乙酸在小麦上的储藏稳定性以及15%双氟磺草胺?氯氟吡氧乙酸悬乳剂在小麦和土壤中的最终残留及消解动态。结果表明:在添加水平为0.005~1 mg/kg范围内,双氟磺草胺和氯氟吡氧乙酸在小麦及土壤中的平均回收率在82%~108%之间,相对标准偏差在0.41%~11%之间 (n=5) ,均能满足农药残留分析的要求。在 –20℃下储藏365 d后,麦粒中双氟磺草胺和氯氟吡氧乙酸的残留量变化小于30%,符合植源性农产品中农药残留储藏稳定性试验准则要求,储藏稳定。双氟磺草胺在小麦植株和土壤中的消解半衰期分别为4.4~8.1 d和2.4~9.3 d;氯氟吡氧乙酸在小麦植株和土壤中的消解半衰期分别为7.9~10.6 d和11.8~24.8 d,即在相同的试验条件下双氟磺草胺在植株和土壤中消解速率快于氯氟吡氧乙酸的。采用推荐剂量有效成分180 g/hm2和推荐高剂量有效成分270 g/hm2的15%双氟磺草胺?氯氟吡氧乙酸悬乳剂于小麦田施药1次,在小麦收获期的麦粒中均未检出双氟磺草胺和氯氟吡氧乙酸残留。  相似文献   

2.
七种农药在3种不同类型土壤中的吸附及淋溶特性   总被引:5,自引:3,他引:2  
采用振荡平衡法和土柱淋溶法研究了2,4-滴酸、丁噻隆、毒草胺、炔草酸、氟环唑、甲基磺草酮和烯啶虫胺7种农药在江西红壤、太湖水稻土及东北黑土3种不同理化性质土壤中的吸附及淋溶特性,探讨了农药性质及土壤理化性质对供试农药在土壤中吸附、淋溶行为的影响。结果表明:农药的水溶性越大,其在土壤中的吸附性越弱,淋溶性越强;农药在土壤中的吸附性与土壤pH值、有机质含量以及阳离子交换量之间有较好的相关性。土壤pH值、有机质含量以及农药性质是影响农药在土壤中淋溶及迁移的主要因素。  相似文献   

3.
为评价氯胺嘧草醚的环境安全性,采用批量平衡法测定了氯胺嘧草醚在5种土壤中的吸附-解吸行为,并运用数学模型对其吸附-解吸特性及移动性能进行了分析。结果表明:氯胺嘧草醚在5种土壤中的等温吸附-解吸曲线符合Freundlich模型,吸附常数(Kf值)范围在6.991~18.49之间;不同土壤对其的吸附作用强弱依次为:黑土 > 水稻土 > 褐土 > 潮土 > 红土。氯胺嘧草醚在5种土壤中的有机碳吸附常数(KOC)范围在704.4~1 579之间,推测其在土壤中具有低移动性;薄层层析试验也表明,氯胺嘧草醚在土壤中的移动性较弱。氯胺嘧草醚在5种土壤中的吸附自由能绝对值均小于40 kJ/mol,表明其吸附机理主要是物理吸附。其Kf值与土壤有机质含量、黏粒含量呈正相关,而与土壤pH值呈负相关。解吸试验表明,氯胺醚在其中3种土壤中的解吸过程存在滞后现象。研究表明,在正常使用情况下,氯胺嘧草醚不易对地表水或地下水造成污染风险。  相似文献   

4.
为研究环丙酰草胺在土壤中的吸附迁移规律,分别采用批平衡法和柱淋溶法测定了环丙酰草胺在江西红壤、太湖水稻土、常熟乌杉土、陕西潮土和东北黑土5种土壤中的吸附和淋溶特性,并运用数学模型对其在土壤中的吸附及迁移特性进行了分析。结果表明:环丙酰草胺在5种土壤中的等温吸附曲线符合线性吸附方程,吸附常数Kd在1.41~7.08之间;环丙酰草胺在5种土壤中的淋溶性大小依次为:东北黑土>陕西潮土>常熟乌杉土>太湖水稻土>江西红壤。通过对吸附常数Kd与土壤有机质含量和pH值的关系进行分析,发现土壤pH值在吸附过程中属主要因素,Kd与土壤pH值呈负相关。上述结果表明,环丙酰草胺在供试的5种土壤中比较容易迁移,影响其迁移的主要因素是土壤pH值。环丙酰草胺在使用过程中应关注其对地表水和地下水造成的风险。  相似文献   

5.
鱼藤酮在3种土壤中的吸附-解吸附特性   总被引:2,自引:0,他引:2  
为了综合评价鱼藤酮在土壤环境中的吸附-解吸附特性,采用批量平衡法,系统研究了鱼藤酮在砂壤土、黏壤土及壤土3种农业土壤中的吸附-解吸附行为。结果表明,鱼藤酮在3种土壤中的吸附-解吸附行为符合Freundlich模型 (R2≥0.946 8),吸附常数 (Kf-ads) 在1.52~11.39之间,吸附能力为:黏壤土 > 砂壤土 > 壤土;而解吸附常数 (Kf-des) 在1.02~4.55之间,解吸附强弱次序为壤土 > 黏壤土 > 砂壤土。鱼藤酮在砂壤土、黏壤土和壤土3种土壤中有机碳吸附常数 (KOC) 分别为982、101 7和219,而滞后系数 (H) 分别为0.687 3、0.556 9和0.892 3,表明鱼藤酮在黏壤土及砂壤土中移动性较弱,有正迟滞作用,而在壤土中移动性较强,无迟滞作用。该研究将对鱼藤酮的环境风险评估具有一定的理论指导意义。  相似文献   

6.
磺草酮在土壤中的淋溶特性研究   总被引:4,自引:4,他引:0  
基于所建立的土壤中磺草酮残留的超高效液相色谱-串联质谱分析方法,通过土壤薄层层析试验研究了磺草酮在中国3种典型土壤中的淋溶特性。结果表明:添加水平为1和10 mg/kg时,磺草酮在土壤中的添加回收率为80%~104%,相对标准偏差为1.2%~8.1%,最低检测浓度为0.1 mg/kg。磺草酮在河北潮土、湖南红土和吉林黑土中的比移值(Rf)分别为0.563、0.101和0.422,其在潮土和黑土中的移动性为中等,在红土中为不易移动;磺草酮在土壤中的淋溶特性与土壤理化性质密切相关,主要影响因素是土壤p H值及黏粒组分含量。  相似文献   

7.
毒死蜱和氰戊菊酯在土壤中的吸附与迁移   总被引:1,自引:2,他引:1       下载免费PDF全文
为评估被用作白蚁预防药剂的毒死蜱和氰戊菊酯在土壤中的移动性,采用平衡吸附法和薄层层析法分别测定了两种农药在浙江宁波地区的东钱湖土(粉砂质壤土)、青岭土(粉砂质壤土)和象山土(粉砂质黏壤土)3种土壤中的吸附常数(Kd)和迁移率(Rf)。结果表明,两种供试药剂在东钱湖土中的吸附等温线线性化程度均较高,而在青岭土和象山土中的吸附等温线均近似于 "L"型。从Kd和有机质吸附常数Koc的数值看,氰戊菊酯在土壤中的吸附作用主要受土壤有机质因素影响,而毒死蜱的吸附并非只受土壤有机质因素的影响。毒死蜱在3种供试土壤中的Kd和Rf值均高于氰戊菊酯。这表明由Kd值推测不同农药在土壤中的相对移动性可能会存在一定偏差。毒死蜱和氰戊菊酯在3种土壤中的Rf值由大到小的顺序为:东钱湖土>青岭土>象山土;而Kd值由大到小顺序为象山土>青岭土>东钱湖土。对Kd和Rf值与土壤理化性质的多元线性回归分析表明:1)土壤有机质含量和阳离子代换量在决定Kd和Rf值中所起的作用相互重叠;2)土壤有机质含量(或土壤阳离子代换量)和土壤黏粒含量是影响Kd和Rf值的关键因素,而土壤pH值对于Kd和Rf值无决定性影响。  相似文献   

8.
为合理评估除草剂异唑草酮的环境风险,在实验室模拟条件下,研究了异唑草酮在土壤 (红壤土)表面光解以及在不同质地土壤 (潮土、水稻土和红壤土) 中的降解和淋溶特性。结果表明:异唑草酮在土壤表面的光解遵循一级反应动力学方程ct = 4.23e–0.008t (r = 0.937),半衰期为82.5 h;其在潮土、水稻土和红壤土中的降解均符合一级动力学方程,好氧条件下,异唑草酮在3种土壤中的降解半衰期分别为10.5、43.3和139 h,厌氧条件下的降解半衰期分别为19.4、18.4和158 h;其在潮土、水稻土和红壤土中的淋溶系数 (Rf) 分别为0.417 0、0.083 3和0.083 3。研究表明:异唑草酮在土壤表面光解速率较慢,而在土壤中好氧及厌氧条件下降解速率均较快,残留期短;其在土壤中淋溶性较弱,不易对周围环境及地下水造成污染风险。  相似文献   

9.
双氟磺草胺的除草活性及对不同小麦品种的安全性评价   总被引:9,自引:4,他引:5  
双氟磺草胺为三唑并嘧啶磺酰胺类除草剂,为了明确其在我国北方麦田的应用前景,采用室内生测法研究双氟磺草胺的杀草谱、除草活性及对不同小麦品种安全性。双氟磺草胺对麦田常见阔叶杂草活性较高,对麦田恶性杂草播娘蒿、麦瓶草、麦家公、猪殃殃和荠菜的除草活性均高于常用除草剂苯磺隆,毒力倍数分别为1.56、6.26、1.65、18.27和22.75。济南17和山优2号2种小麦对双氟磺草胺的耐药性分别为苯磺隆的2.57倍和11.66倍。双氟磺草胺在小麦与5种杂草之间的选择性指数(11.16~49.32)远优于苯磺隆。该除草剂对小麦苗期的株高及鲜重有抑制作用,且对不同小麦品种的影响差异显著,其中对临麦2号、济宁13及济南17的株高和鲜重抑制率相对较高,对潍麦8号、山农6号及泰山9818等相对较低。研究表明双氟磺草胺具有很好的应用前景。  相似文献   

10.
为明确天津市小麦田荠菜种群对双氟磺草胺的抗性情况及可能的抗性机理,本研究在天津市静海区、武清区、宝坻区及蓟州区等荠菜发生严重地区的小麦田共采集到6个荠菜种群,采用整株水平测定法测定了6个荠菜种群对双氟磺草胺的抗性水平,并扩增、比对了其靶标乙酰乳酸合成酶 (ALS) 基因部分片段的差异。结果表明:6个荠菜种群对双氟磺草胺均产生了高抗性,抗性倍数在11.4~47.2之间。对抗性和敏感种群的ALS基因片段进行测定比对发现,6个荠菜种群ALS基因197位氨基酸均由脯氨酸 (CCT) 突变为丝氨酸 (TCT),该突变可能是导致荠菜种群对双氟磺草胺产生抗性的重要原因之一。  相似文献   

11.
Flumioxazin adsorption kinetics were described using a Greenville sandy clay loam soil. Adsorption kinetics experiments showed that 72% of total herbicide was absorbed after 1 h of continuous shaking and continued to increase to 78% after 72 h. Flumioxazin adsorption was then tested on seven agriculturally important soils throughout the southern USA. Adsorption isotherms for all soils had K(f) (Freundlich distribution coefficient) values that ranged from 8.8 to 0.4, with many near 1.5. Soil organic matter content was the parameter most highly correlated with flumioxazin adsorption (r(2) = 0.95, P < 0.001). Sorption to clay minerals had K(f) values ranging from 50 for bentonite to 4.7 for kaolinite. However, normalizing K(f) for sorbent surface area revealed that aluminum hydroxide (gibbsite) possessed the greatest flumioxazin sorption per unit area. Sorption to anionic exchange resin (K(f) 676) was greater than cationic exchange resin (K(f) 42). Molecular model calculations were performed to elucidate why sorption was greater to anionic exchangers. These calculations indicated that a region of dense electronegativity exists on the 3-dione moiety of the molecule. This would lead to greater flumioxazin sorption by positively charged surface sites. Desorption isotherms from soil exhibited no effect of hysteresis. Desorption from clay minerals was very rapid and flumioxazin in solution was undetectable after three desorption steps. From these data it was concluded that flumioxazin can become readily available in soil solution with increase in soil water content.  相似文献   

12.
The leaching of aldicarb and thiofanox in soils (sandy loam, silt loam and sandy clay loam), and their uptake by sugarbeet plants were studied. Three irrigation levels were maintained: half, normal and double dose. The residues were determined as the sum of the insecticidal metabolites (parent compound + sulphoxide+ sulphone) for both pesticides. Leaching was greatly influenced by the amount of water added and the soil type. Under normal conditions, leaching seemed to proceed very slowly, keeping the chemicals available for uptake by the root systems for a long time. The concentration of insecticide in the leaves was highest in beets grown on sandy loam and lowest in those grown on sandy clay loam. The quantity of irrigation did not influence the residue concentration in the leaves greatly, although its influence was obvious on the total residue present (μg per plant). Increasing the water dose always resulted in a higher total residue, and a greater plant weight. The breakdown in the soils was directly related to the water dose. The experiments show that thiofanox was more stable than aldicarb and was taken up by sugarbeet to a greater extent.  相似文献   

13.
Although glyphosate (N‐(phosphonomethyl)glycine) is one of the most frequently used herbicides, few controlled transport experiments in undisturbed soils have been carried out to date. The aim of this work was to study the influence of the sorption coefficient, soil‐glyphosate contact time, pH, phosphorus concentration and colloid‐facilitated transport on the transport of [14C]glyphosate in undisturbed top‐soil columns (20 cm height × 20 cm diameter) of a sandy loam soil and a sandy soil. Batch sorption experiments showed strong Freundlich‐type sorption to both soil materials. The mobility of glyphosate in the soil columns was strongly governed by macropore flow. Consequently, amounts of glyphosate leached from the macroporous sandy loam soil were 50–150 times larger than from the sandy soil. Leaching rates from the sandy soil were not affected by soil‐glyphosate contact time, whereas a contact time of 96 h strongly reduced the leaching rates from the sandy loam soil. The role of pH and phosphorus concentration in solution was relatively unimportant with respect to total glyphosate leaching. The contribution of colloid‐facilitated transport was <1 to 27% for the sandy loam and <1 to 52% for the sandy soil, depending on soil treatment. The risk for glyphosate leaching from the top‐soils seems to be limited to conditions where pronounced macropore flow occurs shortly after application. © 2000 Society of Chemical Industry  相似文献   

14.
Dissipation of atrazine after pre-emergence application to irrigated grain sorghum was investigated in an experiment on a Birganbigil clay loam at Yanco Agricultural Research Centre in the Murrumbidgee Irrigation Areas of New South Wales. Dissipation followed first-order kinetics with a half-life of 70 days. This rate of disappearance did not differ significantly between application rates of 2.5 and 10 kg/ha. Removal of volunteer plant growth with non-residual chemicals or by cultivation during the winter fallow periods had no significant effect on the levels of atrazine residues in the soil and dissipation rate did not differ significantly between the 2 years of the experiment. A laboratory incubation experiment demonstrated that dissipation of atrazine in Birganbigil soil was more rapid than in three other soils from the Murrumbidgee and Murray Valleys. Dissipation rate and atrazine adsorption were both correlated with the organic carbon content of the soils, which ranged from 1.43% to 0.72%. There was no correlation between either dissipation rate or adsorption and clay content, even though clay contents ranged from 37 to 78%.  相似文献   

15.
Laboratory studies on the formation of bound residues and on the degradation of the triazole fungicide propiconazole were conducted in two different soils. Soils treated with 14C-propiconazole were incubated at 22 degrees C and extracted exhaustively with a solvent at each sampling date until no further propiconazole was extracted. The solvent-extractable residues were used to measure propiconazole remaining in the soil, and the extracted soils were used to investigate bound residues of propiconazole. Mineralization of propiconazole was investigated by measuring [14C]carbon dioxide evolved from the soil samples. Formation of bound residues of propiconazole was higher in silty clay loam soil than in sandy loam soil, giving approximately 38 and 23% of the applied 14C, respectively. In contrast, the rates of degradation and mineralization of propiconazole were lower in silty clay loam soil than in sandy loam soil. Decreased extractability of the 14C residues with incubation time was observed with increased formation of bound residues. When the propiconazole remaining in the solvent-extractable residues was quantitatively measured by high-pressure liquid chromatographic analysis, the half-life value in sandy loam soil was about 315 days, while the half-life in silty clay loam soil exceeded the duration of the 1 year experimental period. Increased formation of bound residues was observed as propiconazole degraded with incubation time, suggesting that degradation products are involved in the formation of bound residues. Our study suggests that the formation of bound residues of propiconazole contributes to the persistence of this fungicide in soil.  相似文献   

16.
Adsorption-desorption of the herbicide flufenacet (FOE 5043) has been studied in five soils from different locations in India (Delhi, Ranchi, Nagpur, Kerala and Assam) varying in their physicochemical properties. The organic matter (OM) content varied from 0.072 to 0.864%, clay content from 2.5 to 43.7% and pH from 4.45 to 8.35. The adsorption studies were carried out using a batch equilibration technique. Ten grams of soil were equilibrated with 20 ml of aqueous 0.01 M CaCl2 solution containing different concentrations (0-30 mg litre-1) of flufenacet. After equilibration, an aliquot of supernatant was taken out for analysis. During desorption, the amount withdrawn for analysis was replenished with fresh 0.01 M CaCl2 solution and further equilibrated. Desorption studies were carried out with the 30 mg litre-1 concentration of flufenacet only. The adsorption studies revealed that there was moderate to high adsorption of flufenacet considering the comparatively low organic carbon content in the five test soils. Average Kd values ranged from 0.77 to 4.52 and Freundlich KF values from 0.76 to 4.39. The highest adsorption was observed in Kerala soil (OM 0.786%; clay 25%; pH 4.45) followed by Ranchi, Nagpur and Delhi soils, and the lowest in Assam soil (OM 0.553%; clay 2.5%; pH 6.87). The trend in adsorption could be attributed to the chemical nature of flufenacet and the physicochemical properties of the soil such as pH, OM and clay contents. OM and clay contents were positively correlated whereas pH was negatively correlated. Soils having low pH, high OM and high clay contents showed higher adsorption. Desorption studies revealed that there was a hysteresis effect in all the soils. Hysteresis coefficient values (ratio of n(ad) and n(des)) varied from 0.09 to 0.45. The study implies that, because of its moderate to high adsorption, flufenacet is likely to persist in soil for some time. However, the possibility of its movement by leaching or surface run off is less.  相似文献   

17.
A search was made forRhizoctonia solani-suppressive soils by establishing many small experimental plots, half of which were planted withRhizoctonia-infected seed potatoes and the other half with disinfected seed stock. The sclerotium index of the harvested tubers was compared witht that of the seed potatoes. In suppressive soils, the sclerotium index of the harvest is much lower than that of the seed potatoes. None of the plots on holocene marine soils (loamy sand, sandy loam, clay loam and clay) proved to be suppressive in 1978 and 1979. Only on pleistocene, slightly acid sandy soil suppressiveness was observed. In 1978, four out of twelve plots showed suppressiveness when the plots were planted with seed potatoes produced on a sandy soil. In 1979, only two out of thirtyone plots were slightly suppressive when planted with seed potatoes produced on a young clay loam from a new polder. A higher percentage of sclerotia on tubers from sandy soils proved to be infected with antagonistic fungi (73%) than of those on tubers from marine clay or loam soils (25%). Factors that influence suppressiveness are suggested.  相似文献   

18.
The retention and degradation of metribuzin herbicide were studied under two environmental conditions. Field studies were carried out on two soils, a sandy loam soil (soil A) and a clay soil (soil B). Metribuzin was applied with a jet sprayer at 1060 g a.i. ha?1 and 1960 g a.i. ha?1 on soils A and B respectively. Reconstituted soil columns were used to study the herbicide movement and metabolism in the two soils. Analyses of metribuzin and its metabolites were carried out using standardized methods. The results indicated a very weak capacity of adsorption of metribuzin in the two soils, and the weak adsorbed fraction is easily desorbed. Degradation and mobility of metribuzin in the field and laboratory soil columns were very intense and rapid. Soil A favoured reductive deamination whereas soil B favoured oxidative desulphuration and the respective metabolites deaminometribuzin and diketometribuzin yield the same product deaminodiketometribuzin. Both leaching by rainfall and degradation were important in the disappearance of metribuzin from the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号