首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth trials for larvae and juvenile red sea bream, Pagrus major, were conducted to elucidate the efficacy of two molecular forms of methionine; dl ‐methionine (dl ‐Met) and methionine dipeptide (Met‐Met). For the larvae experiment, five experimental diets were formulated and fed to fish (42 mg) for 30 days. A diet which has 15% soy protein isolate served as the control diet. Similarly, test diets supplemented with dl ‐Met and Met‐Met at 0.5%, which were either precoated by zein or intact, were also formulated. For the juvenile experiment, five experimental diets were formulated wherein the control diet contained 25% soy protein isolate. Test diets were supplemented with dl ‐Met and Met‐Met at 0.75%, which were either coated by carboxymethycellulose or intact and fed to juveniles (0.75 g) for 56 days. The results of two feeding trials showed both dl ‐Met and Met‐Met can be equally utilized by red sea bream larvae and juveniles. Coating the amino acid significantly improved both fish larval and juvenile growth performance. The development of digestive protease activity of larvae was significantly influenced by coating the amino acid, but the type of methionine was not a factor in changing the protease activity of larvae.  相似文献   

2.
The aim of this study was to assess the role of soluble non-starch polysaccharide (guar gum) on white sea bream Diplodus sargus, glucose and lipid metabolism. A control diet was formulated to contain 40 % crude protein, 14 % crude lipids and 35 % pregelatinized maize starch, and three other diets were formulated similar to the control diet except for guar gum, which was included at 4 % (diet GG4), 8 % (diet GG8) or 12 % (diet GG12). Diets were fed to the fish for 9 weeks on a pair-feeding scheme. Guar gum had no effect on growth performance, feed efficiency, glycaemia, cholesterolaemia and plasma triacylglyceride levels. Hepatic glucokinase and pyruvate kinase activities, liver glycogen content and liver insulin-like growth factor-I gene expression were not affected by dietary guar gum, while fructose-1,6-bisphosphatase activity was lower in fish fed guar gum–supplemented diets. Hepatic glucose-6-phosphate dehydrogenase activity was higher in fish fed diets GG4 and GG8 than in the control group. Overall, data suggest that in contrast to mammals guar gum had no effect on white sea bream glucose utilization and in lowering plasma cholesterol and triacylglyceride levels. However, it seems to contribute to lower endogenous glucose production.  相似文献   

3.
This study aimed at evaluating the effects of short‐chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS) and galactooligosaccharides (GOS) on growth performance, hepatic metabolism, gut microbiota and digestive enzymes activities of white sea bream juveniles. Four diets were formulated: a control diet with fish meal (FM) and plant feedstuffs (PF) (30FM:70PF) and three test diets similar to control but supplemented with 10 g of scFOS, XOS or GOS per kilo diet, which were fed to fish during 12 weeks. Prebiotics had no effect on growth, feed efficiency or gut microbiota. Plasmatic triglycerides were lower in fish fed XOS than FOS and GOS diets. Malic enzyme activity was lower in fish fed XOS than FOS diet. Fish fed XOS diet had lower fatty acid synthetase (FAS), a key lipogenic enzyme and higher alanine aminotransferase activities. Fifteen days after the start of the trial, an enhancement of total alkaline protease, trypsin and lipase activities was observed in fish fed prebiotics, but such effect disappeared at 12 weeks. In conclusion, scFOS, XOS or GOS seem to have limited applicability in white sea bream feed.  相似文献   

4.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

5.
A feeding trial was conducted to evaluate the effect of replacing fish meal protein with fermented soybean meal (FSM) on the growth performance, feed utilization, amino acid profile, body composition, morphological parameters, activity of antioxidant and digestive enzymes of black sea bream (Acanthopagrus schlegeli) juvenile. Five isonitrogenic and isolipidic diets were prepared with levels of 0 (control), 80, 160, 240 and 320 g kg?1 FSM. Triplicate groups (40 fish per tank) of juvenile black sea bream with initial weight of 1.17 ± 0.04 g were hand‐fed to visual satiation at three meals per day for 8 weeks. The fish fed diets containing different levels of FSM had no significant differences regarding survival and specific growth rate compared with control group. Feed and protein efficiency ratios of fish fed diet containing 320 g kg?1 FSM were significantly lower than those of control group. Daily feed intake and daily protein intake of fish fed diet containing 240–320 g kg?1 were significantly higher than those of control group. Hepatosomatic index and condition factor of fish were not affected by different dietary FSM level. Fish fed diets containing 240–320 g kg?1 FSM had significantly higher visceral somatic index than control group. Whole body proximate and amino acid compositions of fish were not affected by dietary FSM level. The activity of digestive enzymes in the intestine was not affected by dietary FSM level. The activity of glutathione peroxidase in liver was significantly higher for fish fed the diet containing 160 g kg?1 FSM compared with control group. This study showed that up to 40% fish meal in the diets of juvenile black sea bream could be replaced by fermented soybean meal with supplementation of methionine, lysine and taurine.  相似文献   

6.
The necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance of red sea bream Pagrus major fed nonfishmeal (non-FM) diets was investigated. Yearling red sea bream (initial body weight, 580 g) were fed for 36 weeks on non-FM diets based on soy protein concentrate (SPC) supplemented with taurine at levels of 0%, 0.5%, 1.0%, 1.5%, and 2.0%. Specific growth rate (SGR) and feed conversion ratio (FCR) of fish fed the taurine-unsupplemented SPC diet were markedly inferior. In these fish, incidence of green liver was markedly higher and was accompanied by a decrease of tissue taurine concentration and an increase of hepatopancreatic bile pigment content. The green liver symptom was mainly caused by an increase of hemolysis since the erythrocytes became osmotically fragile due to taurine deficiency. Physiological abnormality and growth performance (SGR and FCR) were markedly improved by taurine supplementation to the SPC diets. These results indicate that dietary taurine supplementation is necessary for yearling red sea bream fed non-FM diet based on SPC to maintain normal physiological condition and growth performance.  相似文献   

7.
A trial was conducted to determine the effect of ascorbyl‐2‐monophosphate Na/Ca (AMP‐Na/Ca) on blood chemistry and nonspecific immune response of red sea bream juveniles. Test diets with three levels of AsA (free, 107, and 325 mg/kg diet) were fed to juvenile red sea bream (36.0 ± 1.3 g) two times a day for 3 wk. There were no significant differences in hematocrit, glucose, and blood urea nitrogen. Total cholesterol and triglyceride in plasma of fish fed AsA‐free diet was significantly (P < 0.05) higher than that of fish fed two other diets. There were no significant differences in serum albumin, total bilirubin, and total serum protein. Glutamyl oxaloacetic transaminase in serum of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) lower than that of fish fed AsA‐free diet. Serum lysozyme activity (LA) of fish fed diets containing 107 and 325 mg of AsA were significantly (P < 0.05) higher than that of fish fed AsA‐free diet. There was no significant difference in mucus LA. The results mentioned above demonstrated that AMP‐Na/Ca is a bioavailable AsA source for red sea bream juveniles. Supplement of more than 107 mg AsA/kg in diets improved blood chemistry and nonspecific immune function of red sea bream juveniles.  相似文献   

8.
Four semi-purified diets, containing crystalline amino acids (CAAs), were fed to juvenile red sea bream, Pagrus major in order to ascertain the ideal dietary amino acid pattern for this species. A control diet containing 50% casein–gelatin as protein sources, but no CAAs were fed to the fish. The other diets contained 30% casein–gelatin and 20% CAAs. CAAs were added to diets to simulate with amino acid pattern of the red sea bream eggs protein (REP), red sea bream larvae whole body protein (RLP), red sea bream juvenile whole body protein (RJP), and brown fishmeal protein (BFP). The juveniles (average initial body weight, 1.58 ± 0.01 g) were maintained in triplicate tanks and fed twice daily for 30 days. The highest weight gain was observed in juveniles fed the RJP diet. No significant difference was observed in juveniles fed the RLP and BFP diet. Feed efficiency ratio, protein efficiency ratio and amino acid retention in the whole body were significantly (p < 0.05) affected by the simulated dietary amino acid patterns. The essential amino acid profile and A/E ratios of the whole body after the growth trial showed little difference among the dietary treatments. The results suggest that red sea bream juveniles are able to utilize high amounts of CAA in coated form. The amino acid pattern of RJP could be used as an appropriate of reference dietary amino acid for this species.  相似文献   

9.
ABSTRACT:   This study was performed to evaluate the efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in red sea bream Pagrus major fed a low-fishmeal (FM) diet. Yearling red sea bream were fed for 34 weeks on low-FM diets either supplemented with taurine, or without taurine, and the tissue taurine and bile pigment concentrations were measured. Compared to the fish fed the FM diet, fish fed the low-FM diet without taurine supplementation resulted in inferior feed performances and higher incidence of green liver related to the morphological transformation of the erythrocytes. In these fish, the hepatopancreatic taurine concentration was significantly lower and hepatopancreatic biliverdin concentration was high compared to the fish fed the FM diet. These parameters were markedly improved by taurine supplementation of the low-FM diet and were similar in levels to the fish fed the FM diet. These results indicate that green liver appearance and inferior feed performances of red sea bream fed the low-FM diet without taurine supplementation were caused by dietary taurine deficiency, and indicate the requirement of taurine supplementation to low-FM diets for red sea bream.  相似文献   

10.
A 309 days feeding experiment was carried out on gilthead sea bream fingerlings (initial weight 14.7±4.4 g) to evaluate effects of substitution of fish oil with soybean oil in diets on growth and sensory characteristics and muscle fatty acid composition. Duplicate groups of fish were hand fed with four isoenergetic and isonitrogenous diets (46% protein, 14% lipid and 22 MJ kg−1) in which 0%, 24%, 48% or 72% of the fish oil was replaced by soybean oil. Fish fed diet 72% reached a lower final weight (324 g) than fish fed diets 0%, 24% and 48% (349, 343 and 338 g respectively). Feed intake, protein efficiency ratio, body composition and economic profitability were not influenced by the amount of soybean oil in the diets, but muscle fatty acid composition differed with diets. Panellists observed significant sensory differences between fish fed diet 0% and diet 72%. These results verified the possibility of feeding sea bream until they reached commercial weight with a 48% dietary substitution of fish oil for soybean oil.  相似文献   

11.
ABSTRACT:   This study was conducted to investigate the effect of dietary taurine and cholyltaurine (C-tau) on growth and body composition of juvenile red sea bream Pagrus major . Semi-purified casein-based diets supplemented with 0 (control diet), 0.1, 0.3, 0.5 and 0.7% taurine and 0.5% C-tau were fed to red sea bream (average body weight 4.7 g) for 6 weeks at 20°C. The growth and feed efficiency were the lowest in fish fed the control diet. Taurine supplementation improved the growth and feed efficiency of fish dose-dependently, and the taurine requirement was estimated as 0.52% in terms of optimizing growth and 0.48% in terms of optimizing feed efficiency. Taurine content in the whole body and liver increased with the dietary taurine level. Supplemental C-tau at the 0.5% level had limited effects on the growth and no effect on body taurine, biliary bile salt and liver fat contents. From these results it can be inferred that the optimal dietary taurine requirement of juvenile red sea bream is 0.5% on a dry weight basis, and that the supplementation of taurine in the diet not only improves the growth but also increases hepatic lipid levels of red sea bream juveniles.  相似文献   

12.
A 74‐day trial was undertaken to evaluate the effects of temperature (16 and 22 °C) and dietary protein/lipid ratio on the performance of juvenile Senegalese sole (mean body weight: 6.4 g). Four experimental diets were formulated to contain two protein levels (550 g kg?1 and 450 g kg?1) combined with two lipid levels (80 g kg?1 and 160 g kg?1). Growth was higher at 22 °C and within each temperature in fish fed diets 55P8L and 45P16L. Feed efficiency, N retention (% NI) and energy retention (% EI) were higher at 22 and at both temperatures in fish fed diet 55P8L. Temperature affected whole‐body composition, with dry matter, protein, lipid and energy being higher and ash lower in fish kept at higher temperature. Independently of temperature, whole‐body lipid, energy and ash were higher and protein was lower in fish fed the high‐lipid diets. Visceral and hepatosomatic indices were not affected by diet composition but were higher in fish kept at 16 °C. Liver glycogen and lipid contents and activities of glutamate dehydrogenase, alanine and aspartate aminotransferases were not affected by diet or water temperature. Malic enzyme (ME) and glucose 6‐phosphate dehydrogenase activities were higher in fish fed the low‐lipid diets. ME activity was higher at lower temperature. In conclusion, increasing water temperature from 16 to 22 °C improves growth and feed efficiency of Senegalese sole juveniles; regardless of water temperature, the diet with 550 g kg?1 protein and 80 g kg?1 lipid promoted the best growth and feed efficiency.  相似文献   

13.
We evaluated the effects of casein‐based semipurified diets, alone or supplemented with native Peruvian plants, on growth, feed efficiency, and histology of the digestive tract of red pacu, Piaractus brachypomus, juveniles over an 8‐wk feeding trial. Three tanks were randomly assigned to one of four casein–gelatin (40:8) diets containing a supplement of 15% wheat meal (control) or an identical level of substitution of three South American native plant as follows: camu‐camu fruit (Myrciaria dubia), aguaje fruit (Mauritia flexuosa), or maca tuber meal (Lepidium meyenii). The fish (initial weight, 2.04 ± 0.06 g) were fed experimental diets at decreasing feeding rates from 4 to 2.6% of body weight. After 8 weeks of feeding, fish fed a diet supplemented with maca meal showed significantly higher (P < 0.05) weight gain, specific growth rate, protein efficiency ratio (PER), apparent net protein utilization (NPU), and instantaneous feed intake than fish fed other diets. Feed conversion ratio (FCR), PER, and NPU in fish fed the casein–gelatin diet supplemented with maca meal were among the best ever reported in the scientific literature, 0.64 ± 0.03, 3.13 ± 0.15 and 23.8 ± 2.0, respectively. The camu‐camu meal had a negative impact on diet palatability and utilization, which resulted in slower growth. The stomach, intestine, pancreas, and pyloric caeca at the start and end of the experiment showed normal differentiation and appearance of cells and tissues. The liver parenchyma showed lipid infiltration and pigment accumulation in all samples at the initiation of the experiment and may be attributed to the period of decreased feed intake prior to the study. At the end of the study, similar histopathologies were recorded in all samples from the control and camu‐camu groups. Normal liver histology (polyhedral hepatocytes with centrally located nuclei) was observed in two of three samples from the maca group and all the samples from the group that was fed the aguaje‐supplemented diet.  相似文献   

14.
The effect of dietary carbohydrate complexity on growth, feed utilization, and glycemia was studied in European sea bass juveniles. Four isonitrogenous (50% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 20% pregelatinized maize starch (PGS diet), dextrin (DEX diet), maltose (MAL diet), or glucose (GLU diet). No effect of dietary carbohydrate complexity on growth was noticed. Feed efficiency and protein efficiency ratio were lower in fish fed the GLU diet than in the other groups, whereas the opposite was observed for feed intake. Plasma glucose peaked 3–4 h after feeding in fish fed the MAL and GLU diets, whereas in fish fed the PGS and DEX diets the peak was reached 5–6 h after feeding. Peak plasma glucose concentration (13 mmol/L) was higher in fish fed the GLU diet than the other diets (9 mmol/L). Shorter hyperglycemia duration was observed in fish fed the MALT and GLU diets (6 h) than the PGS and DEX diets (10 h). Complex carbohydrates delayed plasma glucose concentration peak compared with simple sugars, whereas the opposite was observed for hyperglycemia duration. Overall, dietary maltose, dextrin, and starch were apparently better utilized as energy source than glucose by European sea bass juveniles.  相似文献   

15.
The effect of fish meal (FM) substitution with fermented soybean meal (FSBM) in the diets of the carnivorous marine fish, black sea bream, Acanthopagrus schlegelii, was investigated. An 8‐wk feeding trial was conducted with black sea bream (11.82 ± 0.32 g; mean initial weight) in indoor flow‐through fiberglass tanks (25 fish per tank). Six isonitrogenous and isoenergetic diets were formulated, in which FM was replaced by FSBM at 0% (control diet), 10% (FSBM10), 20% (FSBM20), 30% (FSBM30), 40% (FSBM40), or 50% (FSBM50), respectively. Each diet was fed to triplicate groups of fish twice daily to apparent satiation. The results showed that there was no difference in survival of black sea bream during the feeding trial. Fish fed the FSBM10 or FSBM20 diet showed comparable growth performance compared with fish fed the control diet (P > 0.05), whereas more than 30% replacement of FM adversely affected weight gain and specific growth rate (P < 0.05). Feed intake was significantly lower for fish fed the FSBM50 diet compared with fish fed the control diet. Feed conversion ratio (FCR) tended to increase with increasing dietary FSBM with the poorest FCR observed for fish fed the FSBM50 diet. Protein efficiency ratio and protein productive values showed similar patterns. Apparent digestibility of nutrients significantly decreased with increasing dietary FSBM level. With the exception of protein content, no significant differences in whole body and dorsal muscle composition were observed in fish fed the various diets. Fish fed the FSBM50 diet had significantly lower intraperitoneal ratio than fish fed the control or FSBM10 diet. Hepatosomatic index and condition factor were unaffected by dietary treatments. This study showed that up to 20% of dietary FM protein could be replaced by FSBM protein in the diets of juvenile black sea bream.  相似文献   

16.
In this study we examined the effects of high-fat diets on alterations in liver histology features and blood biochemistry parameters in blunt snout bream Megalobrama amblycephala. Fish were fed three diets containing 5, 10, and 15 % fat, respectively, for 6 weeks prior to the liver histology examination and blood biochemistry testing. The livers of fish fed the 5 % fat diet showed a normal structure, whereas those of the fish fed the diets with a higher fat content presented nucleus polarization and lipid vacuolization. Transmission electron microscopy examination revealed that the hepatocytes of fish fed the 15 % fat diet had undergone ultrastructural alterations involving the mitochondria, nucleus, and endoplasmic reticulum (ER). Alterations in the blood biochemistry were evaluated to determine whether the blood biochemistry changes could be correlated with the observed alterations in liver histology with the aim of assessing the suitability of the investigated blood parameters as rapid indicators of liver condition. Significantly higher levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and of triglycerides and cholesterol were found in fish fed the 15 % fat diet. On the whole, the results clearly show that high fat intake resulted in fat accumulation and ultrastructural impairments of the mitochondria, nucleus, and ER. We conclude that blood sample measurements (AST, ALT, triglycerides, and cholesterol) could be used as a rapid test for determining liver status in blunt snout bream.  相似文献   

17.
Previously, we reported that methionine intake determined the taurine concentration in the liver of on‐growing Atlantic salmon fed plant protein diets. Further, the methionine intake and/or the increased taurine concentration following increased methionine intake affected the liver lipid metabolism. The following study therefore aimed to test whether taurine affected the growth or the type of growth when added in high plant protein diets naturally low in taurine but equal and adequate in dietary methionine. Juvenile Atlantic salmon [initial body weight (BW) of 2 g] were fed plant protein diets (16.5% fishmeal), which were supplemented with taurine or not for a period of 56 days. As a control for growth and normal metabolism, a fishmeal‐based commercial diet (68% fishmeal) was used. Supplementation with taurine to high plant protein diets had a slightly negative effect on weight gain, but the final body weight was not different. Interestingly, the pool of free amino acids in the liver and muscle was significantly higher in fish fed the supplemented diet as compared with fish fed the plant protein diet without taurine supplementation. Liver polyamine concentration was higher in fish fed the supplemented diet than in fish fed the similar diet without supplementation. Additionally, juvenile salmon fed the plant‐based diet supplemented with taurine had a lower body lipid‐to‐protein ratio due to a reduced whole‐body lipid content, while the whole‐body protein content was similar between treatments. Our study thus indicates that the addition of a low concentration of taurine to high plant protein diets interacts with lipid metabolism and storage, concomitantly affecting the general metabolism as the concentrations of the free amino acids and polyamines in the liver were significantly higher. The possible reasons for these changes are discussed.  相似文献   

18.
An 8‐week growth trial was conducted to evaluate the effects of different levels of tributyrin supplementation in a high‐soya bean meal diet on juvenile black sea bream (11.30 ± 0.16 g). The positive control (PC) diet contained 45% fishmeal and 20% soya bean meal, while the negative control (NC) contained 12% fishmeal and 45% soya bean meal. Graded levels of tributyrin were added to the NC diet at 0.05% (TB 0.05), 0.1% (TB 0.1), 0.2% (TB 0.2), 0.4% (TB 0.4) and 0.8% (TB 0.8). Ultimately, the fish fed the PC diet had a higher weight gain and specific growth rate than the fish fed other diets. The fish fed the NC diet had the lowest growth, and TB 0.05–TB 0.2 diets increased growth performance while TB 0.4–TB 0.8 diets caused reduction in growth. Dietary tributyrin supplementation improved protease activity and enhanced antioxidant capacity. Compared with the fish fed the NC diet, the fish fed the tributyrin‐supplemented diets had improved gut morphology and structure, and the results were similar to those of the fish fed the PC diet. Furthermore, the analysis of the dose response with second‐order polynomial regression indicated that the optimum tributyrin supplementation for juvenile black sea bream is 2.24 g/kg in the 45% soya bean meal diet.  相似文献   

19.
A study was undertaken to determine the effect of various dietary carbohydrate‐to‐lipid ratios on growth performance, whole‐body composition and tissue lipid content in Senegalese sole (Solea senegalensis) juveniles. Data on the dietary regulation of key hepatic enzymes of the lipogenic and glycolytic pathways (glucose‐6‐phosphate dehydrogenase, G6PD; malic enzyme, ME; fatty acid synthetase, FAS; pyruvate kinase, PK and glucokinase, GK) were also generated. Four isonitrogenous (crude protein: 52% dry matter (DM)) diets were formulated to contain one of two lipid levels (11% and 21% DM). Within each dietary lipid level, the nature of the carbohydrate fraction (raw or extruded peas) was varied. Triplicate groups of 54 sole (initial body weight: 23.6±1.2 g) were grown in recirculated seawater over 67 days. Fish were fed using automated feeders. At the end of the study, whole‐body, liver, viscera and muscle samples were withdrawn for analyses. During the experimental period, the mean fish weight about doubled in all treatments. No significant differences were found in growth performance (ranging from 1.1% to 1.4% body weight day?1) among dietary treatments. High‐fat diets increased whole‐body fat content. Similarly, daily fat gain ranged from 0.54 to 0.78 g kg?1 day?1 and highest values were found in fish fed high‐lipid diets. Dietary treatments also affected tissue lipid content (liver, viscera and muscle), with highest values in fish fed high‐fat diets. The nature of dietary carbohydrates had little influence on performance criteria, but affected tissue lipid deposition. The activities of G6PD, ME and FAS were depressed by elevated levels of dietary lipid, confirming the inhibitory effect of dietary fats on lipid biosynthesis. At both dietary lipid levels, ME and FAS activities were little affected by dietary carbohydrate. Activities of PK and GK were not affected by the starch level of the diets. In Senegalese sole juveniles, the lipogenic pathway is more susceptible to modulation by dietary means (particularly through lipid intake) than the glycolytic pathway.  相似文献   

20.
Atlantic cod (Gadus morhua), initial weight 15 g, were fed ten experimental diets for 15 weeks. The diets were based on a mixture of plant proteins (PP) and fish meal (FM), where PP constituted 65% of dietary protein. PP mixtures were chosen to reach as low levels of lysine and methionine as possible. The diets were supplemented with increasing amounts of lysine (19.2–31.9 g kg?1 diet) or methionine (9.4–12.3 g kg?1 diet), in a regression design. No growth difference among diet groups was found in the plant‐based diets. Increased dietary lysine resulted in decreased liver size, plasma triacylglycerol concentration (TAG) and lipid productive value (LPV). Methionine additions did not result in changed Hepatosomatic index (HSI), LPV or plasma TAG. Feed conversion ratio (FCR) and protein utilization were neither affected by lysine nor methionine. Plasma and muscle concentrations of free lysine and methionine correlated with dietary levels 5‐h post feeding. Overall conclusion was that cod maintain growth rates in plant‐based diets if dietary protein was high, without additional supplements of crystalline lysine or methionine. Lysine intake significantly influenced lipid metabolism, showing the necessity to add lysine in plant protein‐based diets to hinder increased lipid deposition. No such effects were found because of lack of methionine additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号