首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experimental study was performed during the growing season of 2001 to evaluate water and nutrient balances in paddy rice culture. Three plots of standard fertilization (SF), excessive fertilization (EF, 150% of SF), and reduced fertilization (RF, 70% of SF) were used and the size of treatment plot was 3,000 m2, respectively. The hydrologic and water quality was field monitored throughout the crop stages. The water balance analyses indicated that approximately half (47–54%) of the total outflow was lost through surface drainage, with the remainder consumed by evapotranspiration. Statistical analysis showed that there was no significant effect of fertilization rates on nutrient outflow through the surface drainage or rice yield. Reducing fertilization of rice paddy may not work well to mitigate the non-point source nutrient loading in the range of normal farming practices. Instead, the reduction in surface drainage could be important to controlling the loading. Suggestive measures that may be applicable to reduce surface drainage and nutrient losses include water-saving irrigation by reducing ponded water depth, raising the weir height in diked rice fields, and minimizing forced surface drainage as recommended by other researchers. The suggested practices can cause some deviations from conventional farming practices, and further investigations are recommended.  相似文献   

2.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

3.
A field experiment was performed at two Korean research sites to evaluate water and nutrient behavior in paddy rice culture operations for 2 years. One site was irrigated with groundwater, whereas the other site was irrigated with surface water. Both sites received average annual rainfall of about 1,300 mm, and about 70–80% of it was concentrated during July–September coinciding with rice growing season. Although most of the nutrient outflow was attributed to plant uptake, nutrient loss by surface drainage was substantial. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient behaviors in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and practical planning model that could be used to evaluate nutrient loading from paddy rice fields alone or in combination with other complex watershed models. Further validation might be required for general application of the PADDIMOD to the simulation of paddy rice fields with various agricultural environments.  相似文献   

4.
The subject of this study is water management in low-lying paddy fields. The objective of this study is to quantify the water requirement, and estimate an appropriate volume and facilitate management of irrigation water in areas where it is difficult to estimate the flow rate continuously. A field observation was conducted at a 14-ha study site located in the Kuwabara area, Fukuoka City, southwest of Japan, to evaluate water management conditions in the command area of the reservoir. This site near the reservoir was selected, because it was impossible to understand the water supply situation in the entire command area. The farmers in this region have been unable to retain sufficient irrigation water. The observation results indicate that the water depth fluctuates widely in every irrigation canal. The canals are frequently empty because rotational irrigation is conducted by water managers; this makes quantifying the flow rate in the irrigation canal very difficult. To quantify the water requirement, an improved tank model was introduced. The accuracy of the model was examined by comparing the observed and calculated ponding depths at a paddy field. The simulation results agreed with the observed data. Using this model, water management for the reduction of water managers’ labor was simulated. Simulation results indicated that rotational irrigation effectively reduces labor and saves irrigation water.  相似文献   

5.

Water management methods regulate water temperature in paddy fields, which affects rice growth and the environment. To understand the effect of irrigation conditions on water temperature in a paddy field, water temperature distribution under 42 different irrigation models including the use of ICT water management, which enables remote and automatic irrigation, was simulated using a physical model of heat balance. The following results were obtained: (1) Irrigation water temperature had a more significant effect on paddy water temperature close to the inlet. As the distance from the inlet increased, the water temperature converged to an equilibrium, which was determined by meteorological conditions and changes in water depth. (2) Increasing the irrigation rate with higher irrigation water amount increased the extent and magnitude of the effects of the irrigation water temperature. (3) When total irrigation water amount was the same, increasing the irrigation rate decreased the time-averaged temperature gradient effect over time across the paddy field. (4) Irrigation during the lowest and highest paddy water temperatures effectively decreased and increased the equilibrium water temperature, respectively. The results indicate that irrigation management can be used to alter and control water temperature in paddy fields, and showed the potential of ICT water management in enhancing the effect of water management in paddy fields. Our results demonstrated that a numerical simulation using a physical model for water temperature distribution is useful for revealing effective water management techniques under various irrigation methods and meteorological conditions.

  相似文献   

6.
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.  相似文献   

7.
Two water management practices, an intermittent irrigation scheme using automatic irrigation system (AI) and a spillover-irrigation scheme (SI), were compared for the fate and transport of commonly used herbicides, mefenacet (MF) and bensulfuron-methyl (BSM) in experimental paddy plots. Maximum mefenacet concentrations in paddy water were 660 and 540 μg L−1 for AI and SI plot, respectively. The corresponding values for bensulfuron-methyl were 46.0 and 42.0 μg L−1. Dissipation of the herbicides in paddy water appeared to follow the first-order kinetics with half-lives (DT50) of 1.9–4.5 days and DT90 (90% mass dissipation) of 7.8–11.3 days. The AI plot had no surface drainage, hence no herbicide was lost through paddy-water discharge. However, SI plot lost about 38 and 49% of applied mefenacet and bensulfuron-methyl, respectively. The intermittent irrigation scheme using automatic irrigation system with a high drainage gate was recommended to be a best management practice for controlling the herbicide losses from paddy fields. The paddy field managed by spillover-irrigation scheme may cause significant water and herbicide losses depending on the volume of irrigation and precipitation. The water holding period after herbicide application was suggested to be at least 10 days according to the DT90 index.  相似文献   

8.
9.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main problem in this basin is the appropriate operation of drainage structures during and after flood events in order to minimize the inundation damages for crop yield and to fulfill the irrigation requirement in the irrigation period. This paper presents a mathematical model of a drainage system in Chiyoda basin for calculating the flood inundation and optimizing the operation of gates in a main drainage canal. First, the algorithm of gate operation was simulated and the drainage model was then evaluated by comparing the simulated water levels with those observed during an actual rainfall event. The results show that the observed and simulated water levels are in good agreement, indicating that the proposed model is applicable for drainage and inundation analyses in flat, low-lying paddy-cultivated areas. Second, the optimization of gate operation was investigated by trial and error method using a stochastic rainfall time series with a return period of 30 years and the tidal conditions of spring and neap tides in the Chikugo River. Comparing a total inundation time, a total inundation area and maximum inundation depth in the paddy tanks at the upstream and the downstream ends, it was concluded that the present operation based on the gate operators’ experience was almost the optimal one, and the sooner start of opening operation and the later start of closing operation within the operationality of check gates were recommended to minimize the inundation damage. The present operation could be able to minimize the total inundation time, the total inundation area and the maximum inundation depths in paddy tanks and to meet fully both the drainage and the irrigation requirements.  相似文献   

10.
The Mae Lao Irrigation Scheme is one of the largest irrigation projects in Northern Thailand. According to the field reconnaissance, water shortage usually occurs during the dry season. And it is very difficult to equally distribute available water to the paddy fields from the upstream to the downstream parts of the system. To understand and identify the causes of the problems, the measurement of water level and flow rate along all canals may be effective. However, it is not easy to achieve this in such a large-scale irrigation system. Thus, the numerical simulation becomes the second option. The objective of this study is to identify and quantify the real water shortage causes by developing an Unsteady Irrigation Water Distribution and Consumption model which can simulate the water movement and consumption in the whole irrigation system. The beneficial area of the right main canal is modeled based on the physical aspect of the system. The components of the model consist of canal networks, control structures, and paddy fields. A canal is divided into several portions called reach. The Saint-Venant equations are applied to describe the unsteady water movement in each reach. Flow movement at the control structure is expressed by the boundary condition. The paddy fields are modeled to make paddy block and connected to each reach. The water consumption in each paddy block is estimated by Paddy Tank model. The numerical model is successfully developed showing the ability to simulate the water movement and consumption properties in this irrigation system.  相似文献   

11.
This research is to construct a water balance model to estimate the amount of return flow in an irrigation system. A simple computation framework for the model was established to include various irrigation applications in cropping seasons. The model was able to estimate evapotranspiration, deep percolation into groundwater aquifer, and return flow. Return flow can be split into two parts, which are surface and subsurface return flows. The water balance model was then applied at the irrigation system (rotational block No. 11-2 of five paddy field units) which is operated by the Taoyuan Irrigation Association in Taiwan as an example. Two study cases were simulated, in which one was for using return flow and the other one was for using no return flow. The study period for the model simulations is the first rice cropping term in 2010 which was from February 16 to July 10. As a result, return flows calculated by the model were 27, 27, 34, and 39% of outflows for sandy loam, sandy clay, clay loam, and light clay soil, respectively. Irrigation water at the downstream field unit with use of return flow was supplemented by the upstream field units, and the amount is 5?C8% of irrigation water for using no return flow. Furthermore, it can be seen from the simulations that increases in irrigation water provide increases of return flow. Increases of irrigation water result in slight increases of subsurface return flow, while increases of irrigation water cause nearly none of change in deep percolation.  相似文献   

12.
Return flow and repeated use of irrigation water for paddies is the most important issue in the Asian monsoon region, because sometimes this water is applied in greater quantity than that of evapotranspiration plus percolation. A new return flow analysis, the “replacement-in-order method”, which introduces a unique numbering system for very complicated irrigation and drainage networks, is proposed for the main canal with the dual purposes of irrigation and drainage. The method is applied to the Shichika irrigation district in the ordinal (season) irrigation period, resulting in a return flow ratio of 45 % for the entire area. Of this amount, 25 % is available for irrigation again. The remaining 20 % is unavailable, because the return flow discharged directly into a canal lacking a diversion weir in the drainage system, or into the Japan Sea. The return flow ratio is very different at the main canal location, from no return flow to 88 %. With the aid of the above method, theoretical analysis of return flow for paddy irrigation water can be done. This includes the deterministic return flow ratio inside and outside the irrigation area, plus precise information of return flow ratios at various main canal locations and routes of irrigation and drainage water.  相似文献   

13.
Flood mitigation in irrigation tanks and paddy fields is their favorable aspect though its practical effect is not known very well. A dynamic and systematic approach is presented to assess flood mitigation in a tank irrigated paddy fields area in the worst case where no static buffer function is expected. Based on the linear control theory, transfer function models for runoff process in catchments are identified. Hydraulic models are developed to represent flood dynamics in irrigation tanks, paddy fields, and drainage channels. These models are integrated as an ordinary differential equations system. Then, using the perturbed linear system, flood mitigation in each component of the system is examined in terms of frequency response. An application example demonstrates that a tank irrigated paddy fields area has a significant flood mitigation effect as a low-pass filter. This method has the advantage of assessing flood mitigation even in the case of an increase in the total runoff ratio.  相似文献   

14.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

15.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

16.
Paddy and Water Environment - This paper revealed the irrigation rate by groundwater, evapotranspiration (ET), total water balance and yield in the experimental rice and mung bean fields in a...  相似文献   

17.
Increasing water scarcity has necessitated the development of irrigated rice systems that require less water than the traditional flooded rice. The cultivation of aerobic rice is an effort to save water in response to growing worldwide water scarcity with the pressure to reduce water use and increase water productivity. An accurate estimation of different water balance components at the aerobic rice fields is essential to achieve effective use of limited water supplies. Some field water balance components, such as percolation, capillary rise and evapotranspiration, can not be easily measured; therefore a soil water balance model is required to develop and to test water management strategies. This paper presents results of a study to quantify time varying water balance under a critical soil water tension based irrigation criteria for the cultivation of non-ponded “aerobic rice” fields along the lower parts of the Yellow River. Based on the analysis and integration of existing field information on the hydrologic processes in an aerobic rice field, this paper outlines the general components of the water balance using a conceptual model approach. The time varying water balance is then analyzed using the feedback relations among the hydrologic processes in a commercial dynamic modeling environment, Vensim. The model simulates various water balance components such as actual evapotranspiration, deep percolation, surface runoff, and capillary rise in the aerobic rice field on a daily basis. The model parameters are validated with the observed experimental field data from the Huibei Irrigation Experiment Station, Kaifeng, China. The validated model is used to analyze irrigation application soil water tension trigger under wet, dry and average climate conditions using daily time steps. The scenario analysis show that to conserve scarce water resources during the average climate years the irrigation scheduling criteria can be set as −30 kPa average root zone soil water tension; whereas it can be set at −70 kPa during the dry years, however, the associated yields may reduce. Compared with the flooded lowland rice and other upland crops, with these two alternatives irrigation event triggers, aerobic rice cultivation can lead to significant water savings.  相似文献   

18.
In the large-scale irrigation schemes of the lower Ili River Basin of Kazakhstan, crop rotation combines paddy rice and non-rice crops. Continuous irrigation is practiced in paddy fields, whereas other crops are sustained from groundwater after only limited early irrigation. The water table in non-rice crops is raised by seepage from canals and the flooded paddy fields. We investigated the areal extent to which the groundwater level of non-irrigated fields is influenced by seepage from canals and paddy fields by examining the relationship between distance (from canal and paddy field) and groundwater level in upland fields. The groundwater level was influenced for up to 300 and 400 m from the canals and paddy fields, respectively. Geographic information system analysis of crop and canal patterns in the 11 selected years showed that if the zone of influence is 300 and 400 m from the canals and paddy fields, respectively, the groundwater level of most of the area of upland fields was raised by seepage. We conclude that the water supply to cropping fields by seepage from irrigation canals and paddy fields is adequate, but the spatial distribution of the paddy fields may be an important factor that needs more attention to help improve water use efficiency in this irrigation district.  相似文献   

19.
Paddy fields converted into winter wheat fields in Hokkaido, Japan, receive extremely high snowfall, creating a risk of flood damage to crops in spring due to waterlogging of snowmelt runoff and poor drainage. Meanwhile, in June there is relatively little rainfall, and a lack of moisture inhibits winter wheat growth. Therefore, we developed a method involving a series of 30-cm-deep ditches in agricultural fields to be used for drainage during the flood-prone period and for furrow irrigation during the dry period using water drawn from the canals that feed the paddy fields. The ditches are called ‘hybrid ditches’ as they are able to perform both drainage and irrigation functions. In this study, we investigated the optimal construction timing and spacing for hybrid ditches. We also evaluated their ability to improve the drainage and irrigation of winter wheat. We found that the optimal timing for digging hybrid ditches is immediately after sowing, and the inter-ditch spacing for irrigation should be 15 m or less. The hybrid ditches promoted increased soil temperature and healthy development of wheat plants by improving drainage during the flood-prone period. In addition, water was successfully supplied via the hybrid ditches to irrigate the fields in June. Under experimental conditions in which rainfall was excluded, grain yield was 10% higher and percent protein content was more than 1% point greater in the irrigated plot compared with the non-irrigated plot. Grain yield was also observed to increase by 3–29% in demonstration tests conducted at local farms. From these results, we conclude that hybrid ditches are capable of improving the growth and yield of winter wheat by improving drainage and providing irrigation in converted paddy fields in Hokkaido.  相似文献   

20.
Water productivity (WP) expresses the value or benefit derived from the use of water. A profound water productivity analysis was carried out at experimental field at Field laboratory, Centre for Water Resources, Anna University, India, for rice crop under different water regimes such as flooded (FL), alternative wet and dry (AWD) and saturated soil culture (SSC). The hydrological model soil-water-atmospheric-plant (SWAP), including detailed crop growth, i.e, WOFOST (World Food Studies) model was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and bio-physical variables such as dry matter and grain yield. The observed values of crop growth from the experiment were used for the calibration of crop growth model WOFOST. The water productivity values are determined using SWAP and SWAP–WOFOST. The four water productivity indicators using grain yield were determined, such as water productivity of transpiration (WPT), evapotranspiration (WPET), percolation plus evapotranspiration (WPET+Q) and irrigation plus effective rainfall (WPI+ER). The highest value of water productivity was observed from the flooded treatment and lowest value from the saturated soil culture in WPT and WPET. This study, reveals that deep groundwater level and high temperature reduces the crop yield and water productivity significantly in the AWD and SSC treatment. This study reveals that in paddy fields 66% inflow water is recharging the groundwater. There is good agreement between SWAP and SWAP–WOFOST water productivity indicators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号