首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous results demonstrated the stimulating effect of soybean phosphatidylcholine (PC) on the utilization of dietary neutral lipid in larval and postlarval fish. The present study further investigated the effect of the degree of saturation of dietary PC on the enhancement of dietary fatty acid incorporation in lipids of turbot. Newly-weaned turbot were fed for 20 days on four isolipidic diets containing the same amount of highly unsaturated fatty acids (HUFA), presented either as neutral lipid, i.e. fish oil ethyl esters, or as polar lipid. Diet FO was a phospholipid-free control diet. Diets HPC, SPC and FPC were supplemented with 3% hydrogenated soybean PC, 3% native soybean PC and 3% marine fish roe PC, respectively.The three PC-supplemented diets resulted in better growth and higher muscle triacylglycerol levels than the PC-free diet FO. The fish fatty acids were determined in 3 lipid classes (neutral lipid, PC, phosphatidylethanolamine) of 3 organs or tissues (eye, brain and muscle). Despite the identical amounts of n-6 and n-3 fatty acids provided by the soybean oil and by the HUFA ethyl esters, the substitution of 3% hydrogenated coconut oil in diet FO by 3% hydrogenated PC in diet HPC caused, averaged over the various tissues and lipid classes, a 7 to 12% higher incorporation of 18:2n-6, 20:4n-6, 20:5n-3 and a 32% higher 22:6n-3 level in turbot lipid. Diet HPC appeared as efficient as diet SPC for enhancing the incorporation of the n-3 HUFA from the ethyl esters. Feeding diet FPC, in which the n-3 HUFA were provided through the marine PC source, resulted in slightly higher levels of these fatty acids in the fish than feeding the ethyl ester HUFA diets, even if supplemented with PC. Present results confirm the positive effect of PC, either hydrogenated or native, on the utilization of fatty acids provided in the diet as neutral lipid. The slightly higher incorporation of HUFA, when esterified on dietary PC instead of neutral lipid, raises the question regarding the form of intestinal absorption of PL in fish.p>  相似文献   

2.
Two 40-day feeding trials using extruded diets were conducted to assess the effect of a dietary phospholipid (PL) supplementation on growth, survival and fatty acid composition of European sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) from weaning onwards. Two dietary treatments (FO and PL) were tested; both had an identical extruded basis (92.5% total diet weight) coated with a different lipid fraction (7.5% total diet weight). Diet PL contained 2% egg yolk PL (69% pure). In diet FO the PL was replaced by hydrogenated coconut oil. The isolipidic diets contained an equal amount of fish oil ethyl esters providing 1.6% (% diet dry weight) of n-3 highly unsaturated fatty acids (HUFA). A diet water stability test showed no effect of the PL supplementation on the leaching of the dietary fatty acids. In both fish species weight, but not survival, significantly increased as a result of PL supplementation. Weaning onto the experimental diets resulted in similar changes in the relative percent levels of fatty acids in both species. In general, the percentage of saturated fatty acids levelled off after a rapid increase, while monoenes increased after an initial decrease. Total n-3 polyunsaturated fatty acids (PUFA) decreased and total n-6 PUFA remained almost constant. The major effect of the dietary PL on fish fatty acid composition was a 50% increase in n-6 and n-3 HUFAs compared to the PL-free FO diet. The rise in n-6 HUFA may have reflected the higher moiety in the dietary PL. On the other hand this was not the case for the n-3 HUFA since they represented only low levels in the PL fraction (0.1%) compared to that provided by the ethyl esters (1.6%) suggesting a more efficient incorporation of the PL n-3 HUFA than of the ethyl ester n-3 HUFA. A second hypothesis is that the dietary PL may have favored the incorporation of the dietary ethyl ester n-3 HUFA.  相似文献   

3.
Five purified diets containing AA (20:4n-6) at 0.02–0.78% dry weight and DHA (22:6n-3) at 0.93–0.17% dry weight were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 0.87 g for a period of 11 weeks. The dietary DHA:AA ratio ranged from 62 to 0.2. Incorporation of AA into liver phospholipids increased with increasing dietary AA input. Phospholipids from fish fed diets containing 0.02, 0.06 and 0.11% of dry weight as AA generally contained less AA compared to fish fed fish oil while those fed diets containing 0.35 and 0.78% of dry weight as AA had higher AA levels in their phospholipids. The highest levels of AA were found in PI but the greatest percentage increase in AA incorporation was in PE and PC. Brain phospholipid fatty acid compositions were less altered by dietary treatment than those of liver but DHA content of PC and PE in brain was substantially lower in fish fed 0.93% pure DHA compared to those fed fish oil. This suggests that dietary DHA must exceed 1% of dry weight to satisfy the requirements of the developing neural system in juvenile turbot. In both tissues, (20:5n-3) concentration was inversely related to both dietary and tissue PI AA concentration. Similar dietary induced changes in AA, EPA and DHA concentrations occurred in the phospholipids of heart, gill and kidney. PGE2 and 6-ketoPGF1 were measured in homogenates of heart, brain, gill and kidney. In general, fish fed the lowest dietary AA levels had reduced levels of prostaglandins in their tissue homogenates while those fed the highest level of AA had increased prostaglandin levels, compared to fish fed fish oil. In brains, the PGE2 concentration was only significantly increased in fish fed the highest dietary AA.Abbreviations AA arachidonic acid - DHA docosahexaenoic acid - EFA essential fatty acid - EPA eicosapentaenoic acid - HPTLC high performance thin-layer chromatography - HUFA highly unsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PGE prostaglandin E - PGE prostaglandin E - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

4.
A feeding experiment was conducted on gilthead seabream (Sparus aurata) broodstock to investigate the incidence of n-3 highly unsaturated fatty acids (n-3 HUFA) dietary deficiencies on the lipid composition of female liver, gonads and eggs, in relation to spawning quality. Broodstock were fed a control (C) diet or a n-3 HUFA deficient (D) but linolenic acid rich diet. After 20 weeks of feeding, the results showed that levels of total neutral (TNL) and total polar (TPL) lipids of female gonads and eggs were independent of diet. However the fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) of female liver, gonads and eggs in the two groups of fish showed marked differences, reflecting the influence of fatty acid levels in the broodstock diets. This influence was even higher in TNL than in the phospholipid classes examined. In fish fed n-3 HUFA deficient diet, fatty acid composition of TNL of female gonads and eggs reflected the diet more than liver. A higher egg production in broodstock fed C diet (1.8% n-3 HUFA in diet) was extended to spawning quality such as percentages of fertilised and hatched eggs.  相似文献   

5.
Four dietary groups of juvenile Atlantic salmon, Salmo salar L., each with three replicates, were fed diets with increasing levels of docosahexaenoic acid (22:6n-3; DHA) and eicosapentaenoic acid (20:5n-3; EPA). Fatty acid composition of brain and eye was determined at the start and approximately every 3 weeks during the experimental period, and fatty acid composition of liver and fillet was determined in fish from the final sampling. Lipid class composition of brain and eye, and fatty acid composition of these lipid classes was determined at the end of the experiment. There was no effect of increasing dietary DHA content on fatty acid composition, lipid class composition or DHA levels in the lipid classes in the juvenile Atlantic salmon brain. The increasing dietary EPA content, however, was reflected in both the total fatty acid composition and in the EPA content in neutral lipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). A minor effect of the increasing dietary DHA content was found in the lipid composition of the juvenile salmon eye. Both EPA and 18:2n-6 levels in eye, however, clearly reflected the increasing and decreasing, respectively, dietary levels of these two fatty acids. The dietary EPA levels also affected the EPA levels in neutral lipids, PC, PE, PI and PS (phosphatidylserine) in the juvenile salmon eye. The results demonstrate that these dietary levels of DHA had no effect on brain lipid composition and only a minor effect on eye lipid composition. Furthermore, the dietary EPA levels significantly affected the lipid composition of both brain and eye. The fillet fatty acid composition reflected the dietary fatty acid composition, except for the DHA/EPA ratio, which was reversed in fillet compared with that in the diets. The liver fatty acid composition was also affected by the increasing dietary EPA and DHA levels.  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss Walbaum) were fed purified diets containing fish oil for six weeks and then soybean lecithin or soybean oil for 25 days. The gastrointestinal tract segments, stomach, midgut and hindgut were then sampled for lipid and fatty acid composition and electron microscopy. Membrane lipid class composition was fairly similar in all three segments of trout fed fish oil. Hindgut contained slightly more phosphatidylserine than stomach and midgut, while midgut contained more phosphatidylcholine and less lysophospatidylcholine/sphingomyelin. Feeding soybean products appeared to marginally decrease free cholesterol. The fatty acid compositions of the main lipid classes showed significant regional differences. In control fish, stomach had higher levels of arachidonic acid (20:4n-6) and n-6 polyunsaturated fatty acids than midgut and hindgut, and lower content of docosahexaenoic acid (22:6n-3) and n-3 polyunsaturated fatty acids. Midgut phosphatidylethanolamine also had higher levels of saturated fatty acids and less n-3 polyunsaturated fatty acids than the other tissues. Feeding soybean products decreased the n-3/n-6 ratio mainly due to increases in linoleic (18:2n-6) and 20:4n-6 and decreases in 22:6n-3 and eicosapentaenoic acid (20:5n-3). Phosphatidylcholine and to a lesser extent phosphatidylethanolamine adapted more readily to dietary changes by major increases in 18:2n-6 and C20−22 n-6 polyunsaturated fatty acids. The composition of phosphatidyl-serine and -inositol appeared to be under more strict metabolic control. Linoleic acid hardly increased at all while the increase in other n-6 polyunsaturated fatty acids was less pronounced than for the other lipid classes. Regardless of lipid class, stomach resisted dietary changes more strongly than midgut and hindgut. Increases in n-6 polyunsaturated fatty acids were minor as were the loss of n-3 polyunsaturated fatty acids. The dead-end product 20:2n-6 accumulated to a higher degree in hindgut phosphatidyl-ethanolamine and -coline compared to midgut and stomach, suggesting that the activity of Δ6 desaturation is higher in the anterior part of the intestine where most of the lipid is absorbed. Feeding soybean oil caused massive accumulation of free lipid droplets in midgut enterocytes while little lipid droplets were observed in trout fed fish oil or soybean lecithin. Since both soybean products influenced intestinal composition to the same degree, altered fatty acid profiles in membranes is not responsible for the observed lipid accumulation. This supports previous observations in Arctic charr (Salvelinus alpinus L.), suggesting that fish may require exogenous phospholipids in order to sustain a sufficient rate of lipoprotein synthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The aim of the present study was to compare effects of dietary n-3 highly unsaturated fatty acids (HUFA) being incorporated in the phospholipid (PL) or in the neutral lipid (NL) fraction of the larval feed, on larval growth and histology of digestive organs in Atlantic cod ( Gadus morhua L.) larvae. Three isoproteic and isolipidic diets, labelled according to the percentage of n-3 docosahexaenoic acid and eicosapentaenoic acid contained in NL1 or in PL1 and PL3 of the diets, were fed to cod larvae from 17 days post hatching (dph) to 45 dph.
In the liver, hepatocytes and their nuclei were smaller in NL1 larvae compared with the PL larvae; the mitochondrial membrane structures were less dense and the amount of lipids observed in the liver was significantly higher in NL1 larvae compared with the PL3 larvae. The liver and gut size was related to larval size, with no differences between the larval groups. The results demonstrated that the essential fatty acids were more beneficial for cod larvae when they were incorporated in the dietary polar PL rather than in the NL, and that the n-3 HUFA requirements in cod larvae is possibly higher than that in the PL1 diet.  相似文献   

8.
Fatty acid profiles of the total lipids and the phospholipid classes of farm-raised channel catfish (Ictalurus punctatus) fillets were analyzed. Monoenes represented 49.22 mol% of the total lipid fatty acids while polyunstaturated fatty acids (PUFA) accounted for 19.37 mol%. The total n-3 PUFA content was low (4.22 mol%). The total saturated fatty acids as 31.44 mol %. Catfish contained phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), lysophosphatidylcholine (LPC), and sphingomyelin (SPH). Analysis for the individual phospholipid class fatty acid profiles indicated that PI had a high concentration of 18:0 (33.20 mol%) and 20:4 n-6 (13.08 mol%). Phosphatidylethanolamine had the highest concentrations of combined eicosapentaenoic acid, and docoshahexaenoic acid, of 17.37 mol%. Higher ratios of n-3/n-6 PUFA were found in the phospholipid classes than the total lipids. LPC and SPH did not contain measurable PUFA of the n-3 series. The level of 18:1 n-9 in PC, PE, and LPC was approximately 31 mol% whereas in PI, PS, and SPH, the level was approximately 16 mol%. The understanding of the basic distribution of fatty acids in the individual phospholipid classes of channel catfish may be an essential first step in explaining the protective role of 18:1 n-9 and n-3 PUFA against thrombotic and cardiovascular disorder in humans.  相似文献   

9.
Cells from a relatively stenohaline marine species, turbot (Scophthalmus maximus) (TF) and an anadromous species, Atlantic salmon (AS) were cultured in media supplemented with NaCl to produce OPs varying from 300 to 500 mOsm kg–1 and the direct effects of OP (salinity) on the fatty acid compositions of the main glycerophospholipid classes were determined. The most dramatic effects of salinity on total lipid fatty acids were observed in polyunsaturated fatty acids (PUFA) in TF cells. There was a graded decrease in the percentage of 18:2n-9, and consequently total n-9 PUFA, and concomitantly increased percentages of both total n-3 and n-6 PUFA with increasing salinity. The increased n-3 and n-6 PUFA was due to significantly increased percentages of the major fatty acids in each of these groups, namely 22:6n-3 and 20:4n-6, respectively. The reciprocal changes in n-9 PUFA and n-3/n-6 PUFA in TF cell total lipid resulted in the percentage of total PUFA not being significantly affected by changes in salinity. The graded decrease in 18:2n-9 with increasing salinity in TF cells was observed in all the major glycerophospholipids but especially PE, PI and PS. Increasing salinity resulted in graded increases in the percentages of 22:6n-3 in PE and PS in TF cells. The quantitatively greatest increase in the percentage of n-6 PUFA in TF cells occurred with 20:4n-6 in PC, PE and PL. There were less significant changes in the fatty acid compositions of glycerophospholipids in AS cells. However, the proportion of total n-3 + n-6 PUFA in PE varied reciprocally with the proportion of dimethylacetals in response to salinity. Similar reciprocal changes between fatty acids in response to salinity were also evident in the quantitatively more minor glycerophospholipids PS and Pl. In PS, the percentage of 22:6n-3 was significantly lower at 400 mOsm kg–1 whereas the proportion of total monoenes was significantly higher at that salinity. A similar inverse relationship between total monoenes and 20:4n-6 (and, to a lesser extent total saturates) in response to salinity was noted in PI. The results show that environmental salinity, without whole-body physiological stimuli, has direct effects on the fatty acid composition of major glycerophospholipid classes in fish cells and that these effects differ in cells from different fish speciesAbbreviations ANOVA analysis of variance - BHT butylated hydroxytoluene - BSA bovine serum albumin - DMA dimethylacetals - EMEM Eagle's minimal essential medium - FCS fetal calf serum - GC gas chromatography - HBSS Hank's balanced salt solution (without Ca2+ and Mg2+) - OP osmotic pressure - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

10.
We investigated the effects of soybean phosphatidylcholine (PtCho) on the growth, fatty acid (FA) profile, and body composition of juvenile Caspian brown trout. Juvenile trout, initial average weight 0.8 ± 0.12 g, were fed semi-purified formulated diets supplemented with 2, 4, and 6% PtCho for 5 weeks. Results showed that fish with diets containing 4 or 6% PtCho had significantly greater growth. The FA profiles of both the polar lipids (PL) and neutral lipids (NL) in juvenile tissues were influenced by dietary FA, although the effects of PtCho supplementation were more marked for PL than for NL. Fish fed PtCho in the diet also had higher levels of 18:2n-6, 20:4n-6 and n-6, and significantly lower levels of docosahexaenoic acid and eicosapentaenoic acid in both PL and NL. The lipid contents of whole-body tissues and liver were positively affected by PtCho percentage in the diet. Specific growth rate, hepatosomatic index, visceralsomatic index, and protein efficiency ratio were also significantly influenced by dietary PtCho. The results of our study indicate that dietary PtCho has a growth-promoting effect and that juvenile Caspian brown trout have a relatively moderate PtCho requirement (at least 4% dry weight of the diet).  相似文献   

11.
Dietary supplementation of phospholipids seems to be extremely important to promote growth and survival in fish larvae. Several studies also suggest the importance of n-3 highly unsaturated fatty acids (HUFA) rich phospholipids to further enhance larval performance. In the present study, four different diets were formulated in order to compare the effect of total dietary polar lipid contents, of soya bean lecithin supplementation and of feeding n-3 HUFA in the form of neutral or polar lipids on ingestion and incorporation of labelled fatty acids in gilthead seabream larvae. These diets were prepared including radiolabelled fatty acids from palmitoyl phosphatidylcholine, glycerol trioleate, free oleic acid (FOA) and free eicosapentaenoic acid (FEPA) and were fed to 25 day-old larvae. The results of these experiments showed that the elevation of the dietary polar lipid levels significantly improved microdiet ingestion, regardless of the origins of the polar lipids. This effect caused an improved incorporation of phosphatidylcholine fatty acids to the larval polar and total lipids (TL) as the dietary polar lipids increased. Nevertheless, a better incorporation of fatty acids from dietary polar lipids in comparison with that of fatty acids from dietary triglycerides into larval lipids was found in gilthead seabream, whereas a better utilization of dietary triglycerides fatty acids than dietary free fatty acids could also be observed. Besides, the presence of n-3 HUFA rich neutral lipids (NL) significanlty increased the absorption efficiency of labelled oleic acid from dietary triglycerides, but the presence of n-3 HUFA rich polar lipids, particularly improved the incorporation of FEPA. This fatty acid was preferentially incorporated into larval polar lipids in comparison with FOA.  相似文献   

12.
In each of two separate experiments, eggs from a single female goldfish were fertilized, incubated at 22°C and sampled regularly up to day 6 when the larvae could be expected to commence feeding. Hatching normally occurred on Day 4. Lipids were extracted from the eggs and larvae and the neutral lipid and neutral phospholipids were isolated on aminopropyl columns. Fatty acid analysis of the eggs revealed the typical situation in fish where the phospholipids were rich in polyunsaturated fatty acids (PUFA) and the neutral lipids were rich in monounsaturated fatty acids (MUFA). Assay of lipid masses revealed that little depletion of lipid occurred until after hatch and that the neutral phospholipids were the principal fraction consumed. Although the neutral lipid mass did not change substantially during development, its fatty acid profile did. The proportions of several PUFA in the neutral lipids, especially 226(n–3), 205(n–3) and 204(n–6), increased substantially during development while proportions of MUFA and 182(n–6) declined. This appears to be a mechanism by which the larva can retain essential fatty acid released on hydrolysis of phospholipid while deriving the benefits of catabolism of phospholipid as fuel, namely the provision of phosphate and choline for intermediary metabolism and for the synthesis of macromolecules and neurotransmitter.Abbreviations AA arachidonic acid (204(n–6)) - DHA docosahexaenoic acid (226(n–3)) - EPA eicosapentaenoic acid (205(n–3)) - MUFA monounsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PUFA polyunsaturated fatty acid - SFA saturated fatty acid  相似文献   

13.
The aim of this study was to compare the total lipid, neutral lipid, phospholipid contents, phospholipid class distribution and fatty acid composition of these lipids in muscle of wild and farmed turbot (Scophthalmus maximus) of similar body size. The results showed that muscle of farmed turbot had a higher lipid content than that of wild turbot (1.06% versus 0.64%) because they contained more neutral lipids (0.52% versus 0.24%) and more phospholipids (0.54% versus 0.40%).Distribution of phospholipid classes in muscle of both wild and farmed turbot was similar with 67–70% phosphatidyl choline, 22–25% phosphatidyl ethanolamine and 4.4–5.2% phosphatidyl inositol plus phosphatidyl serine and 2.4–2.9% sphingomyeline.Compared to wild turbot, all of the lipid classes from farmed turbot contained lower proportions of long chain -3 PUFA and 20:4 -6 and conversely higher proportions of 20:1 and 22:1. The ratio between -3 and -6 polyunsatured fatty acids was higher in all the lipid fractions of wild turbot than in those of farmed fish (8.8 versus 4.2 in total lipids, 11.0 versus 3.3 in neutral lipids, 7.9 versus 4.7 in phospholipids). © Rapid Science Ltd. 1998  相似文献   

14.
Two experiments were conducted to investigate the active components of soybean lecithin for juvenile Litopenaeus vannamei. The first experiment was conducted to determine the dietary phosphatidylcholine (PC) requirement of juvenile L. vannamei, and to investigate whether other phospholipids (PL), mainly phosphatidylethanolamine (PE) and phosphatidylinositol (PI) were the active fractions of soybean lecithin. Seven levels of PC (0%, 0.35%, 0.7%, 1.4%, 2.1%, 2.8%, 4.2%) extracted from soybean lecithin (PC purity 93%) were used to determine the PC requirement; also, PE and PI (in a 25:22 proportion) were tested at 0.84% and 1.68% levels with PC levels controlled at 0.35% and 0.52% of diet to investigate the combined PE and PI effects. Results showed that no dietary PC requirement was evident based on shrimp growth and survival. Increasing purified PC in the diet decreased total lipid, free fatty acid and other PL levels in shrimp hepatopancreas (mid-gut gland) and increased PC level in shrimp muscle. However, other PL, mainly PE and PI, showed significant enhancing effects on shrimp growth when PC was provided at 0.35% or 0.52% of diet.

Another 4×2 factorial experiment was concluded to reevaluate the requirement of shrimp for PC by including purified PC at 0%, 0.7%, 1.4 % and 2.8% of diet with or without 0.1% cholesterol in the diet. A diet containing 1.4% PC provided by deoiled lecithin also was tested for comparison. Results showed no interaction between PC and cholesterol on shrimp growth, survival and feed conversion ratio (FCR). Compared with the apparent growth-enhancing effect of dietary cholesterol, the effect of purified PC was negligible. With PC at 1.4% of diet, the presence of other PL from lecithin or 0.1% cholesterol significantly enhanced shrimp growth and FCR.

In summary, purified soybean PC showed different effects from deoiled lecithin on shrimp growth, lipid composition, and relationship with dietary cholesterol. Beneficial effects of soybean lecithin on growth of L. vannamei could be attributed to the presence of PL other than PC in the diet under the experimental conditions of this study.  相似文献   


15.
Total lipid (TL), lipid classes and fatty acid composition of neutral (NL) and polar (PL) lipids were studied in the gonads, liver and muscle of gilthead seabream males ( Sparus aurata ) fed a control diet (diet C) or an n-3 and n-6 highly unsaturated fatty acids (HUFA)-deficient diet (diet D), at different stages of the reproductive cycle. Between pre-spermatogenesis (November) and spermatogenesis (March), the lipid content was high and particularly rich in cholesterol, phosphatidylcholine and phosphatidylethanolamine in gonads from both dietary groups. At post-spermatogenesis (June), TL and especially PL dramatically decreased in the gonads from both groups. However, at this period diet C fish gonads were richer in triacylglycerides (TAG) than those from diet D fish. The liver lipid contents and particularly TAG were over 200% lower in June than in March for both groups. Nevertheless, the most noteworthy depletion of lipids during this period was achieved by the n-3 HUFA in diet D fish. Conversely, arachidonic acid (20:4n-6) did not decrease in NL or PL from gonads and liver in groups C and D. Muscle lipids from diet C fish were relatively insensitive to seasonal influences. However, in June, the muscle TAG content was significantly reduced in diet D fish.  相似文献   

16.
Turbot larvae were fed live-prey enriched with different levels of arachidonic (ARA) and eicosapentaenoic (EPA) acids to study the effects of these fatty acids on body composition and pigmentation success. Significantly reduced pigmentation was obtained in those fish fed medium and high ARA diets for 43 days. Growth and survival were the same for all groups. The incorporation of ARA and EPA in fish eyes, brains, livers and carcasses reflected the percentage of these fatty acids in the diets. ARA accumulation was similar in all tissues, but brain accumulated EPA was less efficient than the other tissues examined. A highly significant, negative correlation was found between the %ARA in turbot juvenile brain total lipids and pigmentation success. A weaker, positive correlation was found between brain EPA and pigmentation. Increasing dietary ARA affected the fatty acid composition of turbot brain phosphoglycerides more than increasing dietary EPA, especially in phosphatidylinositol (PI) and phosphatidylethanolamine (PE). A negative relationship was found between percentage normal pigmentation and ARA levels in brain phosphatidylcholine (PC), PE and phosphatidylserine (PS). Elevated levels of ARA in PI also resulted in malpigmented juveniles, but EPA:ARA ratios ≥1 in PI were associated with normal pigmentation. We conclude that, given a sufficiency of dietary docosahexaenoic acid (DHA), the optimum dietary level of EPA is not a function of DHA, but of dietary ARA.  相似文献   

17.
Total lipids, lipid classes and their associated fatty acids were quantified in developing eggs, yolk-sac larvae and starving larvae (from day 1 to day 5 after hatching) of the Senegal sole,Solea senegalensis Kaup. Larvae during early development and starvation consumed about 0.6% of its dry weight per day, mainly due to lipid catabolism. There was a net consumption of approximately 1.7% total lipid per day, and a net energy utilization of 1.3 kcal g–1 dry weight biomass day–1, mostly derived from lipid depletion. The overall decrease of total neutral lipids (mainly triacylglycerols and sterol esters) was 3.4 faster than that of total polar lipids (primarily phosphatidylcholine), with rates of 29.2 and 8.7 g mg–1 dry weight biomass day–1, respectively. There was a concomitant increase in PE, PS and phosphatidic acid during the period under study. Total saturated and total monounsaturated fatty acids were catabolized (primarily 160 and 161 (n-7)) as energy substrates at rates of 7.4 and 10.9 g mg–1 total lipid day–1, whereas total PUFAs were conserved. DHA was specifically retained in PE, whereas EPA and DHA were catabolized in PC and triacylglycerol. Total DMA and AA contents in total lipid increased during early development and starvation. The data denote a pattern of lipid metabolism during early development of Senegal sole similar to that of other marine larval fish, with eggs containing high amounts of total lipids (presence of oil globule/s), from temperate waters and with short developmental periods; the pattern contrasts with fish larvae from eggs of cold water fish species that contain low levels of total lipids (lack of oil globule/s) and have long developmental periods.Abbreviations AA all-cis-5,8,11,14-eicosatetraenoic acid (arachidonic acid, 204(n-6)) - C free cholesterol - DHA all-cis-4,7,10,13,16,19-docosahexaenoic acid (226(n-3)) - DMA dimethyl acetal - EPA all-cis-5,8,11,14,17-eicosapentaenoic acid (205(n-3)) - HUFA highly unsaturated fatty acids (C20 with 3 double bonds) - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid(s) - SE sterol ester - TAG triacylglycerol  相似文献   

18.
A marine fish oil, Marinol K (MO) and borage oil (BO) were used to formulate diets relatively rich in eicosapentaenoic acid [EPA; 20:5(n-3)] and -linolenic acid [GLA; 18:3(n-6)], respectively. The diets were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 1.4 g for a period of 12 weeks. No differences were observed in final weights either between duplicate tanks or between dietary treatments. Mortalities in the MO-fed group were significantly greater than in the BO-fed group. In the MO-fed group, 7 out of 12 fish sampled for histological analysis showed a pronounced liver histopathology whereas only 1 of 12 fish sampled in the BO-fed group showed slight pathology. EPA levels were increased 2.2-fold and its elongation product, 22:5(n-3), was increased 1.8-fold while arachidonic acid [AA; 20:4(n-6)] was decreased by 30% in MO-fed fish compared to the initial carcass composition. GLA was increased 53-fold and its elongation product dihomo--linolenic acid [DHGLA; 20:3(n-6)] was increased 16-fold while AA was reduced by 90% in BO-fed fish compared to the initial carcass composition. The amount of triacylglycerol in liver of BO-fed fish was significantly greater than levels in MO-fed fish. The fatty acid compositions of individual phospholipids from liver showed marked differences between dietary treatments. Fish fed MO had significantly higher levels of the (n-3) polyunsaturated fatty acids (PUFA), 20:5(n-3), 22:5(n-3) and 22:6(n-3), and also significantly more 20:4(n-6) compared to BO-fed fish which had significantly higher 18:2(n-6), 18:3(n-6), 20:2(n-6) and 20:3(n-6). The composition of liver phosphatidylinositol was particularly unusual in BO-fed fish having DHGLA as the major C20 PUFA which was 2.2-fold greater than AA and 3.9-fold greater than EPA. This study demonstrates that the carcass composition of turbot can be altered, by means of dietary lipids, to contain increased levels of EPA and DHGLA which would be of potential benefit in human as well as in fish nutrition. However, caution should be exercised when using very highly unsaturated oils relatively rich in EPA which may generate histopathological lesions in the fish.Abbreviations AA arachidonic acid - ANOVA analysis of variance - BHT butylated hydroxytoluene - BO borage oil - DHA docosahexaenoic acid - DHGLA dihomo--linolenic acid - EPA eicosapentaenoic acid - GLA -linolenic acid - HPTLC high performance thin-layer chromatography - MO Marinol K - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

19.
Lipids and essential fatty acids are determinants of the reproductive process in marine fish, affecting fecundity, egg quality, hatching performance, pigmentation and larval malformation. We have analyzed and characterized the lipids of eggs and unfed larvae of two wild caught scombroid fish, the Atlantic northern bluefin tuna (Thunnus thynnus) and Atlantic bonito (Sarda sarda). Dry matter and total lipid contents, polar and neutral lipid classes and total lipid fatty acid contents were determined in the eggs of bluefin tuna and eggs and unfed larvae during the development of Atlantic bonito. Bluefin tuna eggs had slightly but significantly more dry mass than bonito eggs but very similar lipid content. However, bluefin tuna eggs presented a higher polar lipid content due to increased proportions of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). Bonito eggs and larvae showed increasing dry mass and decreasing lipid content with development. The proportion of polar lipids increased due to increased PE, PS and PI, whereas choline-containing polar lipids (phosphatidylcholine and sphingomyelin) remained relatively constant. Free cholesterol also increased, whereas the levels of other neutral lipids, especially triacylglycerol and steryl ester fractions, decreased, presumably due to utilization for energy to drive development. Bluefin tuna eggs had higher levels of n  3 and n  6 highly unsaturated fatty acids due to higher docosahexaenoic and arachidonic acid contents, respectively, than bonito eggs. The results are discussed in relation to the lipid and fatty acid requirements of larval scombroid fish in comparison to those of other larval marine finfish species under culture conditions.  相似文献   

20.
The effects of various dietary blends of menhaden oil (MO) with canola oil (CO) on the growth performance, whole body proximate composition, flesh quality (muscle proximate and lipid composition) and thyroidal status of immature Atlantic salmon in sea water were studied.Atlantic salmon (initial weight, 145.2–181.3 g), held on a natural photoperiod and in 1100 L fibreglass tanks that were supplied with running, aerated (D.O., 9–10.5 p.p.m.), ambient temperature (8–10.5 °C) sea water (salinity, 28–30), were fed twice daily to satiation one of four isonitrogenous (36% digestible protein) and isoenergetic (18.8 MJ of digestible energy kg-1) extruded high-energy diets for 112 days. All diets contained omega –3 (n-3) fatty acids in excess of requirements and differed only with respect to the source of the supplemental lipid which was either, 25% MO; 20.75% MO and 4.25% CO; 16.5% MO and 8.5% CO; or 12.25% MO and 12.75% CO. Thus, CO comprised, respectively, 0, 15.5, 31.2, or 47.0% of the total dietary lipid content (28% on an air-dry basis).Dissimilar percentages of saturated fatty acids in the dietary lipids were not found to be consistently related to the apparent gross energy digestibility coefficients of the diets. Atlantic salmon growth, dry feed intake, feed and protein utilization, percent survival, thyroidal status, and whole body and muscle proximate compositions were generally not influenced by the different sources of supplemental lipid. Therefore, our results suggest that canola oil may comprise as much as 47% of the lipid in high-energy grower diets for Atlantic salmon without compromising performance.The muscle lipid compositions generally mirrored those of the dietary lipids which, in turn, were influenced strongly by the concentrations and compositions of the CO and MO in the diet. Hence, as the dietary CO level was increased there were attendant increases in percentages of oleic acid (18:1(n-9)), linoleic acid (18:2(n-6)), total omega-6 (n-6) fatty acid content, and ratios of (n-6) to (n-3) and decreases of eicosapentaenoic acid (EPA; 20:5(n-3)), docosahexaenoic acid (DHA; 22:6(n-3)) and n-3 HUFAs (EPA & DHA) in the flesh lipids. The ranges for percentages of saturated and unsaturated fatty acids in the flesh lipids were, however, much less than those noted respectively in the dietary lipids probably because of selective metabolism of many of the former acids and some of the 18 carbon unsaturates for energy purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号