首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
硅调节植物抗病性的机理:进展与展望   总被引:5,自引:0,他引:5  
【目的】硅素营养增强作物对病虫害的防御能力已得到充分证实,但其作用机理至今仍然没有明确。本文对国内外有关硅素营养与作物病害发展的相互关系及相关机理的最新研究进展进行了归纳总结,为通过植物营养调节技术来提高作物病害防御能力的研究提供理论支撑。【内容】土壤有效硅包括土壤溶液中的单硅酸和易转化为单硅酸的盐类,土壤中有效硅含量一般在50~260 mg/kg。硅虽然不是植物生长发育的必需矿质营养元素,但是硅在减轻植物多种生物和非生物胁迫以及提高植物对病菌的抵抗能力等方面起着重要作用。施硅可以显著地抑制水稻稻瘟病、 纹枯病、 白叶枯病、 胡麻叶斑病,小麦、黄瓜、番茄等植物白粉病等多种病害的发生。关于硅调节植物抗病性的机理,首先提出了机械或物理屏障假设,认为施硅促进了细胞硅化作用的增强,细胞壁角质-硅双层以及表皮细胞乳突的增强,对病菌的入侵起到了物理防御作用。但随着研究的深入,发现物理屏障并非唯一机制,而后提出硅积极参与了生物化学防御过程,发现硅可以诱导感病植物产生酚醛类、黄酮类等抗毒素物质,以及施硅可以提高植物中几丁质酶、过氧化物酶、多酚氧化酶的活性、苯丙氨酸解氨酶等感病植物中病程相关蛋白酶的活性,从而通过化学防御过程提高植物对病害的抵抗能力。随着现代分子技术的发展,从基因组、转录组水平对其防御机制进行了阐明。研究认为硅通过主动的上调感病植物防卫基因及病程相关蛋白基因的表达,以应对病菌侵染。硅诱导植物产生乙烯、茉莉酸、活性氧等系列信号,使植物处于预激活化状态,从而减轻生物胁迫,但是硅在调节植物胁迫信号转导方面的机制还需要深入的研究。【结论】在缺硅土壤中施用硅肥,可以增强作物对病害的抵抗能力,从而大量降低杀菌剂的使用。关于硅调节植物抗病性机理,不能单一归因于某一方面,物理屏障防御机制与生物化学防御过程兼在。硅可能与关键的植物胁迫信号系统相互作用,而最终诱导产生对病原菌的抵抗, 但是这方面的确切机制还不是很清楚,是今后的研究重点。  相似文献   

2.
植物体内硅素生物化学作用及机理研究进展   总被引:2,自引:0,他引:2  
介绍了作物体内硅素生物化学作用的最新研究进展,包括硅素的增产作用机理、植物对硅的积聚、吸收及硅素在作物体内的沉积等方面,并对其未来研究趋势做了展望。  相似文献   

3.
农田生态系统是陆地生态系统的重要组成部分,在维系生命的生长发育和环境的动态平衡等方面起着至关重要的作用,在其生长发育和环境演变的过程中储存大量的环境变化信息,能够反映古农业的发展变迁。植硅体是一种长期稳定存在于土壤中的非晶质二氧化硅颗粒物,它可以指示气候变化。近年来,植硅体分析主要应用在农业考古、古气候重建、生物地球化学循环和全球碳汇潜力估算的研究中。世界上作物分布广泛,作物栽培历史悠久,研究作物植硅体与植硅体碳,对探讨农业起源与发展,估算农田生态系统植硅体碳汇潜力,应对全球气候变化具有重要意义。本文在查阅国内外与作物植硅体研究相关文献的基础上,综述了作物植硅体的形态研究、植硅体在考古学中的应用、作物植硅体碳含量与分布、碳汇潜力以及植硅体碳汇在全球碳汇中的贡献,阐明了作物植硅体未来的研究方向。1)不同作物产生的植硅体形态不同,而且对作物植硅体形态的研究较多处于优势的禾本科中,其他作物的研究较少;2)作物植硅体碳含量与其本身的固碳能力和效率有关,不完全由植硅体含量的多少决定,此外,植硅体碳含量的多少也可能受生长环境和植物基因型的影响;3)不同生态系统中气候、地表植被、土壤环境等诸多因素直接或间接地影响区域植硅体的碳汇潜力;4)农田生态系统不同作物植硅体碳汇存在显著差异,施加硅肥或硅-磷复合肥、种植高植硅体含量和高植硅体碳含量的作物等均可显著提高农田生态系统碳汇潜力。今后应进一步研究不同作物植硅体碳汇,以帮助识别过去的农业碳汇,评估当前农业碳汇潜力;加强植物、根系、土壤迁移规律的探讨,进一步分析不同作物植硅体积累与碳汇效应;阐明不同植物吸硅机制、植物根系硅化过程与其植硅体含量、植硅体碳含量间的关系;了解西南喀斯特生态脆弱区农业碳汇潜力,以期为作物科学种植、农田生态系统碳汇估算等提供参考。  相似文献   

4.
外源硅对植物抗盐性影响的研究进展   总被引:5,自引:0,他引:5  
盐胁迫是世界范围内影响作物产量和品质的主要非生物胁迫之一,如何提高作物的抗盐性已经引起全世界的关注。硅 (Si) 是地壳中含量仅次于氧的第二大丰富元素。在pH值低于9的介质中,硅通常以单硅酸[Si(OH)4]的形式被高等植物吸收。尽管目前硅仍然未被认为是植物生长的必需元素,但是作为植物生长的“有益元素”,硅可以缓解各种生物胁迫和非生物胁迫对植物生长发育的抑制。大量的研究表明硅可参与调控植物抗盐的生理生化代谢过程,并与一些信号物质,如乙烯、水杨酸和多胺等存在互作。主要进展如下:1) 植物对硅的吸收存在主动、被动和拒绝吸收三种,硅转运蛋白在硅的吸收和转运中起到非常重要的作用,但是关于该蛋白的编码基因在更多物种中的克隆和功能研究有待于进一步开展。2) 硅可以调节盐胁迫下植物体内的离子平衡,降低植物根系对盐离子的吸收和向地上部的转运,并使盐离子更均匀的分布在根系中;改善盐胁迫下根系对钙、钾、氮等营养元素的吸收,缓解盐胁迫造成的营养失调。近期一些研究表明多胺可能参与硅对根系盐离子吸收的调控。3) 硅可以通过调节水通道蛋白的表达和渗透调节物质的积累提高根系对水分的吸收和向地上部的转运,改善植株的水分状况。4) 硅可通过调节抗氧化酶活性,降低活性氧的产生和积累,同时可以缓解盐胁迫对光合器官和光合色素造成的损伤,保证盐胁迫下植物光合作用的正常进行。5) 植物耐盐的分子机制非常复杂,涉及大量基因的表达和调控以及信号转导过程,包括蛋白质组学和转录组学在内的组学研究策略为从分子水平揭示硅缓解胁迫的机理提供了有力的技术手段。转录组和蛋白质组学的研究表明硅可以通过调控转录因子、激素等相关基因的表达及蛋白的翻译和修饰来调控植物对盐胁迫的快速响应,提高植物的抗盐能力。6) 硅吸收突变体的应用有助于我们更好的了解硅在调控植物生理生化代谢中所发挥的作用。  相似文献   

5.
植物硅素营养与土壤硅素肥力研究现状和展望   总被引:16,自引:1,他引:16  
硅作为重要的植物营养元素,近年来越来越受到人们的关注。本文从植物对硅的吸收及硅在植物体内的输送和分布、硅素在提高植物抗病虫害能力和增强植物抗逆性上的作用、影响土壤硅素肥力的因素以及硅素肥料的施用技术等几个方面,对土壤硅素肥力及植物硅素营养的研究进展进行了综述,并对今后一段时间该领域的研究趋势做了展望。  相似文献   

6.
硅在提高作物抗旱性中具有重要作用。干湿交替灌溉是通过对植物根系施加干旱处理,来诱导自身的干旱调节潜能的一种节水增产技术。关于节水灌溉影响作物生理特性的研究,结论不尽相同。干湿交替的灌溉方式是否适应于番茄栽培,且在该灌溉技术下施硅对番茄产量品质有何影响,鲜见报道。为探讨干湿交替条件下施硅对番茄的影响,采用潮汐式灌溉系统模拟干湿交替的灌溉方式,研究了干湿交替条件下硅对番茄植株硅质量分数、植株生长、果实产量及品质的影响。结果表明,营养液加硅使番茄根、茎、叶、果的硅质量分数分别提高494%、444%、246%、631%。在番茄幼苗期至开花坐果期,采用干湿交替的灌溉方式利于控制长势、培育壮苗,但结果前期至结果后期,尤其盛果期,则不宜采用干湿交替的灌溉方式。干湿交替造成了番茄的严重减产及番茄红素质量分数、维生素C质量分数、可滴定酸质量分数的下降,但显著提高番茄果实的可溶性蛋白质量分数、游离氨基酸质量分数、可溶性固形物质量分数、可溶性糖质量分数、可滴定酸质量分数、果实硬度、糖酸比,尤其糖酸比提高了30%,而施硅可缓解干湿交替对番茄生长发育后期果实产量和品质的不利影响。总之,干湿交替下施硅,在促进番茄稳产优质协调形成的前提下,可节水23%。该研究探讨了多变低水条件下硅的调控效应,丰富了硅提高植物抗旱性的理论内容,研究结果对实现合理节水并提高番茄商品率具有重要的意义。  相似文献   

7.
逆境条件下硅肥调控效应研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
硅(Si)元素被认为是N、P、K之后的第四大元素。硅肥有利于促进作物的生长和土壤环境的改善。为了给硅肥利用的研究提供一定参考,通过文献综述的方法,总结了逆境条件下硅肥对低温胁迫的调控作用、对植株病害的防效、对水分胁迫的调控作用以及对重金属胁迫的缓解效应。综合现有研究结果,认为增施硅肥具有提高植株的耐盐胁迫、耐重金属胁迫、抗低温、抗病害等能力。此外,不同硅肥的调控效果不同,而且配施其他肥料或者农艺措施等效果更佳。最后,对今后硅肥利用研究方面提出一些建议:(1)加强硅肥的相关机理研究,如硅是如何改善土壤微环境的,纳米硅材料在植物体内的运输、积累及其对植物抗逆性能的作用机理研究;(2)开展硅肥与非常规水资源安全利用的耦合研究,如何利用硅肥的特性来解决微咸水灌溉和再生水灌溉及其二者耦合灌溉的问题;(3)加强硅肥的提质效应研究。  相似文献   

8.
炉渣作为硅肥在红壤性水稻土上的效应   总被引:7,自引:0,他引:7       下载免费PDF全文
硅是否作物必需的营养元素,目前尚有争论.国外一些研究工作者指出,在缺硅的土壤上施用硅肥,对甘蔗、水稻等作物都有显著的增产效果.日本、朝鲜、斯里兰卡等国的研究者通过一系列的试验证明,在某些水稻土上施用硅肥也是提高水稻产量的必要措施.  相似文献   

9.
从磷石膏的特性谈农业上的应用   总被引:14,自引:0,他引:14  
阐述了磷石膏的基本特性对农业上的作用,其主要元素对作物不但无害而且有益,它能改良盐碱地,提高土壤渗水率,又是酸心土层的改良剂。磷石膏具酸性,含钙、硫、硅、磷等植物营养元素,作氮肥添加剂或直接施用于农田,能提高农作物的产量和质量。  相似文献   

10.
硅对植物抗逆性作用的研究   总被引:17,自引:2,他引:17  
硅对植物的生长具有促进作用,主要是提高植物的抗逆性。就硅对植物的抗旱、抗病、抗虫、抗倒伏、抗盐、抗冻和抗重金属等方面作了主要论述。  相似文献   

11.
分别选取酸性和中性水田土壤进行盆栽试验,研究施用硅肥对水稻不同生育期硅素吸收状况及产量的影响,以期揭示施用硅肥提高不同类型土壤供硅能力、改善植株硅素营养及增加产量的作用机制。结果表明,从拔节期到抽穗期水稻植株体内硅的含量有较大幅度的降低,而后又逐渐升高。施用硅肥可明显提高水稻植株体内硅的含量,尤以高炉渣与葡萄糖配合施用和单施高炉渣两个处理效果最好,极显著高于对照及其他处理。在酸性水田土壤上施用硅肥的增产效果较为明显,高炉渣与葡萄糖配施处理的增产率高达16.99%,且成熟期水稻植株含硅量与稻谷产量间存在显著的直线正相关关系;在中性水田土壤上施硅则无显著增产效果。总之,高炉渣与葡萄糖配合施用能更有效地改善土壤的供硅能力,进而提高水稻产量,其在酸性水田土壤上的施用效果尤为显著。  相似文献   

12.
Abstract

Improvement of agricultural water use efficiency is of major concern with drought problems being one of the most important factors limiting grain production worldwide. Effective management of water for crop production in water-scarce areas requires efficient approaches. Increasing crop water use efficiency and drought tolerance by genetic improvement and physiological regulation may be a means to achieve efficient and effective use of water. A limited water supply inhibits the photosynthesis of plants, causes changes of chlorophyll contents and components and damage to photosynthetic apparatus. It also inhibits photochemical activities and decreases the activities of enzymes in plants. Water stress is one of the important factors inhibiting the growth and photosynthetic abilities of plants through disturbing the balance between the production of reactive oxygen species and the antioxidant defence, causing accumulation of reactive oxygen species which induce oxidative stress to proteins, membrane lipids and other cellular components. A number of approaches are being used to enhance water use efficiency and to minimize the detrimental effect of water stress in crop plants. Proper plant nutrition is a good strategy to enhance water use efficiency and productivity in crop plants. Plant nutrients play a very important role in enhancing water use efficiency under limited water supply. In this paper we discuss the possible effective techniques to improve water use efficiency and some macronutrients (nitrogen, phosphorus, potassium, calcium and magnesium), micronutrients (zinc, boron, iron, manganese, molybdenum and chloride), and silicon (a beneficial nutrient) in detail to show how these nutrients play their role in enhancing water use efficiency in crop plant.  相似文献   

13.
Silicon in crop plants has been studied in various ways, for example, in elucidating its effects on phosphorus and nitrogen uptake by roots, or increase of resistance to diseases and insect pests, Graminaceous crops generally contain much more silicon in them than other families of plants, Remarkable effects of silicon application to plants On their growth appear especially in case they have contained about 5 to 10% of silicon before-hand. When silicon content in plants, on the other hand, is quite low, such as less than 0.5% for dry matter, plants show retardation of their grOwth at both vegetative and reproductive stages. It may be deduced that silicon applied to plants might play a role in different ways in cases where they have already had either considerable or quite small amounts of silicon. While the former case has been studied very much, extreme deficiency of silicon in plants has been investigated very little1)-8). Experiments reported here were designed for elucidating roles of silicon in its defiCient plants and getting information about the essentiality of silicon for them.  相似文献   

14.
Field water stress is a common problem in crop production, especially in arid and semi-arid zones and it is widely hypothesized that silicon (Si) could reduce water stress in plants. We set up a greenhouse study to evaluate some silicon sources—potassium silicate (K2SiO3), calcium silicate (CaSiO3) and silica gel for growth and nutrient uptake by four grass species under adequate and deficit irrigation. The four species studied were Rhodes grass (Chloris gayana), Timothy grass (Phleum pratense), Sudan grass (Sorghum sudanense) and Tall fescue (Festuca arundinacea). For all species, the biomass yield response to applied silicon under deficit irrigation was significantly better than under adequate irrigation. The yield response of Rhodes grass across silicon sources was 205% under deficit irrigation compared with only 59% under adequate irrigation; for Sudan grass it was 49% compared with 26% and for Timothy, it was 48% compared with a mere 1%. The higher responses under deficit irrigation suggest that the plants relied more on silicon to endure drought stress. Biomass yield of individual plants also differed according to soil water levels with Timothy grass being the most sensitive to water stress as it exhibited the highest yield response (209%) to adequate irrigation. This was followed by tall fescue (122%) and Rhodes grass (97%). Sudan grass was the least affected by deficit irrigation, possibly on account of improved root mass and its natural drought tolerance. Strong associations were noted between the uptake of silicon and those of nitrogen (N) and phosphorus (P) irrespective of soil water condition, but the uptake of potassium (K) was more strongly correlated with that of Si under deficit than adequate irrigation. Improvements in plant growth following Si application could therefore be linked to enhanced uptake of major essential nutrients.  相似文献   

15.
Adequate silicon nutrition in plants has shown positive effects on the growth and yield of the crop and physico-chemical properties of the soil. Hence, this study was initiated to survey the plant-available silicon in the agricultural soils of different parishes of Louisiana. Soil samples were collected from 212 representative agricultural fields of 27 agrarian parishes of Louisiana. Poor correlations between deionized water, calcium chloride, and other extractants suggest that the unbuffered calcium chloride extraction may reflect only a transient status of soil soluble silicon similar to deionized water extraction procedure. Also, acetic acid-2 extraction procedure may reflect the net effects of the sorption/desorption reactions by extracting the readily as well as the slowly releasable silicon that control solubility, thus giving a true measure of current availability. Compared to the previously established critical soil silicon levels, several agricultural fields of Louisiana were deemed to be low in plant-available silicon.  相似文献   

16.
Soil salinity imposes an unprecedented risk to the soil fertility and availability of plant nutrients. The present proposal is designed to address the effect of salt stress on photosynthetic apparatus of maize including chlorophyll a fluorescence and how silicon nutrition helps to overcome this issue. In a sand culture experiment, two maize cultivars were sown in small pots with two levels of silicon (0 and 2 mM H2SiO3) and two levels of salinity stress (0 and 60 mM NaCl). Salinity stress reduced dry matter yield and potassium (K) concentration in both maize cultivars and also induced inefficient working of photosynthetic apparatus including photochemical efficiency of photosystem II. Silicon addition alleviated NaCl stress on maize crop by improving the dry matter yield and water use efficiency (WUE). It decreased shoot Na concentration by increasing root and shoot K concentration of maize plants. It enhanced maximum quantum yield of primary photochemistry which leads to smooth electron transport chain. It also significantly enhanced shoot silicon concentration and has a significant positive correlation with WUE. Therefore, silicon-treated maize plants have better chance to survive under salt stress conditions as their photosynthetic apparatus is working far better than non-silicon-treated plants.  相似文献   

17.
Cotton (Gossypium hirsutum L.) is a well-known and economically most beneficial crop worldwide while nickel (Ni) toxicity is a widespread problem in crops grown on Ni-contaminated soils. We investigated the response of silicon (Si) in cotton under Ni stress with respect to growth, biomass, gas exchange attributes, enzymatic activities, and Ni uptake and accumulation. For this, plants were grown in hydroponics for 12 weeks with three levels of Ni (0, 50, and 100 µM) in the presence or absence of 1 mM Si. Results showed that Ni significantly reduced the plant growth, biomass, gas exchange attributes, and pigment contents while Si application mitigated these adverse effects under Ni stress. Nickel stress significantly decreased antioxidant enzymes’ activities while increased malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EC) in leaves and roots. The application of Si enhanced the activities of antioxidant enzymes and reduced MDA, H2O2, and EC in plants. Nickel application significantly increased Ni concentration and accumulation in leaf, stem, and roots while Si application significantly decreased Ni in these plant parts. The present study indicates that Si could improve cotton growth under Ni stress by lowering Ni uptake and reactive oxygen species (ROS) and by increasing antioxidant enzymes activities.  相似文献   

18.
Pseudomonads were isolated from the roots of winter wheat plants. Plants produced from direct-drilling of seeds into plots where crop residues had been burnt were larger and appeared healthier than those from plots where crop residues remained. Tests showed that roots from the plants direct-drilled into the plots where crop residues had been burnt were colonized by fewer pseudomonads which could inhibit plant growth than those from plants produced from plots where crop residues remained. The tests were performed by inoculating wheat seedlings with individual bacterial isolates and measuring root growth. When several wheat cultivars were bioassayed against each of two of the inhibitory pseudomonads, they differed greatly in susceptibility to the adverse effects of the bacteria.  相似文献   

19.
In the 21st century, nutrient efficient plants will play a major role in increasing crop yields compared to the 20th century, mainly due to limited land and water resources available for crop production, higher cost of inorganic fertilizer inputs, declining trends in crop yields globally, and increasing environmental concerns. Furthermore, at least 60% of the world's arable lands have mineral deficiencies or elemental toxicity problems, and on such soils fertilizers and lime amendments are essential for achieving improved crop yields. Fertilizer inputs are increasing cost of production of farmers, and there is a major concern for environmental pollution due to excess fertilizer inputs. Higher demands for food and fiber by increasing world populations further enhance the importance of nutrient efficient cultivars that are also higher producers. Nutrient efficient plants are defined as those plants, which produce higher yields per unit of nutrient, applied or absorbed than other plants (standards) under similar agroecological conditions. During the last three decades, much research has been conducted to identify and/or breed nutrient efficient plant species or genotypes/cultivars within species and to further understand the mechanisms of nutrient efficiency in crop plants. However, success in releasing nutrient efficient cultivars has been limited. The main reasons for limited success are that the genetics of plant responses to nutrients and plant interactions with environmental variables are not well understood. Complexity of genes involved in nutrient use efficiency for macro and micronutrients and limited collaborative efforts between breeders, soil scientists, physiologists, and agronomists to evaluate nutrient efficiency issues on a holistic basis have hampered progress in this area. Hence, during the 21st century agricultural scientists have tremendous challenges, as well as opportunities, to develop nutrient efficient crop plants and to develop best management practices that increase the plant efficiency for utilization of applied fertilizers. During the 20th century, breeding for nutritional traits has been proposed as a strategy to improve the efficiency of fertilizer use or to obtain higher yields in low input agricultural systems. This strategy should continue to receive top priority during the 21st century for developing nutrient efficient crop genotypes. This paper over views the importance of nutrient efficient plants in increasing crop yields in modern agriculture. Further, definitions and available methods of calculating nutrient use efficiency, mechanisms for nutrient uptake and use efficiency, role of crops in nutrient use efficiency under biotic and abiotic stresses and breeding strategies to improve nutrient use efficiency in crop plants have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号