首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Bait-formulated spinosad is currently being introduced for housefly (Musca domestica L.) control around the world. Spinosad resistance was evaluated in a multiresistant field population and strains derived from this by selection with insecticides. Constitutive and spinosad-induced expression levels of three cytochrome P450 genes, CYP6A1, CYP6D1 and CYP6D3, previously reported to be involved in insecticide resistance, were examined. RESULTS: In 2004 a baseline for spinosad toxicity of Danish houseflies where all field populations were considered to be susceptible was established. In the present study, females of a multiresistant field population 791a were, however, 27-fold spinosad resistant at LC50, whereas 791a male houseflies were susceptible. Strain 791a was selected with spinosad, thiamethoxam, fipronil and imidacloprid, resulting in four strains with individual characteristics. Selection of 791a with spinosad did not alter spinosad resistance in either males or females, but counterselected against resistance to the insecticides thiamethoxam and imidacloprid targeting nicotinic acetylcholine receptors. A synergist study with piperonyl butoxide, as well as gene expression studies of CYP6A1, CYP6D1 and CYP6D3, indicated a partial involvement of cytochrome P450 genes in spinosad resistance. CONCLUSION: This study reports female-linked spinosad resistance in Danish houseflies. Negative cross-resistance was observed between spinosad and neonicotinoids in one multiresistant housefly strain. Spinosad resistance involved alterations of cytochrome P450 gene expression. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Resistance to numerous insecticide classes in Bemisia tabaci Gennadius has impaired field control efficacy in south‐eastern China. The biotype and resistance status of B. tabaci collected from these areas was investigated. RESULTS: Two different biotypes of B. tabaci (B‐biotype and Q‐biotype) were detected in south‐eastern China, and the samples collected from geographical regions showed a prevalence of the Q‐biotype and the coexistence of B‐ and Q‐biotypes in some regions. Moderate to high levels of resistance to two neonicotinoids were established in both biotypes (28–1900‐fold to imidacloprid, 29–1200‐fold to thiamethoxam). Medium to high levels of resistance to alpha‐cypermethrin (22–610‐fold) were also detected in both biotypes. Four out of 12 populations had low to medium levels of resistance to fipronil (10–25‐fold). Four out of 12 populations showed low levels of resistance to spinosad (5.7–6.4‐fold). All populations tested were susceptible to abamectin. CONCLUSION: The Q‐biotype B. tabaci is supplanting the B‐biotype which used to be ubiquitous in China. Field populations of both B‐ and Q‐biotypes of B. tabaci have developed high levels of resistance to imidacloprid and thiamethoxam. Abamectin is the most effective insecticide against adult B. tabaci from all populations. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Shi X  Jiang L  Wang H  Qiao K  Wang D  Wang K 《Pest management science》2011,67(12):1528-1533
BACKGROUND: Imidacloprid has been a major neonicotinoid insecticide for controlling Aphis gossypii (Glover) (Homoptera: Aphididae) and other piercing–sucking pests. However, the resistance to imidacloprid has been recorded in many target insects. At the same time, cross‐resistance of imidacloprid and other insecticides, especially neonicotinoid insecticides, has been detected. RESULTS: Results showed that the level of cross‐resistance was different between imidacloprid and tested neonicotinoid insecticides (no cross‐resistance: dinotefuran, thiamethoxam and clothianidin; a 3.68–5.79‐fold cross‐resistance: acetamiprid, nitenpyram and thiacloprid). In the study of sublethal effects, imidacloprid at LC20 doses could suppress weight gain and honeydew excretion, but showed no significant effects on longevity and fecundity of the imidacloprid‐resistant cotton aphid, A. gossypii. However, other neonicotinoid insecticides showed significant adverse effects on biological characteristics (body weight, honeydew excretion, longevity and fecundity) in the order of dinotefuran > thiamethoxam and clothianidin > nitenpyram > thiacloprid and acetamiprid. CONCLUSION: The results indicated that dinotefuran is the most effective insecticide for use against imidacloprid‐resistant A. gossypii. To avoid further resistance development, the use of nitenpyram, acetamiprid and thiacloprid should be avoided on imidacloprid‐resistant populations of A. gossypii. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
The Colorado potato beetle, Leptinotarsa decemlineata (Say), has developed resistance to many insecticides used for its control, recently including imidacloprid, a neonicotinoid compound. Other neonicotinoids are now being deployed to control this pest. A key point in the strategies of resistance management is the monitoring of resistance and cross-resistance. In the summer of 2003, imidacloprid-resistant adult Colorado potato beetles collected from Long Island, New York, USA were bioassayed using topical applications of imidacloprid and nine other neonicotinoids. Compared to a standard susceptible strain, the Long Island beetles showed 309-fold resistance to imidacloprid, and lower levels of cross-resistance to all other neonicotinoids, despite these never having been used in the field, i.e., 59-fold to dinotefuran, 33-fold to clothianidin, 29-fold to acetamiprid, 28-fold to N-methylimidacloprid, 25-fold to thiacloprid, 15-fold to thiamethoxam, 10-fold to nitenpyram, but less than 2-fold to nicotine. In injection bioassays, high resistance to imidacloprid was also found (116-fold). Piperonyl butoxide partially suppressed resistance to imidacloprid, but the resistance level was still over 100-fold, indicating that other mechanisms were primarily responsible for resistance. Low levels of resistance (8- to 10-fold) were found to the nicotinic activator, spinosad, in an imidacloprid-resistant strain collected from the same field in 2004. The cross-resistance seen with all the neonicotinoids tested suggests that the rotation of imidacloprid with other neonicotinoids may not be an effective long-term resistance management strategy. Rotation with spinosad also carries some risk, but it is unlikely that spinosad resistance in this case is mechanistically related to that for the neonicotinoids.  相似文献   

5.
BACKGROUND: Neonicotinoid insecticides are generally efficacious against many turfgrass pests, including several important phloem‐feeding insects. However, inconsistencies in control of western chinch bugs, Blissus occiduus, have been documented in field efficacy studies. This research investigated the efficacy of three neonicotinoid insecticides (clothianidin, imidacloprid and thiamethoxam) against B. occiduus in buffalograss under field conditions and detected statistically significant differences in B. occiduus numbers among treatments. A subsequent study documented the relative quantity and degradation rate of these insecticides in buffalograss systemic leaf tissues, using HPLC. RESULTS: Neonicotinoid insecticides initially provided significant reductions in B. occiduus numbers, but mortality diminished over the course of the field studies. Furthermore, while all three neonicotinoids were present in the assayed buffalograss leaf tissues, imidacloprid concentrations were significantly higher than those of clothianidin and thiamethoxam. Over the course of the 28 day study, thiamethoxam concentrations declined 700‐fold, whereas imidacloprid and clothianidin declined only 70‐fold and 60‐fold respectively. CONCLUSIONS: Field studies continued to verify inconsistencies in B. occiduus control with neonicotinoid insecticides. This is the first study to document the relative concentrations of topically applied neonicotinoid insecticides in buffalograss systemic leaf tissues. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The onion thrips, Thrips tabaci Lindeman, is a major pest of several crop plants in the genus Allium, such as onions, garlic and chives. In Israel, these crops are grown in open fields and in protected housing. This thrips is usually controlled by the application of chemical insecticides. In recent years, spinosad, emamectin benzoate and carbosulfan have been the major insecticides used for the control of the onion thrips. In the last 4 years, growers of chives and green onion from several regions of Israel have reported a significant decrease in the efficacy of insecticides used to control the onion thrips. RESULTS: The susceptibility of 14 populations of the onion thrips, collected mainly from chives between the years 2007 and 2011, to spinosad, emamectin benzoate and carbosulfan was tested using a laboratory bioassay. The majority of the populations showed significant levels of resistance to at least one of the insecticides. LC50 values calculated for two of the studied populations showed that the resistance factor for spinosad compared with the susceptible population is 21 393, for carbosulfan 54 and for emamectin benzoate 36. Only two populations, collected from organic farms, were susceptible to the insecticides tested. CONCLUSION: This is the first report of a high resistance level to spinosad, the major insecticide used to control the onion thrips. Resistance cases to spinosad were associated with failures to control the pest. Populations resistant to spinosad also had partial or complete resistance to other insecticides used for controlling the onion thrips. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
为明确山东省棉蚜对新烟碱类杀虫剂的抗性水平,采用毛细管微量点滴法测定了泰安、聊城和东营3个田间种群及1个敏感种群对吡虫啉、烯啶虫胺、啶虫脒、噻虫嗪、噻虫啉、噻虫胺6种新烟碱类杀虫剂的敏感性,同时测定了磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)和增效醚(PBO)3种酶抑制剂的增效作用。结果表明:泰安棉蚜种群对烯啶虫胺的抗性倍数为16.95,处于中等抗性水平,对吡虫啉和啶虫脒的抗性倍数分别为5.69和9.57,已产生低水平抗性,对噻虫胺、噻虫嗪和噻虫啉的抗性倍数均小于3.0,仍较敏感;聊城棉蚜种群对吡虫啉、啶虫脒和噻虫嗪的抗性倍数分别为28.51、25.88和18.16,属中等抗性水平,对噻虫啉和噻虫胺的抗性倍数分别为6.01和6.37,已产生低水平抗性,对烯啶虫胺仍处于敏感阶段;东营棉蚜种群对吡虫啉、啶虫脒和噻虫胺的抗性倍数分别为37.95、21.52和12.95,已产生中等水平抗性,对噻虫啉、烯啶虫胺和噻虫嗪的抗性倍数分别为7.07、6.38和4.75,处于低水平抗性阶段。多功能氧化酶抑制剂PBO和羧酸酯酶抑制剂TPP对6种供试新烟碱类杀虫剂的增效作用明显,谷胱甘肽-S-转移酶抑制剂DEM对这6种药剂也具有一定的增效作用。研究表明,山东省泰安等3地区棉蚜种群对6种新烟碱类杀虫剂均产生了不同程度的抗药性,多功能氧化酶和羧酸酯酶可能在棉蚜对该类杀虫剂的抗性中起主要作用,谷胱甘肽-S-转移酶可能也具有一定的作用。  相似文献   

8.
BACKGROUND: B‐biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross‐resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3‐fold thiamethoxam‐resistant B. tabaci strain (TH‐R) was established after selection for 36 generations. Compared with the susceptible strain (TH‐S), the selected TH‐R strain showed obvious cross‐resistance to imidacloprid (47.3‐fold), acetamiprid (35.8‐fold), nitenpyram (9.99‐fold), abamectin (5.33‐fold) and carbosulfan (4.43‐fold). No cross‐resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH‐R strain (3.14‐ and 2.37‐fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21‐ and 1.68‐fold respectively, and carboxylesterase activity increased 2.96‐fold in the TH‐R strain. However, no difference was observed for glutathione S‐transferase between the two strains. CONCLUSION: B‐biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross‐resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Susceptibility to spinosad of western flower thrips (WFT), Frankliniella occidentalis (Pergande), from south-eastern Spain was determined. LC(50) values of the field populations without previous exposure to spinosad collected in Murcia in 2001 and 2002 ranged from 0.005 to 0.077 mg L(-1). The populations collected in Almeria in 2003 in greenhouses were resistant to spinosad (LC(50) > 54 mg L(-1)) compared with the authors' highly susceptible laboratory strain. The highly sensitive laboratory strain leads to very high resistance ratios for the field populations (>13 500), but these ratios do not necessarily mean resistance problems and control failures (spinosad field rate 90-120 mg L(-1)). The populations collected in Murcia from some greenhouses in 2004 were also resistant to spinosad (RF > 3682). Spinosad overuse, with more than ten applications per crop, produced these resistant populations in some greenhouses. Spinosad showed no cross-resistance to acrinathrin, formetanate or methiocarb in laboratory strains selected for resistance towards each insecticide. Correlation analysis indicated no cross-resistance among spinosad and the other three insecticides in 13 field populations and in nine laboratory strains. The synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) did not enhance the toxicity of spinosad to the resistant strains, indicating that metabolic-mediated detoxification was not responsible for the spinosad resistance. These findings suggest that rotation with spinosad may be an effective resistance management strategy.  相似文献   

10.
BACKROUND: In the present study, the effect of thiamethoxam and clothianidin on the locomotor activity of American cockroach, Periplaneta americana (L.), was evaluated. Because it has been proposed that thiamethoxam is metabolised to clothianidin, high‐performance liquid chromatography coupled with mass spectrometry was used to evaluate the amount of clothianidin on thiamethoxam‐treated cockroaches. RESULTS: One hour after neonicotinoid treatment, the time spent in the open‐field‐like apparatus significantly increased, suggesting a decrease in locomotor activity. The percentage of cockroaches displaying locomotor activity was significantly reduced 1 h after haemolymph application of 1 nmol g?1 neonicotinoid, while no significant effect was found after topical and oral administration. However, at 24 and 48 h, all neonicotinoids were able to reduce locomotor activity, depending on their concentrations and the way they were applied. Interestingly, it was found that thiamethoxam was converted to clothianidin 1 h after application, but the amount of clothianidin did not rise proportionately to thiamethoxam, especially after oral administration. CONCLUSION: The data suggest that the effect of thiamethoxam on cockroach locomotor activity is due in part to clothianidin action because (1) thiamethoxam levels remained persistent 48 h after application and (2) the amount of clothianidin in cockroach tissues was consistent with the toxicity of thiamethoxam. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Although there are still no confirmed reports of strong resistance to neonicotinoid insecticides in aphids, the peach-potato aphid (Myzus persicae Sulzer) shows variation in response, with some clones exhibiting up to tenfold resistance to imidacloprid. Five clones varying in response to imidacloprid were tested with four other neonicotinoid molecules to investigate the extent of cross-resistance.RESULTS: All four compounds-thiamethoxam, thiacloprid, clothianidin and dinotefuran-were cross-resisted, with ED(50) values ranked in the same order as for imidacloprid. Resistance factors ranged up to 11 for imidacloprid, 18 for thiamethoxam, 13 for thiacloprid, 100 for clothianidin and 6 for dinotefuran.CONCLUSION: This variation in response does not appear to be sufficient to compromise the field performance of neonicotinoids aimed at controlling aphids. However, it highlights the need for careful vigilance and stewardship in all M. persicae populations, and a need to consider neonicotinoids as a single cross-resisted group for management purposes.  相似文献   

12.
BACKGROUND: The tobacco whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), has developed a high degree of resistance to several chemical classes of insecticides throughout the world. To evaluate the resistance status in West Africa, eight insecticides from different chemical families were tested using the leaf‐dip method on four field populations collected from cotton in Benin, Togo and Burkina Faso. RESULTS: Some field populations showed a significant loss of susceptibility to pyrethroids such as deltamethrin [resistance ratio (RR) 3–5] and bifenthrin (RR 4–36), to organophosphates (OPs) such as dimethoate (RR 8–15) and chlorpyrifos (RR 5–7) and to neonicotinoids such as acetamiprid (RR 7–8) and thiamethoxam (RR 3–7). Bemisia tabaci was also resistant to pymetrozine (RR 3–18) and to endosulfan (RR 14–30). CONCLUSION: The resistance of B. tabaci to pyrethroids and OPs is certainly due to their systematic use in cotton treatments for more than 30 years. Acetamiprid has been recently introduced for the control of whiteflies. Unfortunately, B. tabaci populations from Burkina Faso seem to be already resistant. Because cross‐resistance between these compounds has never been observed elsewhere, resistance to neonicotinoids could be due to the presence of an invasive B. tabaci biotype recently detected in the region. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Neonicotinoid action as well as resistance involves interaction with nicotinic acetylcholine receptors (nAChRs). In the housefly, neonicotinoid resistance also involves cytochrome P450, as indicated by bioassay with synergist as well as altered expression. In bioassay, synergism was only partial and indicated possible target‐site resistance. The nAChR α2 subunit is important in neonicotinoid toxicity to insects, and gene expression of the Mdα2 subunit was investigated in field populations and laboratory strains of neonicotinoid‐resistant and insecticide‐susceptible houseflies, Musca domestica L. The genomic sequence covering exon III–VII of Mdα2 was analysed for mutations. RESULTS: Gene expression profiling of Mdα2 revealed notable differences between neonicotinoid‐resistant and insecticide‐susceptible houseflies. On average, the neonicotinoid‐resistant field population 766b and the imidacloprid selected strain 791imi had 60% lower copy numbers of Mdα2 compared with the susceptible reference strain. Sequencing of exon III–VII of the Mdα2, encoding acetylcholine binding‐site regions and three out of four transmembrane domains, did not reveal any mutations explaining the increased neonicotinoid tolerance in the strains examined. CONCLUSION: Previous discoveries and the results of this study suggest that the neonicotinoid resistance mechanism in Danish houseflies involves both cytochrome P450 monooxygenase‐mediated detoxification and reduced expression of the nAChR subunit α2. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Neonicotinoid insecticides are compounds acting agonistically on insect nicotinic acetylcholine receptors (nAChR). They are especially active on hemipteran pest species such as aphids, whiteflies, and planthoppers, but also commercialized to control many coleopteran and some lepidopteran pest species. The most prominent member of this class of insecticides is imidacloprid. All neonicotinoid insecticides bind with high affinity (I50-values around 1 nM) to [3H]imidacloprid binding sites on insect nAChRs. One notable ommission is the neonicotinoid thiamethoxam, showing binding affinities up to 10,000-fold less potent than the others, using housefly head membrane preparations. Electrophysiological whole cell voltage clamp studies using neurons isolated from Heliothis virescens ventral nerve cord showed no response to thiamethoxam when applied at concentrations of 0.3 mM, although the symptomology of poisoning in orally and topically treated noctuid larvae suggested strong neurotoxicity. Other neonicotinoids, such as clothianidin, exhibited high activity as agonists on isolated neurons at concentrations as low as 30 nM. There was no obvious correlation between biological efficacy of thiamethoxam against aphids and lepidopterans and receptor affinity in electrophysiological and binding assays. Pharmacokinetic studies using an LC-MS/MS approach to analyze haemolymph samples taken from lepidopteran larvae revealed that thiamethoxam orally applied to 5th instar Spodoptera frugiperda larvae was rapidly metabolized to clothianidin, an open-chain neonicotinoid. Clothianidin shows high affinity to nAChRs in both binding assays and whole cell voltage clamp studies. When applied to cotton plants, thiamethoxam was also quickly metabolized, with clothianidin being the predominant neonicotinoid in planta briefly after application, as indicated by LC-MS/MS analyses. Interestingly, the N-desmethylated derivative of thiamethoxam, N-desmethyl thiamethoxam, was not significantly produced in either lepidopteran larvae or in cotton plants, although it was often mentioned as a possible metabolite, being nearly as active as imidacloprid. In conclusion, our investigations show that thiamethoxam is likely to be a neonicotinoid precursor for clothianidin.  相似文献   

15.
Susceptibility to spinosad (Success®/Tracer®) of beet armyworm (Spodoptera exigua) from the southern USA and Southeast Asia was determined through exposure of second‐ and third‐instar larvae to dipped cotton leaves. LC50 estimates of susceptibility of second‐ and third‐instar larvae of field populations ranged from 0.279 to 6.14 and 0.589 to 14.0 mg spinosad litre−1, respectively. A Thailand population was 22‐ and 24‐fold less susceptible than the six other US field populations evaluated, and 85‐ and 58‐fold less susceptible than a reference laboratory population, respectively. From these results, we initiated experiments to test the hypothesis that the Thailand population was resistant to spinosad. F1 crosses between the resistant Thailand population and a susceptible reference strain yielded individuals that were 22‐fold less sensitive to spinosad than the susceptible parent. This same resistant strain exhibited significantly greater survivorship on plants treated with spinosad in the field. Lastly, selection of an Arizona population resulted in a significant reduction in susceptibility to spinosad, further substantiating the hypothesis of a genetic basis for resistance to spinosad. These findings indicate a vulnerability of this new insecticide to resistance development in beet armyworm and should serve as a warning against excessive use of it. © 2000 Society of Chemical Industry  相似文献   

16.
Several strains of Drosophila melanogaster possess mutant alleles in nicotinic acetylcholine receptor (nAChR) subunits, Dα1 and Dβ2 that confer resistance to neonicotinoids such as imidacloprid and nitenpyram, and Dα6, that confers resistance to spinosyns. These mutant strains were bioassayed with a selected set of nAChR active insecticides including neonicotinoids, spinosad, and sulfoxaflor, a new sulfoximine insecticide. All of the neonicotinoids examined, except dinotefuran showed reduced insecticidal efficacy on larvae of the Dα1 mutant, suggesting that this subunit may be important in the action of these insecticides. All of the neonicotinoids, including dinotefuran, showed reduced insecticidal efficacy on larvae possessing the Dβ2 mutation. A similar pattern of broad neonicotinoid resistance to that of Dβ2 alone was also observed for larvae with both the mutations (Dα1 + Dβ2). The Dβ2 mutation exhibited a lower level of cross-resistance to sulfoxaflor (<3-fold) than to any of the neonicotinoids (>13-fold). In contrast, there was no cross-resistance for any of the neonicotinoids or sulfoxaflor in adult flies with the Dα6 mutation, which confers high levels of resistance to spinosad. Thus in the D. melanogaster strains studied, target site resistance observed for the neonicotinoids and the spinosyns does not translate directly to resistance towards sulfoxaflor.  相似文献   

17.
BACKGROUND: The potential of systemic neonicotinoid insecticides to control potato leafhopper, Empoasca fabae (Harris), a damaging pest of wine grapes in the eastern United States, was investigated. Soil or foliar applications were made to potted or field‐grown vines, and the response of leafhoppers was determined in clip cages over the following month on young or mature leaves. RESULTS: Foliar application of imidacloprid caused immediate and long‐lasting reductions in E. fabae survival on both leaf ages, whereas the activity of soil‐applied imidacloprid was delayed. Clothianidin, imidacloprid and thiamethoxam all provided long‐lasting reduction in leafhopper survival on young and mature foliage when applied through either delivery route. However, the percentage of moribund nymphs was significantly greater on foliar‐treated vines and increased over time in mature and immature leaves compared with soil‐treated vines. Residue analysis of foliar‐applied imidacloprid showed an 89% decline in mature leaves from day 1 to day 27, and a 98% decline in immature leaves over the same time period. Comparison of soil‐applied clothianidin, imidacloprid and thiamethoxam in field‐grown vines showed significant reduction in E. fabae only on mature leaves of vines treated with thiamethoxam. CONCLUSIONS: Neonicotinoids can control E. fabae in small vines, even in rapidly expanding foliage where this pest causes greatest injury. Soil application provides superior long‐term vine protection because declining residues on foliar‐treated vines lead to suboptimal activity within 2–3 weeks. Vineyard managers of susceptible cultivars may take advantage of this approach to E. fabae management by using foliar applications of the three neonicotinoids tested here, or by using soil‐applied thiamethoxam. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Although cross‐resistance between compounds in the same insecticide group is a frequently observed phenomenon, cross‐resistance between groups that differ in structural and functional characteristics can be extremely unpredictable. In the case of controlling the whitefly, Bemisia tabaci Gennadius, neonicotinoids and the pyridine azomethine antifeedant pymetrozine represent independent lines of discovery that should be suited for alternation to avoid prolonged selection for the same resistance mechanism. Reports of an association between responses to neonicotinoids and pymetrozine were investigated by resistance profiling of seven B. tabaci strains and complementary reciprocal selection experiments. RESULTS: All strains demonstrated a consistent correlation between responses to three neonicotinoid compounds: thiamethoxam, imidacloprid and acetamiprid. Responses to neonicotinoids for six field strains clearly correlated with responses to pymetrozine. Reciprocal selection experiments confirmed an unexpected case of intergroup cross‐resistance. A seventh strain exhibited a so far unique phenotype of strong resistance to pymetrozine but full susceptibility to neonicotinoids. Selection experiments confirmed that in this strain the mechanism of pymetrozine resistance is specific and has no implications for neonicotinoids. CONCLUSION: Cross‐resistance between neonicotinoids and pymetrozine in B. tabaci probably reflects the overexpression of a cytochrome‐P450‐dependent monooxygenase capable of metabolising both types of compound in spite of their apparent structural dissimilarity. Given the predominance of this mechanism in B. tabaci, both can contribute to resistance management but should be placed within the same treatment ‘window’. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Mechanisms associated with bendiocarb resistance were examined in two strains of western flower thrips, Frankliniella occidentalis (Pergande), that differed in their susceptibility to this carbamate by 13.6-fold. No appreciable differences between the two strains in [14C] bendiocarb penetration and excretion were detected; however, bendiocarb was metabolised substantially faster by the resistant KCM thrips than by the more susceptible UMC thrips. No appreciable difference between the two strains was found in the sensitivity of acetylcholinesterase activity to inhibition by bendiocarb. It was concluded that bendiocarb resistance in KCM western flower thrips was due to enhanced metabolism that probably was mainly oxidative in nature.  相似文献   

20.
BACKGROUND: Neonicotinoid baits are currently replacing anticholinesterase baits for control of adult houseflies (Musca domestica L.). Introduction of new insecticides includes evaluation of their cross-resistance potential, which was assessed for thiamethoxam in field populations from Denmark. RESULTS: In feeding bioassay with a susceptible strain, thiamethoxam LC(50) at 72 h was 1.7 microg thiamethoxam g(-1) sugar, making it 19-fold, 11-fold and threefold more toxic to houseflies than azamethiphos, methomyl and spinosad respectively. The field populations were 6-76-fold resistant to thiamethoxam. There was no correlation between the toxicities of thiamethoxam and spinosad, dimethoate, methomyl, bioresmethrin or azamethiphos. The toxicity in feeding bioassay at 72 h of imidacloprid in a susceptible strain was 32 microg imidacloprid g(-1) sugar at LC(50), making it 19-fold less toxic to houseflies than thiamethoxam. There was a strong significant correlation between the toxicities of thiamethoxam and imidacloprid in field populations.CONCLUSION: Neonicotinoid-resistant houseflies were present at a detectable and noticeable level before thiamethoxam and imidacloprid were introduced for housefly control in Denmark. The toxicity of thiamethoxam is explained by other parameters than the toxicities of spinosad, dimethoate, methomyl, bioresmethrin or azamethiphos. The cross-resistance between thiamethoxam and imidacloprid indicates a coincidence of mechanism of the toxicity and resistance in the field populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号