首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小麦大拇指矮的穗发芽抗性研究   总被引:2,自引:0,他引:2  
以小麦大拇指数的近等基因系及其分离群体为材料,分析了大拇指矮的矮秆基因Rht3和赤霉酸不敏感基因Gai3对穗发芽的影响,结果表明Rht3和Gai3与抗穗发芽密切相关,高矮亲本间穗发芽差异明显,矮扬3和矮苏3及它们的轮回亲本的穗发芽率分别为8.26%、11.47%和56.37%、66.87%、。群体中穗发芽率分离明显,赤霉酸拓应不敏感的矮秆和半矮秆类型植株穗发芽率低,赤霉酸反应敏感的高秆类型植株穗发牙率高,两分离群体中株高、赤霉酸反应、α淀粉酶活性与穗发芽率的相关系数分别为0.8585和0.6562、0.8103和0.6435、0.8581和0.89268,均达极显著水平,Rht3、Gai3通过低α-淀粉酶活性而增强了抗穗发芽性。  相似文献   

2.
以小麦赤霉酸反应不敏感的Rht3矮秆基因两个近等基因系及其分离群体为材料,分析了Rht3、Gai3与a-淀粉酶表达的相互关系。结果表明,Rht3、Gai3能强烈地抑制萌发籽粒a-淀粉酶的表达,降低a-淀粉酶活性水平。高矮亲本间a-淀粉酶活性差异明显,矮扬3、矮苏3和扬麦3号、苏麦3号的a-淀粉酶OD值分别为0.071,0.080和0.0635,0.720。经X^2测验,两群体中a-淀粉酶生高、中、  相似文献   

3.
对过量表达PaTrxS基因的T4代稳定大麦品系Y001不同灌浆期种子中α-淀粉酶和β-淀粉酶活性的变化进行了动态跟踪。经PCR检测,转基因大麦豫啤1号(YP1)植株均出现了886 bp的目的带,说明目的基因已经整合到大麦基因组上。对不同发育时期转基因种子和对照种子的α-淀粉酶和β-淀粉酶活性进行测定,结果表明:转TrxS基因种子的α-淀粉酶活性在花后30 d内均比对照高,且峰值出现较对照早5 d;β-淀粉酶活性在整个籽粒发育时期都明显高于对照,差异达到极显著水平。表明TrxS基因对啤酒大麦的淀粉酶活性有促进作用。同时转基因大麦种子在成熟期淀粉含量和蛋白组分含量与对照相比差异并不明显。  相似文献   

4.
导入Rht10基因的八倍体小偃麦的农艺性状遗传分析   总被引:1,自引:0,他引:1  
将矮秆基因Rht10导入八倍体小偃麦中获得了染色体数为2n=56的矮秆稳定材料攀89074-1-1-1,其中Rht10基因表现了极强的降秆能力,同时攀89074-1-1-1的幼苗对赤霉酸反应不敏感,表明Rht10基因能在八倍体小偃麦遗传背景中正常表达,用该矮秆小偃品系与含有小麦-簇毛麦6VA/6AL易位系92R137杂交,对F2群体的植株株高及其它农艺性状的遗体分析表明,Rht10基因在杂交后代中呈显性遗传,从该群体中能够获得一批半矮秆、分蘖力强、抗锈病和白粉病的株系,可望从中培育结合中间偃麦草和簇毛麦优良基因的中间材料。  相似文献   

5.
采用NCⅡ设计,用6个不同株高类型(高、中、矮各2个)八倍体小黑麦作母本,用含Rhtl,Rht2,Rht3,Rht10,和RhtlRht2Rhty的5个小麦矮源作父本配制30个杂交组合,通过F_1的显性度(D值)、降秆强度(R值)及F_2株高分布频率,分析了Rht基因在不同株高类型八倍体小黑麦中的反应。主要结果为:1)不同矮秆基因对高、中、矮秆小黑麦降秆趋势一致,即对高秆小黑麦降秆效果最强,中秆次之,矮秆最弱,而不同矮秆基因降秆作用大小顺序为:Rht10>Rht3>Rht1Rht2Rhty>Rht1Rht2.2) 各矮秆基因在F_2染色体数分布不平衡的遗传背景下表达基本正常,Rht10、Rht3显示以矮秆为主的高低峰分布,农林10号、OlesenDwarf显示正态分布,3)连续回交能提高矮秆小黑麦株的选择效率。  相似文献   

6.
 世界小麦矮化育种主要使用隐性矮源。在普通小麦中发现的显性矮源均因导致植株极度矮化(20~55 cm)而未能在小麦育种中广泛应用。笔者发现,将显性矮源矮变1号(4DS携带Rht10,25~30 cm)及矮苏3(4BS携带Rht3,55 cm)的原种大群体种植或施以诱变因子并将其与中、高秆的小麦品种杂交、回交,从其分离世代的大群体中,均可选择到一些株高呈不同程度提升的稳定的突变株系。采用近等基因系法对不同株高突变衍生系的研究表明:其提升的株高真实遗传,各自均携带一个不同株高的半显性矮秆基因,随突变衍生系株高的提升,近等基因系的产量性状显著优化。采用标志基因测交法以及生理生化遗传标记对突变衍生系携带的不同株高的半显性矮秆基因重新进行了基因定位,确认它们分别与Rht10及Rht3的座位相同,因而均是其突变衍生的复等位基因。提出显性矮秆基因具有"复等位多态特性",即极度矮化的显性矮秆基因容易突变为一群株高提高程度不同的、可以达到小麦育种理想株高的半显性矮秆复等位基因。  相似文献   

7.
研究了反义Trx-S基因对小麦Trx-h基因表达抑制情况,对两个转反义Trx-S基因品系(OOTY5和OOT89)的T3代进行了PCR检测,证明反义Trx-S基因已经遗传到转基因品系T3代植株当中、对不同成熟时期的转基因品系种子的α-淀粉酶和β-淀粉酶活性测定表明,转基因种子在不同成熟时期的α-淀粉酶和β-淀粉酶活性有较大的变化,但与对照相比均有不同程度的降低,其中α-淀粉酶活性最低值出现在花后33~36d,平均降低幅度达到61%;而β-淀粉酶活性最低值出现在花后22d、方差分析表明不同成熟时期的差异均达到显著或极显著水平,表明反义Trx-S基因对小麦Trx-h基因的表达具有明显抑制作用。  相似文献   

8.
小麦种子萌发早期淀粉降解关键酶活性及基因表达量研究   总被引:3,自引:1,他引:2  
为研究小麦种子萌发早期淀粉降解关键酶活性及其基因表达量变化,以山农17为试验材料,测定了不同温度条件下萌发的小麦种子中的淀粉、可溶性糖含量及相关酶(淀粉酶和淀粉磷酸化酶)活性,并采用实时荧光定量PCR技术测定各酶相关基因相对表达量。结果显示,不同温度条件下萌发的小麦种子,淀粉含量随萌发进程以不同的速率呈下降趋势,可溶性糖含量呈先下降后上升趋势,α-淀粉酶、淀粉磷酸化酶活性和呼吸速率整体呈上升趋势,以上各指标均在露白前后有明显的变化;β-淀粉酶呈现双峰变化趋势,且一直保持较高活性;α-淀粉酶和淀粉磷酸化酶基因的相对表达量均呈上升趋势,且与酶活性呈极显著相关。以上结果表明,在小麦种子萌发早期,温度能强烈影响萌发过程中淀粉降解关键酶基因的表达量;α-淀粉酶和淀粉磷酸化酶在种子置床初期即可被检测到活性,且受其编码基因的调控作用显著,在种子萌发过程中具有重要作用。  相似文献   

9.
用20个矮源作母本测配的F1代株高,研究矮源的致矮力及其与父本的关系,结果表明:致矮能力强的显性矮源有矮变1号、绵11Rht 3和黄抗Rht 10;致矮能力较弱的隐性矮源有农林10、贵农40、渝46和84-2014;致矮能力较强的半显性矮源有13个矮源.矮源F1代株高与杂交父本株高的相关系数和回归方程达极显著,对父本株高降幅较大的矮源有矮变1号、绵11 Rht 3和黄抗Rht 0,降幅较小的矮源有渝46、84-2014、贵农40、农林10和西南06;其他12个矮源影响适中,是杂交小麦育种首先考虑应用的矮源.聚类分析表明矮变1号为Ⅰ类,绵11 Rht 3和黄抗Rht 10为Ⅱ类,BAU-Rht 12为Ⅲ类,矮苏3、奥尔森、西南02、西南04、西南04-1、西南05、BAU-Rht 21、西南06、西南07、渝183、渝172、早农林10为Ⅳ类,农林10、渝46、84-2014和贵农40为Ⅴ类.  相似文献   

10.
稻谷及糙米储藏过程中淀粉酶活性的变化   总被引:4,自引:0,他引:4  
为了解稻谷在储藏过程中α、β-淀粉酶活性的变化情况,采用3,5-二硝基水杨酸比色法测定了垦鉴稻10、空育131两个水稻品种的稻谷和糙米在不同储藏条件下淀粉酶活性的变化.试验结果表明:水稻品种之间、储藏温度之间、储藏时间之间α、β-淀粉酶活性存在极显著的差异;储藏状态与储藏时间的交互作用对α-淀粉酶活性的影响达差异显著;水稻品种与储藏温度的交互作用对β-淀粉酶活性的影响达差异显著.在室温条件下储藏,α、β-淀粉酶活性均呈下降趋势,在4月至10月间下降幅度最大,10月后α、β-淀粉酶活性趋于稳定并维持最低水平.在4℃储藏时,α、β-淀粉酶活性下降幅度小于室温储藏时的下降幅度.相同储藏条件下,稻谷淀粉酶活性高于糙米淀粉酶活性.因此,在每年的4月至10月间,宜在低温下储藏稻谷,以防止大米品质变劣.  相似文献   

11.
为了揭示反义硫氧还蛋白基因(anti-trxs)在抗穗发芽小麦中的作用机制;以转反义trxs基因小麦株系为材料,运用生理指标分析的方法,对转基因株系和对照种子萌发过程中硫氧还蛋白h活性、淀粉酶活性、可溶性糖和淀粉含量进行了检测;结果表明,转基因小麦籽粒trxh、α-淀粉酶和β-淀粉酶活性均显著低于对照;淀粉降解和可溶性糖生成速率明显下降.发芽1~5d,转基因小麦种子trxh、α-淀粉酶和β-淀粉酶活性分别比对照下降24.5%、40.4%和23.0%;淀粉降解和可溶性糖生成速率分别比对照降低23.7%和23%;说明,反义trxs基因对转基因小麦籽粒的碳代谢有调控作用.  相似文献   

12.
目前在小麦中虽然已经命名了20余个矮秆基因,但小麦矮秆基因资源应用单一化的现状仍然存在,因此对小麦新矮源的筛选与研究显得十分必要。本研究以1个小麦矮秆突变体‘矮128’为材料,通过赤霉酸处理、遗传分析、基因等位性测验和DNA分子标记等手段分析了该矮秆突变体矮秆基因的性质及可能来源。结果表明:‘矮128’属赤霉酸不敏感型矮秆突变体,其矮秆性状受1对隐性基因控制,该基因与Rht8、Rht9、Rht13、RhtB1b(Rht1)、RhtD1b(Rht2)、RhtD1c(Rht10)和Rht16等矮秆基因不是等位基因,也不同于Rht4、Rht5、Rht8、Rht9、Rht12、Rht13等6个已知矮秆基因。尽管如此,‘矮128’中的矮秆基因是否为新的矮秆基因仍然需进一步的遗传分析加以明确。  相似文献   

13.
小麦矮秆基因Rht#-10对赤霉酸反应的研究   总被引:2,自引:0,他引:2  
利用赤霉酸(GA#-3)对矮变一号的幼苗及胚乳进行了处理。结果表明,矮变一号不仅植株的地上部分,而且其胚乳组织对赤霉酸都是不敏感的;从两份不同来源的矮变一号对赤霉酸反应的差异及2x中7902单体/矮变一号BC#-1的表现,推测矮变一号赤霉酸不敏感性除受Rht#-10主效基因控制外,还受其他微效修饰基因的影响。  相似文献   

14.
本研究通过测定柱花草4个品种在种子萌发过程中参与糖代谢的α-淀粉酶、β-淀粉酶和总淀粉酶活性的动态变化,得出α-淀粉酶活性在种子萌发和幼芽生长初期活性增加,在萌发中期和幼芽生长中后期酶活性降低,其中马弓形柱花草变化幅度最大。β-淀粉酶活性在萌发期呈上升趋势,到种子开始露白即胚根突破种皮时达到最大值,到幼芽生长期β-淀粉酶活性降低。其中维诺拉有钩柱花草在不同时期的β-淀粉酶活性最低。以热研2号柱花草参与糖代谢的淀粉酶活性进行相关分析的结果表明,α-淀粉酶和总淀粉酶之间的相关性比β-淀粉酶的显著,所以α-淀粉酶活性变化能够更好地反映总淀粉酶活性的变化。可为研究柱花草种子萌发中的生理变化提供参考依据。  相似文献   

15.
用20个矮源作母本测配的F1代株高,研究矮源的致矮力及其与父本的关系,结果表明:致矮能力强的显性矮源有矮变1号、绵11RhI3和黄抗Rht 10;致矮能力较弱的隐性矮源有农林10、贵农40、渝46和84-2014;致矮能力较强的半显性矮源有13个矮源。矮源F1代株高与杂交父本株高的相关系数和回归方程达极显著,对父本株高降幅较大的矮源有矮变1号、绵11Rht3和黄抗Rht0,降幅较小的矮源有渝46、84-2014、贵农40、农林10和西南06;其他12个矮源影响适中,是杂交小麦育种首先考虑应用的矮源。聚类分析表明矮变1号为Ⅰ类,绵11 Rht3和黄抗Rht 10为Ⅱ类,BAU-Rht 12为Ⅲ类,矮苏3、奥尔森、西南02、西南04、西南04-1、西南05、BAU-Rht 21、西南06、西南07、渝183、渝172、早农林10为Ⅳ类,农林10、渝46、84-2014和贵农40为Ⅴ类。  相似文献   

16.
α-淀粉酶基因在毕赤酵母中的表达及酶学性质研究   总被引:3,自引:0,他引:3  
以克隆自野油菜黄单胞菌的α-淀粉酶基因质粒(pHN8004)为模板,通过PCR方法将α-淀粉酶基因克隆到毕赤酵母表达载体pHBM905A中,转化毕赤酵母GS115.利用甲醇对重组毕赤酵母GS115(pHBM905AM1)进行诱导,实现了表达.培养温度为28℃,用体积分数为1.0%的甲醇诱导,第7天分泌表达的α-淀粉酶酶活性最高,为1 081 U.mL-1,该酶的最适反应温度和最适反应pH值分别为50℃和5.9.  相似文献   

17.
以大青皮萝卜(P1)、青萝卜(P2)、灯笼红(P3)、满堂红(P4)和浙大长(P5)为杂交亲本,按5×5完全双列交配设计,对萝卜淀粉酶活性进行了配合力分析和遗传参数的估算。结果表明:亲本P3和P5的淀粉酶总活性一般配合力较高,分别为9.243和0.829,为优良亲本可直接利用;杂交组合P2×P4、P5×P3、P1×P2和P4×P5的总酶活性特殊配合力较高,分别为11.983,7.250,3.983和1.343,有增加淀粉酶活性的潜力。α-淀粉酶活性、β-淀粉酶活性和总酶活性狭义遗传力分别为23.85%、44.27%和38.47%,β-淀粉酶活性和总酶活性遗传力较高,可在早代开始选择;而α-淀粉酶活性遗传力较低,受周围环境影响大,可于晚期世代选择。  相似文献   

18.
19.
大麦α-淀粉酶编码基因的表达对α-淀粉酶的活性有重要影响.以α-淀粉酶活性具有显著差异的两个大麦品种为试材,研究不同发芽时期大麦种子中Amy6-4基因的表达模式.利用Amy6-4基因的特异性引物,通过半定量RT-PCR,对发芽0h、12h、24 h、48 h、72 h、96 h和120 h的大麦种子的表达模式进行分析.结果表明,两品种在发芽的0时期基因表达量为零;随着发芽时期的延长两品种的Amy6-4基因表达水平呈现增加的趋势,且两品种在发芽第5天,该基因表达水平均达到最高;在发芽后的各个时期,品种ZDM7825的Amy6-4基因的表达量均高于ZDM5271.  相似文献   

20.
利用半矮生水稻品种沈稻4号(P_1)和中高秆晶系沈农637(P_2)及其杂交后代F_1、F_2群体,运用主基因+多基因混合遗传模型对株高的遗传进行了联合分离分析.结果表明:株高性状受两对加性-显性-上位性主基因和加性-显性-上位性多基因共同控制.两对主基因的加性效应近似相等,分别为-4.742和-4.741,主基因遗传力为47.13%,多基因遗传力为41.33%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号