首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Component models of heat production identified in a proposed system of partitioning ME intake and a dynamic systems model that predicts gain in empty BW in cattle resulting from a known intake of ME were evaluated. Evaluations were done in four main areas: 1) net efficiency of ME utilization for gain, 2) relationship between recovered energy and ME intake, 3) predicting gain in empty BW from recovered energy, and 4) predicting gain in empty BW from ME intake. An analysis of published data showed that the net partial efficiencies of ME utilization for protein and fat gain were approximately 0.2 and 0.75, respectively, and that the net efficiency of ME utilization for gain could be estimated using these net partial efficiencies and the fraction of recovered energy that is contained in protein. Analyses of published sheep and cattle experimental data showed a significant linear relationship between recovered energy and ME intake, with no evidence for a nonlinear relationship. Growth and body composition of Hereford x Angus steers simulated from weaning to slaughter showed that over the finishing period, 20.8% of ME intake was recovered in gain. These results were similar to observed data and comparable to feedlot data of 26.5% for a shorter finishing period with a higher-quality diet. The component model to predict gain in empty BW from recovered energy was evaluated with growth and body composition data of five steer genotypes on two levels of nutrition. Linear regression of observed on predicted values for empty BW resulted in an intercept and slope that were not different (P < 0.05) from 0 and 1, respectively. Evaluations of the dynamic systems model to predict gain in empty BW using ME intake as the input showed close agreement between predicted and observed final empty BW for steers that were finished on high-energy diets, and the model accurately predicted growth patterns for Angus, Charolais, and Simmental reproducing females from 10 mo to 7 yr of age.  相似文献   

2.
Fifty-eight purebred castrated male Iberian (IB) piglets (initial BW 9.9 ± 0.1 kg) were used in an experiment to determine the effect of dietary protein content (PC) and feeding level (FL) on the rates of BW gain, whole body protein deposition (PD), and energy utilization between 10 and 25 kg of BW using the serial slaughter method. Treatments followed a 4 × 2 factorial arrangement with 4 PC (201, 176, 149, and 123 g of CP/kg of DM) and 2 FL (0.95 and 0.70 × ad libitum) and 6 or 7 piglets per combination of treatments. All diets were formulated to have an optimal AA pattern. Six piglets were slaughtered at the start of the trial to estimate initial body composition. The experimental pigs were individually housed in an environmentally controlled room (27 ± 2°C) until they reached 25 kg of BW, when they were slaughtered and analyzed for body composition. Positive linear effects of dietary PC on ADG, G:F, and gain:ME intake were observed (P < 0.001). Piglets fed at the highest FL showed greater ADG, G:F, and gain:ME intake (P < 0.001). An average increase was estimated to be 38.0 g of gain/MJ of ME intake. Protein deposition increased linearly from 35.6 to 50.9 g/d with increasing dietary PC (P < 0.001). A daily increase was estimated to be 0.35 g of PD/g of CP intake. Although the maximal genetic potential for PD of the IB piglet was not attained, a maximal value of 59.9 g/d for whole-body PD was achieved when the diet provided 201 g of CP/kg of DM and was fed at 0.95 × ad libitum. Piglets on the highest FL deposited on average 39% more body protein (P < 0.001) than restricted piglets. An average value of 4.39 g increase in PD/MJ of ME intake was obtained for diets containing 201 and 176 g of CP/kg of DM. Maintenance energy requirements and net efficiency of utilization of ME for growth, calculated by linear regression of ME intake on body retained energy, were 427 kJ/kg of BW(0.75)·d(-1) and 0.552, respectively. The corresponding partial efficiencies of utilization of ME for protein and fat deposition were 0.378 and 0.672, respectively, considerably less than the accepted values for conventional pig breeds. Practical diets of the young IB piglet should contain at least 201 g of ideal CP/kg of DM.  相似文献   

3.
试验旨在研究日粮不同代谢能水平对"京红1号"蛋种鸡育成期生长性能及后续生产性能的影响。试验选用9周龄"京红1号"蛋种鸡1 260只,随机分为4个处理,每处理5个重复,每重复63只鸡,4个处理组日粮代谢能水平分别为11.30、11.50、11.70、11.90 MJ/kg,粗蛋白水平均为15.5%,试验期为4周。饲养试验结束后育成鸡转入产蛋舍,4个处理组饲喂同一种日粮(代谢能水平为11.51 MJ/kg、粗蛋白水平为16.4%),从见蛋开始跟踪记录鸡只的生产性能(10 d)。结果表明:随着日粮代谢能水平的增加,蛋鸡平均体重、日增重和胫长均显著增加(P0.05);耗料增重比和血浆尿素氮水平显著降低(P0.05);11.90 MJ/kg处理组平均体重、日增重和胫长最高,耗料增重比和血浆尿素氮水平最低;11.70 MJ/kg处理组的生长性能次之,后续的生产性能表现最好,其见蛋日龄最早,初始产蛋率最高。综合育成期生长性能和后续生产性能结果,"京红1号"蛋种鸡育成期(9~13周龄)代谢能水平在11.70 MJ/kg较为适宜。  相似文献   

4.
Two groups of Warmblood foals from the Bavarian federal stud participated in the study beginning from the age of approximately 6 months. The foals were offered a late 1st cut of haylage, oats and foal starter feed. For 2 months after weaning, group ‘R’ (15 foals) received an amount of oats to provide a total digestible energy supply meeting the recommendations of the German Society of Nutrition Physiology (GfE), whereas the other group ‘A’ (16 foals) was offered a higher amount of oats (surplus of approximately 1.3 kg/animal/day). Concentrates were fed individually twice daily; total daily haylage intake of all foals together was recorded. In both groups, individual concentrate intake, body weight (BW), body condition score (BCS) and several growth parameters were documented. Both groups showed an absolutely parallel development of the measured growth parameters and of BW and BCS. BW and BCS increased above the recommendations of GfE and Hois. The amount of concentrates offered was not ingested completely in both groups. The average metabolisable energy (ME) intake from concentrates amounted to 30.3 and 32.1 MJ ME/animal/day (group ‘R’) and 38.7 and 38.2 MJ ME/animal/day (group ‘A’) for the 7th and 8th month respectively. The mean haylage intake of all foals together equalled 26.2 MJ ME/animal/day. The parallel development of all documented growth parameters in both groups leads to the assumption that higher concentrate intake must have caused lower intake of haylage and vice versa, thus resulting in an overall comparable energy intake for each foal, independently of energy source. The calculated average daily energy intake for all foals together amounted to 60.5 and 61.4 MJ ME/animal for the 7th and 8th month. The mean crude protein intake in both groups together amounted to 640 and 647 g/animal/day for the 7th and 8th month.  相似文献   

5.
Eighteen Chinese Holstein heifers average age 230 ± 14 days were allocated to 1 of 3 dietary crude protein (CP) to metabolizable energy (ME) ratios to examine the effects on growth performance, blood metabolites and rumen fermentation parameters with 90‐days experiment. Three different dietary CP:ME ratios were targeted based on the formulation of dietary CP contents of 10.85%, 12.78% and 14.63% on dry matter (DM) basis with similar ME contents (10.42 MJ/kg DM), which were categorized as low, medium and high dietary CP:ME ratios. The actual CP:ME ratios obtained in this study significantly increased from low to high CP:ME ratio groups with a value of 10.59, 11.83 and 13.38 g/MJ respectively. Elevated CP:ME ratios significantly increased CP intake (kg/day) and feed efficiency (FE) which was defined as dry matter intake as a proportion of average daily gain (ADG), whereas little difference was observed in body weight (kg), ADG (kg/day), DM intake (kg/day) and ME intake (MJ/day) among the three different CP:ME ratio groups. Increasing dietary CP to ME ratios significantly increased CP digestibility, whereas digestibility of DM and gross energy remained constant in the current experiment. Blood urea nitrogen and insulin‐like growth factor‐1 linearly increased with increasing dietary CP:ME ratios. There was significantly dietary treatment effect on rumen fermentation parameters including acetate, propionate, butyrate and total volatile fatty acids. Therefore, this study indicated that increasing dietary CP levels with similar energy content contributed to increased protein intake and its digestibility, as well as FE. Holstein heifers between 200 and 341 kg subjected to 13.38 dietary CP:ME ratio showed improved feed efficiency, nutrient digestibility, some blood metabolites and rumen fermentation characteristics for 0.90 kg/day rate of gain.  相似文献   

6.
Twelve multiparous sows with an average initial weight of 182 kg were used in a randomized complete block design to determine the effects of feeding Carnichrome (50 mg of carnitine and 200 microg of chromium picolinate per kilogram of feed, as fed) on energy and nitrogen utilization in early, mid-, and late gestation. All sows were fed a diet with or without Carnichrome for the preceding 28-d lactation, the weaning-to-estrus period, and for the duration of gestation. Daily feeding allowances over pregnancy were based on calculated energy and nutrient requirements to achieve a target sow maternal weight gain of 20 kg and remained constant throughout gestation. Heat production (HP) and its partitioning (activity, thermic effect of feeding short term [TEFst], basal) were determined in early (wk 5 or 6), mid- (wk 9 or 10), and late (wk 14 or 15) pregnancy using indirect calorimetry. Net maternal weight gain and total number of fetuses averaged 21.6 kg and 16.4, respectively. Organic matter and energy digestibility for the Carnichrome diet was greater (P < 0.05), which resulted in greater DE and ME contents (0.6%, P < 0.05) compared with the control diet. The digestibility coefficient of energy in the current experiment for a typical corn and soybean meal diet (92%) was greater than that predicted from DE values of corn and soybean meal in feeding tables (88%). Carnichrome had no effect on total HP, energy retained as protein or lipid, and maternal energy retention in early, mid-, or late gestation. Heat production in late gestation increased linearly (4.0 kJ/[kg BW0.75 x d]) for each additional day from d 90 to 110, despite the reduction of ME intake per unit of BW0.75. Metabolizable energy requirement for maintenance was 405 kJ/(kg BW0.75 x d). On average, activity HP was 116 kJ/(kg BW0.75 x d), which was equivalent to 20% of ME intake; however, this value ranged from 11 to 37% between sows, which corresponds to duration of standing ranging from 210 to 490 min/d. Energy cost of standing activity averaged 0.30 kJ/(kg BW0.75 x min). In conclusion, Carnichrome had no effect on the components of heat production and maternal weight gain during gestation, although it improved energy and organic matter digestibility of the diet.  相似文献   

7.
The effects of a high-energy and high-protein diet on growth, parasite resistance and carcase characteristics were studied using local goats with an average initial body weight (BW) of 12.0 (SD = 0.7) kg. Thirty-two animals were allocated to a completely randomized factorial design, with four animals of each sex per treatment. The factors were: two diets (diet H with high content of crude protein (CP) and metabolizable energy (ME), and diet L with low content of CP and ME) and deworming (DW) or non-deworming (NDW). The highest dry matter (DM) intake was obtained for goats fed diet H combined with DW, but there was no significant difference between DW or NDW for goats fed diet H. The goats fed diet L and DW had significantly better total DM intake than NDW goats. The average daily gain of animals fed diet H was 86 and 92 g/day compared to 27 and 40 g/day for diet L, for NDW and DW animals, respectively. Feeding diet H resulted in higher slaughter weight and consequently also higher empty BW, carcase weight and dressing percentage and lower feed conversion ratio. Dewormed animals had significantly higher empty BW than NDW animals. There were significant effects of diet and parasite control on Faecal egg count (FEC: number of parasite eggs per gram of faeces (e.p.g.)), with NDW animals fed diet L having higher FEC than animals fed diet H.  相似文献   

8.
Eighteen Iberian barrows of 100 kg initial BW were used in a comparative slaughter experiment to investigate the effects of feeding level (FL; 0.70 and 0.95 × ad libitum) on growth, protein- and fat-deposition rates and body composition. They were fed on a diet supplying the optimum level of digestible ideal protein:ME ratio (4.82 g/MJ) and slaughtered at 150 kg BW. The apparent digestibility of DM, OM, total N and GE, and the ME:GE and ME:DE ratios were not affected by FL. The average daily gain increased with the increase in FL (691 and 918 g/day respectively). Neither the gain:feed (g/g DM) nor the gain:ME intake (g/MJ) ratios were significantly affected however. An energy cost of 59.9 kJ ME/g gain was calculated. The rate of whole-body protein deposition was not significantly altered by FL. On average it reached 80 g/day. The pigs fed at the lowest level exhibited lower fat deposition (P < 0.01) and total energy retention (P < 0.01) than those in the group subjected to only a slight feed restriction. The overall efficiency of utilization of ME for energy gain (ER:ME intake) remained at 0.363 on average, irrespective of the FL imposed. Relative proportions of energy retained as protein and fat were not statistically altered by changes in FL. Mean values for ERP:ER and ERF:ER were 0.100 and 0.903 respectively. No differences between treatments were observed in fat, ash, water or energy content of the whole-body (g/kg) at 150 kg empty BW, the mean values (n = 12) being 512 ± 8.5, 27.6 ± 0.63 and 353 ± 6.7 g/kg for fat, ash and water respectively and 22.90 ± 0.31 MJ/kg for energy. Nevertheless, the proportion of protein tended to decline with the increase in FL (111 vs 104; P = 0.069). At 150 kg the Iberian pigs contained more fat and energy and less ash and water than at 100 kg. Whilst the percentage of lean tissue decreased significantly (P < 0.05) and protein content in the carcass showed a strong tendency to decline in the pigs fed close to ad libitum (104 vs 96; P = 0.056), the proportions of fat, ash, water and energy remained constant at 564 ± 9.0, 22.2 ± 0.91, 312 ± 6.6 g/kg, and 24.82 ± 0.32 MJ/kg, respectively. It was concluded that a degree of feed restriction may result in a discernible improvement in carcass quality.  相似文献   

9.
From 6 experiments dealing with the development of young female cattle, partly from calf to calving, 660 metabolism periods were evaluated as to energy intake, live weight gain (LWG) and energy expenditure. Growth intensity was deliberately regulated through energy intake. In the experiment with the highest growth rate the average LWG was greater than 850 g/animal and day and in the experiment with the lowest growth rate at about 550 g/animal and day. Energy expenditure increased from 15 MJ net energy fatcattle/kg LWG at a live weight of 50 kg to 50-80 MJ NEFcattle/kg LWG in clear dependence on growth intensity. Comparative examinations of energy intake and energy requirement, estimated with equations forming the basis of recommendations for the energy supply of young female cattle in the framework of the GDR system of feed evaluation, lead to the conclusion that a new concept of identifying the energy requirement of young female cattle has to be developed.  相似文献   

10.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

11.
Meat production by goats has become an important livestock enterprise in several parts of the world. Nonetheless, energy and protein requirements of meat goats have not been defined thoroughly. The objective of this study was to determine the energy and protein requirements for maintenance and growth of 34 (3/4) Boer x (1/4) Saanen crossbred, intact male kids (20.5 +/- 0.24 kg of initial BW). The baseline group was 7 randomly selected kids, averaging 21.2 +/- 0.36 kg of BW. An intermediate group consisted of 6 randomly selected kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 28.2 +/- 0.39 kg. The remaining kids (n = 21) were allocated randomly on d 0 to 3 levels of DMI (treatments were ad libitum or restricted to 70 or 40% of the ad libitum intake) within 7 slaughter groups. A slaughter group contained 1 kid from each treatment, and kids were slaughtered when the ad libitum treatment kid reached 35 kg of BW. Individual body components (head plus feet, hide, internal organs plus blood, and carcass) were weighed, ground, mixed, and subsampled for chemical analyses. Initial body composition was determined using equations developed from the composition of the baseline kids. The calculated daily maintenance requirement for NE was 77.3 +/- 1.05 kcal/kg(0.75) of empty BW (EBW) or 67.4 +/- 1.04 kcal/kg(0.75) of shrunk BW. The daily ME requirement for maintenance (118.1 kcal/kg(0.75) of EBW or 103.0 kcal/kg(0.75) of shrunk BW) was calculated by iteration, assuming that the heat produced was equal to the ME intake at maintenance. The partial efficiency of use of ME for NE below maintenance was 0.65. A value of 2.44 +/- 0.4 g of net protein/kg(0.75) of EBW for daily maintenance was determined. Net energy requirements for growth ranged from 2.55 to 3.0 Mcal/kg of EBW gain at 20 and 35 kg of BW, and net protein requirements for growth ranged from 178.8 to 185.2 g/kg of EBW gain. These results suggest that NE and net protein requirements for growing meat goats exceed the requirements previously published for dairy goats. Moreover, results from this study suggest that the N requirement for maintenance for growing goats is greater than the established recommendations.  相似文献   

12.
To evaluate the effect of zeranol implants in steers on compensatory ++growth, 80 steer calves (9 mo of age; 200 kg) were fed at two feeding levels (RO = 9.2 MJ ME/kg DM; R1 = 6.9 MJ ME/kg DM) for 119 d (Period 1). During Period 2, steers were full-fed to 400 kg BW with (Z1) or without (ZO) zeranol implants. Ten steers were slaughtered at the end of Period 1 to estimate carcass composition. Differences of 100 kg in BW were achieved by restriction in Period 1. Subsequent to restriction, cumulative ADG remained greater (P less than .05) up to the 24th wk of recuperation and implants increased (P less than .001) BW gain by 31% and 24% for RO and R1, respectively. The average daily energy intake (ME/W(.75) in Period 2 was similar for all treatments. Feed conversion was improved by 21.5% (P less than .05) by implants. At the end of Period 2 the R1ZO had 8.6 kg less muscle (P less than .001), 2.9 kg less bone (P less than .001) and 5.9 kg more fat (P less than .05) than the ROZO. In comparison, the carcasses of the implanted animals did not show significant differences (P greater than .05) due to restriction. Carcass daily gains were increased by previous restriction (P less than .01) and implants (P less than .05). Zeranol increased daily live weight gain and feed conversion in animals in continuous growth as well as in those observed in compensatory growth an tended to eliminate a tendency for higher content of fat in carcasses of nonimplanted animals making compensatory growth.  相似文献   

13.
To quantify the utilization of ME by growing pigs, a factorial analysis method is often used in which the ME intake is regressed on protein (PD) and lipid deposition (LD) rates. The approach has been criticized because there often is a strong correlation between PD and LD, which makes accurate estimation of model parameters difficult. The current study describes a nonlinear multivariate analysis procedure in which PD and LD are the result of variation in ME intake. The approach requires a hypothesis concerning the partitioning of ME intake above maintenance between PD and LD. The method was evaluated using data for growing pigs of different genotypes and sex and weighing between 20 and 107 kg that were offered a diet close to ad libitum. Energy, nitrogen, and fat balances were determined at regular intervals over the growing period. The maintenance energy requirement was expressed as a function of BW (with group-specific parameters) or as a function of muscle and visceral mass. The maintenance energy requirements ranged from 913 to 1,070 kJ ME/((kg BW).60.d) for obese castrates and boars of a synthetic line, respectively. Viscera contributed 1,558 kJ ME/ ((kg tissue).70.d) to the maintenance energy requirement, whereas muscle contributed only 555 kJ ME/ ((kg tissue).70.d). It was assumed that the proportion of ME intake (above maintenance) designated for PD declined linearly with increasing BW. At 20 kg of BW, 49% of ME intake above maintenance was designated for PD in lean genotypes, whereas this was only 34% in obese genotypes. In general, with increasing BW, less energy was designated for PD, but this relationship depended on genotype and sex. Extremely lean male genotypes maintained a constant partitioning of energy between PD and LD for all BW. The energetic efficiencies varied (depending on the model used to express the maintenance requirement) between .58 and .60 for PD and .77 and .82 for LD. Extrapolation of results suggested that animals fed at maintenance energy level would still deposit protein at the expense of body lipid. It is argued that this finding requires nonbiological efficiencies of lipid catabolism and protein synthesis and illustrates the limitation of the maintenance concept for growing animals. The multivariate analysis method proposed here circumvents many of the problems associated with the factorial regression analysis of ME intake on PD and LD. The method can be used to further refine nutritional models describing growth in pigs.  相似文献   

14.

The objective of this study was to evaluate the effects of nutritional strategies on productive and nutritional performance, metabolic profile, and ovarian activity in heifers under grazing in the tropics in Brazil. Forty Nellore heifers averaging 8.5?±?0.06 months and 248.6?±?3.3 kg body weight (BW) were distributed in a completely randomized 2?×?2 factorial design with four treatments and ten replicates. The evaluated strategies consisted of different amounts of energetic-protein supplement: (1) 4 g/kg of BW of supplement in the pre-weaning and post-weaning; (2) 4 g/kg of BW of supplement pre-weaning and 6 g/kg in the post-weaning; (3) 6 g/kg of BW of supplement in the pre-weaning and 4 g/kg of BW in the post-weaning and; (4) 6 g/kg of BW of supplement in the pre-weaning and post-weaning. Crude protein (CP) and organic matter (OM) intake were increased (P?<?0.05) by increasing the amounts of supplement in the post-weaning. Additionally, increasing supplement amounts in the post-weaning increased the digestibility of OM and CP (P?<?0.05). Means insulin and glucose concentrations were greater (P?<?0.05) for heifers that received higher amounts of supplement in the post-weaning. Average daily gain and fat thickness in the rump were increased (P?<?0.05) by increasing supplement amounts in the post-weaning. Amounts of supplement did not influence the body growth of heifers. However, follicular number, diameter, and progesterone concentration were greater (P?<?0.05) for heifers that received higher amounts of supplement in the post-weaning. In summary, increasing supplement amounts in the post-weaning improve the performance, energy and metabolic status, and ovarian activity in beef heifers under grazing in the tropics. Due to higher intake of supplement, the heifers receiving 6 g/kg of BW post-weaning had greater responses, independently of the supplement amount received pre-weaning.

  相似文献   

15.
试验旨在研究日粮不同能量蛋白质水平和赖氨酸水平对5~10周龄扬州鹅生长性能的影响。试验采用3×4二因子设计,3个能量蛋白质水平分别为:10.83 MJ/kg、15%,11.29 MJ/kg、16%,11.75 MJ/kg、17%,其蛋白质能量比均约为14 g/MJ,4个赖氨酸水平分别为:0.65%、0.80%、0.95%和1.10%。结果表明:①日粮能量蛋白质水平对6、8、10周龄扬州鹅体重没有显著影响(P>0.05),日粮赖氨酸水平显著影响扬州鹅6、8、10周龄体重(P<0.05),但能量蛋白质水平和赖氨酸水平对其没有显著交互作用(P>0.05);②日粮能量蛋白质水平显著影响5~10周龄扬州鹅的平均日采食量和料重比(P<0.05),赖氨酸水平显著影响平均日增重和平均日采食量(P<0.05),能量蛋白质水平和赖氨酸水平对其没有显著交互作用(P>0.05);③中能蛋水平和最低赖氨酸水平下,5~10周龄扬州鹅可获得较佳生长性能。试验认为5~10周龄扬州鹅能量蛋白质和赖氨酸适宜需要量分别为11.29 MJ/kg、16%和0.65%。  相似文献   

16.
A total of 335 lactating sows (Landrace × Large White) were used in two experiments to determine the optimum ratio of standardized ileal digestible lysine (SID-Lys) to metabolizable energy (ME) for mixed parity sows during lactation. In Exp. 1, 185 sows (weighing an average of 256.2 ± 6.5 kg and having an average parity of 3.4 ± 0.3) were allocated to one of six experimental diets in a completely randomized block design within parity groups (1, 2, and 3+). The experimental diets were formulated to contain 3.06, 3.16, 3.20, 3.25, 3.30 or 3.40 Mcal/kg of ME and each diet was fed to the sows throughout a 28 day lactation. All diets provided a similar SID-lysine level (0.86%). As a result, the diets provided a SID-Lys:ME ratio of 2.81, 2.72, 2.69, 2.65, 2.61 or 2.53 g/Mcal ME. Sow feed intake was significantly (P < 0.01) affected by the energy content of the diet as well as by sow parity. Using regression analysis, feed intake was shown to be maximized at 3.25, 3.21, 3.21 and 3.21 Mcal/kg of ME for parity 1, 2, 3+ sows and the entire cohort of sows respectively (quadratic; P < 0.01). In addition, the result of feed intake can be expressed as 2.65, 2.69, 2.69 and 2.68 g/Mcal based on analysis of SID-Lys:ME ratio. Litter weight gain was affected by dietary treatment for parity 3+ sows and the entire cohort (P < 0.01). Based on regression analysis, litter weight gain was maximized at 3.25 and 3.24 Mcal/kg of ME for parity 3+ (quadratic; P < 0.01) and the entire cohort (quadratic; P < 0.01). Similarly, the result of litter weight gain could be expressed as 2.65 and 2.66 g/Mcal of SID- Lys:ME ratio. Therefore, 3.25 Mcal/kg of ME was selected for Exp. 2 in which 150 sows (weighing 254.6 ± 7.3 kg and having an average parity of 3.4 ± 0.4) were allocated to one of five treatments in a completely randomized block design within parity (1, 2, and 3+). The experimental diets were formulated to contain 2.1, 2.4, 2.7, 3.0 or 3.3 g/Mcal of SID-Lys:ME ratio with all diets providing 3.25 Mcal/kg of ME. The diets were fed to the sows throughout a 28 day lactation. Sow body weight loss was affected by dietary treatment (parity 3+ sows, P = 0.02; entire cohort, P < 0.01) and by sow parity (P < 0.01). Litter weight at weaning and litter weight gain were affected by dietary treatment for parity 1, 2, 3+ sows and the entire cohort (P < 0.01) as well as by sow parity (P < 0.01). Plasma urea nitrogen (P < 0.01), creatinine (P < 0.01) and non-esterifide fatty acids (P = 0.04) were decreased as the SID-Lys:ME ratio of the diet increased. Insulin-like growth factor-1 (P = 0.02), estradiol (P < 0.01) and luteinizing hormone (P = 0.02) were increased as the SID-Lys:ME ratio in diet increased. Based on a broken-line model, the estimated SID-Lys: ME ratio to maximize litter weight gain was estimated to be 3.05 g/Mcal.  相似文献   

17.
ABSTRACT: A total of 335 lactating sows (Landrace × Large White) were used in two experiments to determine the optimum ratio of standardized ileal digestible lysine (SID-Lys) to metabolizable energy (ME) for mixed parity sows during lactation. In Exp. 1, 185 sows (weighing an average of 256.2 ± 6.5 kg and having an average parity of 3.4 ± 0.3) were allocated to one of six experimental diets in a completely randomized block design within parity groups (1, 2, and 3+). The experimental diets were formulated to contain 3.06, 3.16, 3.20, 3.25, 3.30 or 3.40 Mcal/kg of ME and each diet was fed to the sows throughout a 28 day lactation. All diets provided a similar SID-lysine level (0.86%). As a result, the diets provided a SID-Lys:ME ratio of 2.81, 2.72, 2.69, 2.65, 2.61 or 2.53 g/Mcal ME. Sow feed intake was significantly (P < 0.01) affected by the energy content of the diet as well as by sow parity. Using regression analysis, feed intake was shown to be maximized at 3.25, 3.21, 3.21 and 3.21 Mcal/kg of ME for parity 1, 2, 3+ sows and the entire cohort of sows respectively (quadratic; P < 0.01). In addition, the result of feed intake can be expressed as 2.65, 2.69, 2.69 and 2.68 g/Mcal based on analysis of SID-Lys:ME ratio. Litter weight gain was affected by dietary treatment for parity 3+ sows and the entire cohort (P < 0.01). Based on regression analysis, litter weight gain was maximized at 3.25 and 3.24 Mcal/kg of ME for parity 3+ (quadratic; P < 0.01) and the entire cohort (quadratic; P < 0.01). Similarly, the result of litter weight gain could be expressed as 2.65 and 2.66 g/Mcal of SID-Lys:ME ratio. Therefore, 3.25 Mcal/kg of ME was selected for Exp. 2 in which 150 sows (weighing 254.6 ± 7.3 kg and having an average parity of 3.4 ± 0.4) were allocated to one of five treatments in a completely randomized block design within parity (1, 2, and 3+). The experimental diets were formulated to contain 2.1, 2.4, 2.7, 3.0 or 3.3 g/Mcal of SID-Lys:ME ratio with all diets providing 3.25 Mcal/kg of ME. The diets were fed to the sows throughout a 28 day lactation. Sow body weight loss was affected by dietary treatment (parity 3+ sows, P = 0.02; entire cohort, P < 0.01) and by sow parity (P < 0.01). Litter weight at weaning and litter weight gain were affected by dietary treatment for parity 1, 2, 3+ sows and the entire cohort (P < 0.01) as well as by sow parity (P < 0.01). Plasma urea nitrogen (P < 0.01), creatinine (P < 0.01) and non-esterifide fatty acids (P = 0.04) were decreased as the SID-Lys:ME ratio of the diet increased. Insulin-like growth factor-1 (P = 0.02), estradiol (P < 0.01) and luteinizing hormone (P = 0.02) were increased as the SID-Lys:ME ratio in diet increased. Based on a broken-line model, the estimated SID-Lys:ME ratio to maximize litter weight gain was estimated to be 3.05 g/Mcal.  相似文献   

18.
试验采用2×5双因子完全随机试验设计,研究苏氨酸水平对1~14日龄北京鸭生产性能的影响,进而探讨1~14日龄北京鸭苏氨酸需要量。选取480只体重相近的1日龄健康的W系雄性北京鸭,随机分为10个处理,每个处理6个重复,每个重复8只北京鸭。试验日粮共设2个蛋白水平,分别为14%和20%;5个苏氨酸水平,分别为0.50%、0.58%、0.66%、0.74%、0.82%,各试验日粮的代谢能和其它必需氨基酸添加量一致。试验期为14d。研究结果表明:日粮蛋白质水平与苏氨酸水平产生明显的互作效应,且蛋白质水平与苏氨酸水平对1~14日龄北京鸭采食量、日增重、料重比影响均显著(P0.01)。在高蛋白质水平下,以采食量和日增重为评价指标,分别建立其与苏氨酸需要量的回归方程,得出均呈二次曲线变化,且1~14日龄北京鸭最佳苏氨酸需要量分别为0.688%、0.737%。在低蛋白质水平下,日增重和日采食量均随着苏氨酸水平的升高而升高,未出现下降或平台期,因此,低蛋白质水平下的苏氨酸需要量高于高蛋白质水平下的苏氨酸需要量,苏氨酸需要量与蛋白质有关。  相似文献   

19.
This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between −0.46 and 1.00; −0.51 and −1.00; −0.47 and −0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from −0.99 to unity and −1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.  相似文献   

20.
Energy metabolism in lactating beef heifers   总被引:1,自引:0,他引:1  
To obtain measurements of energy balance in lactating beef cows, respiration calorimetry and digestion trials were conducted using seven lactating (613 kg BW) and three nonlactating (598 kg BW) Hereford x Angus heifers fed a pelleted 75% alfalfa:25% concentrate diet. Five measurements of energy balance were obtained at 6- to 7-wk intervals beginning 6 to 10 wk postpartum in lactating heifers and at 6-wk intervals in nonlactating heifers. Milk yield was measured using a combination of weigh-suckle-weigh and machine milking to adapt heifers to milking by machine without the use of oxytocin. Heifers were milked only by machine during measurements of energy balance. Weekly milk yield averages ranged from 8.2 kg/d at wk 5 postpartum to 3.2 kg/d at wk 32 postpartum. When scaled to BW(.75), the regression of NE1 on ME intake and the regression of ME intake on NE1 were remarkably similar to previously published regressions for measurements obtained from lactating Holstein-Friesian cows. The average daily maintenance energy requirement from these regressions was 503 kJ ME/kg BW(.75), a value similar to the average value reported previously for lactating Holstein-Friesian cows (488 kJ/kg (BW.75)). This is in contrast to numerous published comparisons of the maintenance requirements of cattle breed types in the nonlactating state and current NRC standards for estimating maintenance energy requirements of beef and dairy cattle. The results of the present study suggest that when expressed on the basis of BW(.75) the efficiency of utilization of incremental ME above maintenance for milk and tissue energy (i.e., NE1) is similar among lactating Hereford x Angus heifers and lactating Holstein-Friesian cows. The breeds differ in terms of their propensity for milk yield and the resulting partition of ME between milk synthesis and tissue energy retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号