首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为解决传统导航方案在温室内无法应对光照变化大、作物行间距窄、接收GPS信号差等问题,该研究提出了基于即时定位与地图构建技术的激光视觉融合式自主导航算法。该系统利用三维激光雷达VLP-16(Velodyne LiDAR,VLP-16)和惯性测量单元获取温室环境信息,采用基于紧耦合的雷达惯导定位建图(tightly-coupled lidar inertial odometry via smoothing and mapping,LIO-SAM)算法构建导航地图,基于轮式里程计和视觉里程计采用扩展卡尔曼滤波器算法实现局部定位,融合激光点云配准算法和自适应蒙特卡洛定位算法实现全局定位。同时,在自主行走系统应用A*算法规划全局路径和动态窗口算法规划局部路径,从而实现自主导航。试验结果表明,LIO-SAM算法构建的温室导航地图最大相对误差、最大绝对误差和均方根误差分别为9.9%、0.081和0.063 m,在温室内改进后的定位算法横向偏差小于0.020 m,纵向偏差小于0.090 m;当自主行走系统以0.15、0.30和0.50 m/s的速度运行时,横向偏差、纵向偏差和航向偏角的平均值分别小于0...  相似文献   

2.
为解决基于全球导航卫星系统(global navigation satellite system,GNSS)的农业机器人和自动驾驶农机在机库、大棚等卫星信号弱或无环境下定位精度低甚至无法定位的问题,该研究提出了基于激光感知的农业机器人定位方法。采用二维激光雷达和激光接收器设计了基于激光感知的机器人定位系统,通过二维激光雷达发射扫描激光获取机器人上激光接收器的点云,同时激光接收器感应扫描激光,融合感应扫描激光时间差和激光接收器点云特征,得到移动激光接收器(即农业机器人)的定位。以全站仪测量为参照在大棚内开展验证试验,结果表明,在激光雷达扫描范围内,机器人行驶速度为0.8 m/s时,直线行驶时最大偏差绝对平均值为4.1 cm,最大均方根误差为1.5 cm;曲线行驶时最大偏差绝对平均值为6.2 cm,最大均方根误差为2.6 cm,满足农业机器人在农机库等环境中自动导航所需定位精度要求。  相似文献   

3.
葡萄园植保机器人路径规划算法   总被引:5,自引:5,他引:0  
为提高植保机器人葡萄园作业在垄行识别和路径规划中的准确度和可靠性,该文提出了一种基于支持向量机(support vector machine,SVM)的多支持向量配比权重进行葡萄园垄行识别与农业机器人作业路径规划的算法。该算法利用Kalman滤波器对由激光雷达扫描获取的粗大实况果园数据信息进行预处理,校正数据中的噪声离群点,然后结合SVM,获得垄行环境中的分割超平面和分类边际线,最后根据样本点与分类边际线存在的几何间隔关系判别各点所占相对权重,获取垄线安全预估测位置并进行农业机器人作业导航线的规划拟合。通过对多个实际样本的试验与测试,拟合导航线与实际垄行中心线平均角度偏差为0.72°,相对植保机器人的平均距离偏差为4.22 mm。试验结果表明,该算法能够有效的识别与定位植保机器人所需导航线的位置,拟合的导航线满足葡萄园植保机器人准确作业的要求。  相似文献   

4.
改进AOA模式的大田农机无人驾驶导航参数检测系统设计   总被引:1,自引:1,他引:0  
卫星导航、视觉导航和雷达导航的成本昂贵、系统构成复杂和适用作业场景有限,在生产特征呈现区域化、适度小规模和分布零散的国内南方水田难以实现便捷跨区域作业和无法适用多农业场景。针对上述问题,该研究以大田环境下无人驾驶农机的牛耕式往复作业路径模式为背景,提出了改进AOA(信号到达角度,Angle-of-Arrival)模式的农业机械无人驾驶导航参数检测系统。该系统采用UWB(超宽带通信,Ultra Wide Band)基站-标签作为检测传感器,设计了TBZ(田边双基站-车身纵向双标签)和TBH(田边双基站-车身横向双标签)2种传感器布置方式,实现农业机械无人驾驶过程中导航参数的快速精准检测。静态试验结果表明:对于2种传感器布置方式,在固定的基站间距和标签间距下,随着标签间距或基站间距的增大导航参数检测精度均有所提高,横向偏差检测误差≤8 cm,航向偏差趋近于0,但不大于1°,并通过正交组合试验方差分析明确了2种传感器布置方式的关键参数对横向偏差和航向偏差检测精度影响的显著性,确定了主次因素和较优参数组合。动态试验结果表明:随着车速增大,横向偏差和航向偏差的检测精度有所降低,横向偏差误差均不超过10 cm,航向偏差的检测误差均小于3°,变异系数均小于10%,说明动态环境下自主导航参数检测系统仍具有较高的检测精度,可满足农机大田自主导航作业需求。研究结果可为研制低成本、高精度和便捷的无人驾驶系统提供参考。  相似文献   

5.
最小二乘法与SVM组合的林果行间自主导航方法   总被引:1,自引:1,他引:0  
为了提高作业装备在果园与树林行间的自主导航性能,该研究提出一种基于最小二乘法与支持向量机(Support Vector Machine,SVM)融合的树行识别与导航方法。研究采用履带式小型喷雾机为作业平台,通过低成本的单线激光雷达获取果园或树林环境点云数据,融合姿态传感器进行数据校正,利用最小二乘法拟合识别树行,结合SVM算法,预测果园行间中心线,作为作业平台的参考导航线。在桃园、柑橘园、松树林3种不同的行间环境对导航算法进行了测试验证,并以松树林导航为例进行分析。试验结果表明:该导航算法最大横向偏差为107.7 mm,横向偏差绝对平均值不超过17.8 mm,结合作业平台的行驶轨迹,说明该导航算法能够保证作业平台沿树行行间中心线自主导航行驶,能够满足作业装备在果园与树林行间自主导航作业的需求。  相似文献   

6.
基于激光测距仪的温室机器人道路边缘检测与路径导航   总被引:1,自引:3,他引:1  
针对温室内移动机器人的应用需求,该文提出了一种应用于温室内移动机器人自主行走的温室道路边缘检测与导航算法。此方法利用激光测距仪获取当前视场内路面、作物及障碍物信息,根据温室路面平整度高于作物冠层外表面的特点,检测道路边缘并生成移动机器人下一采样控制周期的期望航向,然后根据机器人几何与物理模型推算左右驱动轮速度调整指令,使移动机器人保持沿道路行走而不进入作物区中。该算法的有效性在温室移动机器人Walle平台上得到了验证,机器人偏离道路中心线的平均值为-1.2707 cm,均方误差为2.6772。  相似文献   

7.
针对履带底盘田间作业时由于土壤松软、田面不平整导致履带滑移滑转、自动导航路径跟踪精度低的问题,该研究提出了考虑滑移滑转的履带底盘路径跟踪算法,基于履带底盘运动学模型推导出表征滑移滑转特性的转向半径修正系数,并设计了一种基于预瞄模型的模糊控制路径跟踪算法。该方法在纯模糊控制基础上通过预瞄模型确定预瞄点,进而得到横向偏差与航向偏差,同时在常规模糊控制器中引入转向半径修正系数,建立横向偏差、航向偏差、转向半径修正系数三输入模糊控制器。以双电机履带底盘为控制对象,采用高精度RTK-GNSS和MTi-30惯性传感器获取底盘实时位姿信息与角速度信息,进行组合导航。开展了三输入模糊控制器田间U型路径跟踪试验,结果表明,三输入模糊控制器的直线跟踪最大绝对偏差、平均绝对偏差和标准差分别为12.0、3.6和4.4 cm;三输入模糊控制的曲线跟踪最大绝对偏差、平均绝对偏差和标准差分别为21.3、8.6和8.4 cm;为进一步确定本研究算法在履带出现滑移滑转时对路径跟踪精度的提升效果,开展了常规模糊控制器与三输入模糊控制器曲线路径跟踪对比试验,结果表明:当作业速度为0.6 m/s时,常规模糊控制器的最大绝对偏差、平均绝对偏差和标准差分别为31.1、8.3和10.2 cm,三输入模糊控制器的最大绝对偏差、平均绝对偏差和标准差分别为22.4、7.4和9.1 cm,相较于常规模糊控制器,路径跟踪精度分别提高了27.95%、10.84%和10.78%,所设计的三输入模糊控制器可有效降低履带滑移滑转的影响,增强导航系统的控制性能,可为履带底盘在田间松软土壤环境下高精度导航作业提供参考。  相似文献   

8.
基于速度自适应的拖拉机自动导航控制方法   总被引:3,自引:3,他引:0  
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

9.
基于预瞄追踪模型的农机导航路径跟踪控制方法   总被引:17,自引:12,他引:5  
农机导航系统的上线性能和复杂路面抗干扰能力影响着农田作业的质量和效率,为提高农机导航系统的上线速度、上线稳定性和对复杂路面的适应性,提出了一种预瞄追踪模型的农机导航路径跟踪控制方法。该方法实质是对农机运动学模型方法的改进,针对农机运动学模型小角度线性化算法中近似条件的缺点,采用预瞄追踪辅助直线引导农机快速稳定跟踪规划路径。该文参考农机运动学模型极点最优配置算法证明过程,分3步证明了该控制方法的可行性,并通过仿真和试验验证了该方法的有效性。仿真结果显示在不同的初始位置偏差和航向偏差条件下该方法都可以迅速消除偏差以稳定跟踪规划路径,位置偏差校正曲线平滑且超调量微小,说明预瞄追踪模型方法对提高农机导航系统的上线性能和抗干扰能力是有效的。田间试验结果:在初始航向偏差为0,初始位置偏差分别为0.5、1、1.5 m条件下,上线时间分别为6.8、8.2、9.4 s,上线距离分别为6.73、8.11、9.33 m,超调量分别为5.2、7.0、8.5 cm;颠簸不平旱地路面直线路径跟踪的最大误差不超过4.23 cm,误差绝对值的平均值为1 cm,标准差为1.25 cm。数据表明采用该文提出的控制方法具有良好的上线和直线路径跟踪效果,满足农业机械的导航作业要求。  相似文献   

10.
为解决农机田间作业避障路径实时规划问题,该研究提出一种在动态识别区内利用三阶贝塞尔曲线实时规划农机避障路径算法。首先构建农机作业行走动态识别区,在动态识别区内利用激光雷达感知障碍物。然后利用障碍物信息计算避障路径控制点选取范围,生成满足农机最小转弯半径等多约束条件下的路径簇,同时以曲率最小为目标从路径簇中选取最优避障路径。最后进行避障路径实时规划试验。试验结果表明,本文算法规划的避障路径最大曲率和平均曲率分别为0.126和0.054 m-1;路径跟踪过程中产生的最大横向误差和平均横向误差分别为0.12和0.057 m;拖拉机到障碍物外轮廓的距离大于0.375 m。和现有算法比较,本文算法规划的避障路径最大曲率和平均曲率分别减少25.9%和42.6%,路径跟踪过程中产生的最大横向误差和平均横向误差分别减少36.8%和28.8%。研究结果可为拖拉机无人驾驶作业提供技术支撑。  相似文献   

11.
为低成本实现对温室不同区域环境的全面感知,该研究设计了移动式温室环境监测系统,其采用超宽带(Ultra Wide Band,UWB)网状拓扑结构进行分布式组网,节点设备以一主多从的形式对移动工作台实时定位。利用优化后的双向双边测距算法计算各基站与标签之间的距离,通过距离的归一化残差分布判断是否存在非视距(Non Line of Sight, NLOS)误差,利用改进后的增量卡尔曼滤波算法消除NLOS误差,通过Chan算法解算标签准确位置。移动工作台以Arduino控制器为核心,搭载温度、湿度、二氧化碳和光照度传感器,实现对温室环境的实时监测和对移动工作台的远程控制。测试结果表明,系统静态定位最大横向偏差为7.92 cm,最大纵向偏差为7.98 cm,横向和纵向偏差的平均值均<5 cm;移动工作台以0.4 m/s的平均速度行驶,动态定位最大横向偏差为8.7 cm,平均横向偏差为4.7 cm;采集参数上传平均丢包率为2.78%;温度、湿度、光照度和二氧化碳浓度监测相对误差分别低于0.63%、0.34%、0.70%和0.67%,满足温室环境信息移动监测要求。该研究对温室环境调控和温室内作业机具精准定位技术的发展具有一定的理论意义和参考价值。  相似文献   

12.
基于K-means算法的温室移动机器人导航路径识别   总被引:9,自引:9,他引:0  
针对温室移动机器人机器视觉导航路径识别实时性差、受光照干扰影响严重等问题,首先,将HSI颜色空间3个分量进行分离,选取与光照信息无关且可以有效抑制噪声影响的色调分量H进行后续图像处理,以削弱光照对机器人视觉导航的不良影响;针对温室环境图像特有的颜色特征信息,引入K-means算法对图像进行聚类分割,将垄间道路信息与绿色作物信息各自聚类,再通过形态学腐蚀方法去除聚类后图像中存在的冗余、干扰信息,以获得完整的道路信息,与常用阈值分割方法相比,可降低因分割信息不明确而导致后续Hough变换进行直线拟合时需占据大量内存且计算量较大的问题,进而提高移动机器人路径识别的快速性,并适应温室作业机器人自主导航的高实时性要求。试验结果表明,该文方法在复杂背景与变光照条件下的温室作业环境中可大幅降低光照对机器人导航的影响,对于光照不均具有良好的鲁棒性,道路信息提取率可达95%。同时,其平均单幅图像处理时耗降低53.26%,可显著提高路径识别速度。该研究可为解决温室移动机器人机器视觉导航路径识别的鲁棒性及实时性问题提供参考。  相似文献   

13.
丘陵山区田间道路自主行驶转运车及其视觉导航系统研制   总被引:12,自引:12,他引:0  
自然条件的限制使得丘陵山区农产品和物资的田间转运难以实现高安全性的机械化作业。为此,该文研制了一种在丘陵山区田间道路上自主行驶的转运车及其视觉导航系统。该系统采用RTK-GNSS(real-timekinematic-global navigationsatellitesystem,实时动态-全球卫星导航系统)进行路网信息采集、实时定位和路径规划,利用机器视觉进行田间道路识别并提取路径跟踪线;田间道路非路口区域由机器视觉系统进行导航,路口区域采用RTK-GNSS实时定位进行导航。全局路径规划中对A*算法估价函数进行改进,将路口节点处的道路曲率及道路起伏信息引入代价函数。图像处理中强化道路上的阴影处理和信息融合,实现道路与背景的准确分割;然后将道路区域分块求取形心点,拟合后生成道路的虚拟中线作为局部路径的导航线。路径规划仿真表明,改进的A*算法能融合丘陵山地道路起伏变化的特征,规划的路径更合理。转运车自主行驶测试表明,在直线路径、多曲率复杂路径以及地形起伏路径3种工况下,自主行驶轨迹与实际道路中线的平均偏差分别为0.031、0.069和0.092 m,最大偏差分别为0.133、0.195和0.212 m;转运车沿道路中线自主行驶的平均相对误差分别为5.16%、11.5%和15.3%,满足田间道路转运车自主行驶的安全要求。  相似文献   

14.
果园环境下移动采摘机器人导航路径优化   总被引:2,自引:2,他引:0  
针对移动采摘机器人在果园作业时,果树较大冠层与行人等障碍物易影响机器人行驶的突出问题,该研究提出了一种基于改进人工势场法的机器人行间导航路径优化方法。首先,通过移动采摘机器人搭载的固态激光雷达实现果园行间三维点云信息获取,运用地面平面算法去除果园地面点云,提取了果园垄行与果树冠层点云。其次,采用最小二乘法(Least Squares Method, LSM)、霍夫(Hough)变换和随机采样一致性(Random Sample Consensus, RANSAC)3种方法对果园垄行点云数据进行了垄行线和初始路径的提取。最后,通过舍弃引力势场,建立了果树冠层轮廓点云势场,优化初始路径以躲避较大的果树冠层与行人障碍物。从实时性与抗噪能力两个方面,分别对利用LSM、Hough变换和RANSAC方法所提取的初始路径结果进行了分析,结果表明3种方法均可成功提取垄行线与初始路径,其中RANSAC实时性最优,平均运行时间约为0.147×10-3 s,标准差为0.014×10-3 s,且具有较好的抗噪能力。在RANSAC提取初始路径的基础上使用改进人工势场法对初始路径进行优化,避免了传统人工势场法易陷入震荡的问题。经改进人工势场法优化后的路径将障碍物点云距导航路径的最短距离由0.156 m提高至0.863 m,且平均耗时0.059 s,标准差为0.007 s,表明该优化方法具备实时优化路径以避开障碍物的能力。该研究提出的基于改进人工势场法的机器人行间导航路径优化方法基本满足安全性与实时性要求,为移动采摘机器人在果园环境下自主导航提供了技术参考。  相似文献   

15.
玉米苗带准确检测与精准跟踪是玉米除草机器人实现自主作业的重要基础。针对玉米除草机器人苗带检测,该研究提出了基于感兴趣区域更新的玉米苗带实时识别及导航线提取方法,首先利用单目相机采集机器人前向玉米苗带,将苗带图像进行归一化和超绿处理,采用改进自适应响应阈值SUSAN(small univalue segment assimilating nucleus)角点法以及冗余离群特征点剔除法获得玉米苗特征点,以改进的顺序聚类算法对视频帧进行玉米苗带聚类处理,再利用最小二乘法拟合出各玉米苗带,最后基于机器人航向偏差和其相对玉米苗带的横向偏差实时调整感兴趣区域和更新导航线;同时,针对除草机器人苗带行线跟踪,提出以运动学为模型的PID(proportionintegrationdifferentiation)转向角决策方法,建立了导航跟踪控制模型;并在Visual Studio平台下,利用OpenCV库开发了导航控制系统。试验结果表明,玉米除草机器人导航线提取准确率为96.8%,每帧图像平均处理时间为87.39ms,具有较好的实时性和抗干扰性;在模拟环境下,玉米苗带直线和曲线跟踪平均误差≤1.42 c...  相似文献   

16.
联合收获机单神经元PID导航控制器设计与试验   总被引:5,自引:4,他引:1  
针对联合收获机在田间直线跟踪作业中在维持高割幅率条件下易产生漏割的问题,设计了一种基于单神经元PID(Proportion Integration Differentiation)的联合收获机导航控制器。以轮式联合收获机为平台,通过对原有液压转向机构进行电控液压改装,搭载相关传感器构建了导航硬件系统。开展了常规PID控制和单神经元PID控制的仿真以及实地对比试验,仿真结果表明单神经元PID控制具有超调小和进入稳态快等特点;路面试验表明,当收获机速度为0.7 m/s时,单神经元PID控制最大跟踪偏差为6.10 cm,平均绝对偏差为1.21 cm;田间试验表明,收获机速度为0.7 m/s时,单神经元PID控制田间收获最大跟踪偏差为8.14 cm,平均绝对偏差为3.20 cm。试验表明所设计的联合收获机导航控制器能够满足自动导航收获作业要求,为收获作业自动导航提供了技术参考。  相似文献   

17.
基于Labview的无人机飞行状态实时监测评估系统设计   总被引:1,自引:1,他引:0  
为了实现无人机飞行状态信息的自动化采集和性能评估,该文设计了基于 Labview 的无人机飞行状态实时监测评估系统,该系统利用传感器采集无人机的飞行状态信息:包括三轴姿态角、三轴角速度、三轴速度、三轴加速度、GPS经纬度及海拔高度、环境温度和气压等。无线传输模块将经过简单处理之后的信息传输至PC机,基于Labview建立的监测评估软件对这些数据进一步处理之后,实时图形化显示三轴姿态、飞行高度、二维轨迹、三维轨迹和航迹偏差;根据三轴姿态信息实时模拟无人机姿态,自动计算飞行里程,并自动保存所有数据。飞控手目视操控无人机的试验结果表明:平均航迹偏差高达5.2 m,定高飞行的平均高度偏差为0.9 m,横滚角和俯仰角波动幅度均在8°以内,整个测试过程中传感器温度下降了2℃。数据分析结果与系统输出结果一致,该系统运行稳定,输出结果可靠,能够用于实时监测、图形化显示、评估和记录无人机飞行状态信息,为无人机飞行性能的评估及飞控手的训练提供参考。  相似文献   

18.
农业物料输送技术是制约农场智能化应用的重要瓶颈。物料输送主要借助输送设备将物料由加料机输送至受料机中,提高受料机的续航时间,使其路程加大,以确保其高效率、持续性地正常工作。该研究按照物料特性和输送原理,将现有物料输送自动化技术与装备系统地划分为以下4类:固态种苗肥自动输送技术、液态水药燃油自动加注技术、收获物自动收集技术、收获物自动卸载技术,逐一对其研究现状和发展动态进行了重点阐述和深入剖析。总结了自主定位导航、物料流量实时监测及机群实时通信3项智能化物料输送关键技术的研究进展,并结合农场智能化技术要求和应用场景,从形成全生产环节物料输送技术体系、基于时空数据的农田物料需求决策技术、基于农田数字模型和变量作业处方的农机物料丰缺预测技术、物料车多机配送路径动态优化技术角度展望了农场智能化作业多机协同物料配送技术的发展趋势,以期进一步提高农场智能化作业效率、联动性能和应用效果。  相似文献   

19.
为实现节能、节水,提高灌溉和土地利用效率,在对太阳能技术、节水灌溉技术、全球定位系统(global positioning system,GPS)导航技术等进行研究的基础上,研制一种基于 GPS 导航的太阳能驱动平移式喷灌机,并在此基础上设计开发导航控制系统。整个机组以太阳能光伏组件和蓄电池为电源,直流电动机作为动力,采用四轮差速转向。以喷灌机横向偏差和航向偏差作为控制输入变量,直流电机脉冲调制(pulse width modulation,PWM)转速调节电压增量作为输出变量,构建基于线性比例控制的导航控制器,实现了对喷灌机两侧车轮转速的调节控制。导航控制系统以32位先进精简指令集机器(advanced RISC machine,ARM)微控制器 STM32F103芯片为核心,集成导航控制器、转速操纵控制器、GPS、电子罗盘和转速传感器,采用控制器局域网(controller area network,CAN)总线结构进行通讯,实现喷灌机的自主导航控制。路径跟踪试验结果表明:喷灌机自动导航控制系统能基本满足喷灌作业要求,并能较好地实现路线跟踪,在以0.4、0.8 m/min 速度行驶30 m 过程中直线跟踪最大横向偏差不超过20 cm,系统可靠性较高。研究可为实现农业机械与太阳能技术相结合提供参考,对类似自走式喷灌机的发展提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号