首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Immunizing animals in the wild against Brucella (B.) abortus is essential to control bovine brucellosis because cattle can get the disease through close contact with infected wildlife. The aim of this experiment was to evaluate the effectiveness of the B. abortus strain RB51 vaccine in protecting infection as well as vertical transmission in Sprague-Dawley (SD) rats against B. abortus biotype 1. Virgin female SD rats (n = 48) two months of age were divided into two groups: one group (n = 24) received RB51 vaccine intraperitoneally with 3 × 1010 colony forming units (CFU) and the other group (n = 24) was used as non-vaccinated control. Non-vaccinated and RB51-vaccinated rats were challenged with 1.5 × 109 CFU of virulent B. abortus biotype 1 six weeks after vaccination. Three weeks after challenge, all rats were bred. Verification of RB51-vaccine induced protection in SD rats was determined by bacteriological, serological and molecular screening of maternal and fetal tissues at necropsy. The RB51 vaccine elicited 81.25% protection in SD rats against infection with B. abortus biotype 1. Offspring from rats vaccinated with RB51 had a decreased (p < 0.05) prevalence of vertical transmission of B. abortus biotype 1 compared to the offspring from non-vaccinated rats (20.23% and 87.50%, respectively). This is the first report of RB51 vaccination efficacy against the vertical transmission of B. abortus in the SD rat model.  相似文献   

2.
Brucella spp. are Gram-negative, coccobacillary, facultative intracellular pathogens. B. abortus strain 2308 is a pathogenic strain affecting cattle and humans. Rough B. abortus strain RB51, which lacks the O-side chain of lipopolysaccharide (LPS), is the live attenuated USDA approved vaccine for cattle in the United States. Strain RB51SOD, which overexpresses Cu–Zn superoxide dismutase (SOD), has been shown to confer better protection than strain RB51 in a murine model. Protection against brucellosis is mediated by a strong CD4+ Th1 and CD8+ Tc1 adaptive immune response. In order to stimulate a robust adaptive response, a solid innate immune response, including that mediated by dendritic cells, is essential. As dendritic cells (DCs) are highly susceptible to Brucella infection, it is possible that pathogenic strains could limit the innate and thereby adaptive immune response. By contrast, vaccine strains could limit or bolster the innate and subsequent adaptive immune response. Identifying how Brucella vaccines stimulate innate and adaptive immunity is critical for enhancing vaccine efficacy. The ability of rough vaccine strains RB51 and RB51SOD to stimulate DC function has not been characterized. We report that live rough vaccine strain RB51 induced significantly better (p  0.05) DC maturation and function compared to either strain RB51SOD or smooth virulent strain 2308, based on costimulatory marker expression and cytokine production.  相似文献   

3.
Thirty-two water buffalo (Bubalus bubalis) calves aged 6?C10?months were used to evaluate serological responses to Brucella abortus strain RB51 (RB51) vaccination in a dose?Cresponse study and to compare the use of two selective media for the isolation of RB51. The animals were randomly divided into three treatment groups. Groups I?CIII received the recommended vaccine dose (RD) twice 4?weeks apart, RD twice 18?weeks apart and saline once, respectively. Lymph nodes were excised from the three groups and subjected to bacteriological examination to determine the frequency of detection of RB51. Pre- and post-vaccination blood samples were collected and tested for B. abortus antibodies using the buffered plate agglutination test (BPAT), complement fixation test (CFT), and dot-blot assay. Sera taken at all post-inoculation weeks (PIW) were negative for field strain B. abortus using the BPAT. Antibody responses to RB51 were demonstrated in all vaccinates but not in controls by CFT and dot-blot assay from 1 PIW up to 16?weeks following booster vaccination. The agreement for both assays was 80.7% and there was a linear interdependence with a Pearson??s correlation coefficient value of 0.578. The frequency of isolation of RB51 from the two selective media used was not significantly different (P?>?0.05).  相似文献   

4.
Thirteen cows, which had been vaccinated as calves with strain 19, were revaccinated twice or three times as adults with 1×109 cfu of B. abortus strain RB51. Their serological responses following adult vaccination remained negative to conventional brucellosis surveillance tests. Vaccination with strain RB51 during the eighth month of pregnancy did not induce abortion, although strain RB51 was recovered from milk for up to 69 days after vaccination. In a parallel study, thirteen 8- to 10-month-old heifers were vaccinated as calves with 109 cfu of strain RB51. The heifers remained seronegative to conventional brucellosis surveillance tests but antibody responses to RB51 could be demonstrated using an indirect ELISA. This study showed that multiple vaccination with strain RB51 did not induce seroconversion to brucellosis surveillance tests. In addition, this study suggests that 109 cfu of strain RB51 is safe for use in pregnant cattle.  相似文献   

5.

Background

Bovine brucellosis remains one of the most prevalent zoonotic infections affecting dairy cattle in developing countries where the applied control programs often fail. We analyzed the epidemiologic pattern of bovine brucellosis in a dairy cattle herd that showed several cases of abortions after regular vaccination with RB51 (B. abortus vaccine). In 2013 thirty dairy cows, from a Holstein-Friesian dairy herd with a population of 600 cattle, aborted five months post vaccination by a regular RB51 vaccine. Blood samples were drawn from milking cows and growing heifers, as well as heifers and cows pregnant up to 6 months. These samples were collected in June 2013 (n?=?257) and May 2014 (n?=?263) and were tested by real time (rt)-PCR as well as serological tests, in particular Rose Bengal Test (RBT), Enzyme-Linked Immunosorbent Assays (ELISA) and Fluorescence Polarization Assay. Tissue specimens were also collected from an aborted fetus and cultured. Isolates were subjected to bacteriological typing tests at the genus and species levels.

Results

Five months post vaccination with RB51 vaccine, Brucella (B.) DNA was detected in blood samples of cows by rt-PCR. The serological tests also revealed the spread of Brucella field strains within the herd in 2013. Four Brucella isolates were recovered from specimens collected from the aborted fetus. These isolates were typed as follows: one B. abortus RB51 vaccine strain and three isolates of B. abortus field strain. The seropositive cows with positive rt-PCR might indicate an infection by the Brucella field strain; while the positive rt-PCR results from seronegative animals may either be due to circulating RB51 vaccine DNA in vaccinated animals or to circulating field strain in infected animals before seroconversion.

Conclusion

The results herein suggest that PCR can be a good supplementary tool in an outbreak situation, if an assay is available that can differentiate vaccine and field strains with a high analytical sensitivity. We recommend using RBT and ELISA in parallel in outbreak situations, to identify as many infected animals as possible during the initial screenings. This test procedure should be repeated for at least three successive negative tests, with one month interval.
  相似文献   

6.
Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.  相似文献   

7.
It is a dogma, that RB51 vaccination does not induce antibodies that interfere with Brucellosis diagnosis, therefore any animal positive to serological test is considered as an infected animal. To determine protection against Brucellosis virulent field strain, 35 pregnant cows from a free-Brucellosis herd, previously vaccinated as calves with 1 x 10(10) CFU of RB51, were revaccinated with RB51 reduced dose, and then introduced into a herd with an active outbreak. Seventeen cows resulted positive in card test after revaccination. All 35 pregnant revaccinated cows had normal parturition; nevertheless, RB51 vaccine strain was isolated from milk and vaginal exudates from two cows after delivery at day 120 post-revaccination. At 150 days post-revaccination, two cows were positives to card and rivanol test and the field virulent strain was isolated. Revaccination with a reduced dose of RB51 in endemic zones did not cause abortion and protected 94% of animals against field infection, but caused an atypical response to conventional serological tests.  相似文献   

8.
The outer membrane proteins (OMPs) of Brucella (B.) abortus have been extensively studied, but their immunogenicity and protective ability against B. abortus infection are still unclear. In the present study, B. abortus Omp28, a group 3 antigen, was amplified by PCR and cloned into a maltose fusion protein expression system. Recombinant Omp28 (rOmp28) was expressed in Escherichia coli and was then purified. Immunogenicity of rOmp28 was confirmed by Western blot analysis with Brucella-positive mouse serum. Furthermore, humoral- or cell-mediated immune responses measured by the production of IgG1 or IgG2a in rOmp28-immunized mice and the ability of rOmp28 immunization to protect against B. abortus infection were evaluated in a mouse model. In the immunogenicity analysis, the mean titers of IgG1 and IgG2a produced by rOmp28-immunized mice were 20-fold higher than those of PBS-treated mice throughout the entire experimental period. Furthermore, spleen proliferation and bacterial burden in the spleen of rOmp28-immunized mice were approximately 1.5-fold lower than those of PBS-treated mice when challenged with virulent B. abortus. These findings suggest that rOmp28 from B. abortus is a good candidate for manufacturing an effective subunit vaccine against B. abortus infection in animals.  相似文献   

9.
Neospora caninum, an obligate intracellular protozoan parasite, is the causative agent of bovine neosporosis, an important disease affecting the reproductive performance of cattle worldwide. Currently there is no effective vaccine available to prevent N. caninum infection in cattle. In this study, we examined the feasibility of developing a live, recombinant N. caninum vaccine using Brucella abortus vaccine strain RB51 as the expression and delivery vector. We generated two recombinant RB51 strains each expressing SRS2 (RB51/SRS2) or GRA7 (RB51/GRA7) antigens of N. caninum. BALB/c mice immunized by single intraperitoneal inoculation of the recombinant RB51 strains developed IgG antibodies specific to the respective N. caninum antigen. In vitro stimulation of splenocytes from the vaccinated mice with specific antigen resulted in the production of interferon-gamma, but not IL-5 or IL-10, suggesting the development of a Th1 type immune response. Upon challenge with N. caninum tachyzoites, mice vaccinated with strain RB51/SRS2, but not RB51/GRA7, showed significant resistance to cerebral infection when compared to the RB51 vaccinated mice, as determined by the tissue parasite load using a real-time quantitative TaqMan assay. Interestingly, mice vaccinated with either strain RB51 or RB51/GRA7 also contained significantly lower parasite burden in their brains compared to those inoculated with saline. Mice vaccinated with strain RB51/SRS2 or RB51/GRA7 were protected to the same extent as the strain RB51 vaccinated mice against challenge with B. abortus virulent strain 2308. These results suggest that a recombinant RB51 strain expressing an appropriate protective antigen(s), such as SRS2 of N. caninum, can confer protection against both neosporosis and brucellosis.  相似文献   

10.
One hundred and seven pregnant cows, which had been calfhood vaccinated with Brucella abortus strain 19 (S-19) were revaccinated with either S-19 or strain RB51 (S-RB51). All S-19-revaccinated animals seroconverted, while none of the RB51-revaccinated animals seroconverted. Two out of 25 (8%) S-19-revaccinated animals aborted, while none of the 57 RB51-revaccinated group aborted. Four of the S-19-revaccinated animals shed S-19 in the milk for at least 7 days, while only 1 cow shed S-RB51 for at least 3 days (but <7 days) post-parturition. Revaccination of strain 19 calfhood-vaccinated, pregnant cattle with S-RB51 appears to be a safe procedure with no diagnostically negative consequences.  相似文献   

11.
The pathogenic mechanisms of Brucellosis used to adapt to the harsh intracellular environment of the host cell are not fully understood. The present study investigated the in vitro and in vivo characteristics of B. abortus betaine aldehyde dehydrogenase (BetB) (Gene Bank ID: 006932) using a betB deletion mutant constructed from virulent B. abortus 544. In test under stress conditions, including osmotic- and acid stress-resistance, the betB mutant had a lower osmotic-resistance than B. abortus wild-type. In addition, the betB mutant showed higher internalization rates compared to the wild-type strain; however, it also displayed replication failures in HeLa cells and RAW 264.7 macrophages. During internalization, compared to the wild-type strain, the betB mutant was more adherent to the host surface and showed enhanced phosphorylation of protein kinases, two processes that promote phagocytic activity, in host cells. During intracellular trafficking, colocalization of B. abortus-containing phagosomes with LAMP-1 was elevated in betB mutant-infected cells compared to the wild-type cells. In mice, the betB mutant was predominantly cleared from spleens compared to the wild-type strain after 2 weeks post-infection, and the vaccination test with the live betB mutant showed effective protection against challenge infection with the virulent wild-type strain. These findings suggested that the B. abortus betB gene substantially affects the phagocytic pathway in human phagocytes and in host cells in mice. Furthermore, this study highlights the potential use of the B. abortus betB mutant as a live vaccine for the control of brucellosis.  相似文献   

12.
The water buffalo is an important domestic animal worldwide, and the local Buffalypso variety was developed in Trinidad to have improved beef qualities. Brucellosis was diagnosed in Trinidad and Tobago during 1998 in both cattle and domestic water buffalo (Bubalus bubalis) populations. Brucellosis in the latter species is caused by infection with Brucella abortus, similar to bovine brucellosis. Control of brucellosis is of paramount importance to preservation of the genetic diversity of these animals in Trinidad, and this has been complicated by differences in the epidemiology of water buffalo and bovine brucellosis. Some diagnostic tests do not have comparable accuracy between the two species, and the RB51 vaccine does not adequately protect against infection in water buffalo. The water buffalo in Trinidad may also be more resistant to infection than cattle. Development of effective vaccination protocols is key to brucellosis control in Buffalypso in Trinidad, and prohibitions on import of virulent B. abortus strains for vaccine efficacy studies has impeded progress in this area. These Trinidadian strains are of variable virulence; some might be effective for challenge in vaccine efficacy studies, while other, of lower virulence, may be vaccine candidates for use in water buffalo.  相似文献   

13.
Brucella abortus vaccine strain RB51 is an attenuated, stable rough mutant that is being used in many countries to control bovine brucellosis. Our earlier study demonstrated that the protective efficacy of strain RB51 can be significantly enhanced by overexpressing Cu–Zn superoxide dismutase (SOD), a homologous protective antigen. We have also previously demonstrated that strain RB51 can be engineered to express heterologous proteins and mice vaccinated with such recombinant RB51 strains develop a strong Th1 type of immune response to the foreign proteins. The present study is aimed at combining these two characteristics to generate new recombinant RB51 vaccines with enhanced abilities to protect against brucellosis and simultaneously able to protect against infections by Mycobacterium spp. We constructed two recombinant RB51 strains, RB51SOD/85A which overexpresses SOD with simultaneous expression of the 85A, a protective protein of Mycobacterium spp., and RB51ESAT which expresses ESAT-6, another protective protein of M. bovis, as a fusion protein with the signal sequence and few additional amino terminal amino acids of SOD. Mice vaccinated with these recombinant strains developed specific immune responses to the mycobacterial proteins and significantly enhanced protection against Brucella challenge compared to the mice vaccinated with strain RB51 alone.  相似文献   

14.
Brucellosis is a zoonotic disease of great animal welfare and economic implications worldwide known since ancient times. The emergence of brucellosis in new areas as well as transmission of brucellosis from wild and domestic animals is of great significance in terms of new epidemiological dimensions. Brucellosis poses a major public health threat by the consumption of non-pasteurized milk and milk products produced by unhygienic dairy farms in endemic areas. Regular and meticulous surveillance is essentially required to determine the true picture of brucellosis especially in areas with continuous high prevalence. Additionally, international migration of humans, animals and trade of animal products has created a challenge for disease spread and diagnosis in non-endemic areas. Isolation and identification remain the gold standard test, which requires expertise. The advancement in diagnostic strategies coupled with screening of newly introduced animals is warranted to control the disease. Of note, the diagnostic value of miRNAs for appropriate detection of B. abortus infection has been shown. The most widely used vaccine strains to protect against Brucella infection and related abortions in cattle are strain 19 and RB51. Moreover, it is very important to note that no vaccine, which is highly protective, safe and effective is available either for bovines or human beings. Research results encourage the use of bacteriophage lysates in treatment of bovine brucellosis. One Health approach can aid in control of this disease, both in animals and man.  相似文献   

15.
The efficacy and safety of four adjuvants, viz, alhydrogel, adjuvant 65, levamisole and killed Corynebacterium parvum were compared with Freund's complete adjuvant (FCA) for immunizing foals and yearlings with formalin inactivated, partially purified equid herpesvirus 1 (EHV-1) antigen.The levels of antibody in serum and nasal secretions and the degree of lymphocyte stimulation (LS) induced by inactivated EHV-1 antigen with FCA were higher than those following infection with a virulent strain. Levamisole and C. parvum failed to augment the antibody response to inactivated EHV-1 antigen or to induce specific lymphocyte stimulation. Adjuvant 65 and alhydrogel, although less effective than FCA, both produced good humoral and LS responses. Alhydrogel proved the most satisfactory adjuvant as FCA produced unacceptable local reactions, and adjuvant 65 was difficult to administer.Neutralizing antibody induced by immunization with inactivated RAC-H virus (subtype 1) showed remarkable strain specificity and failed to cross-react with H45 virus (subtype 2).The duration of virus excretion following intranasal challenge was reduced in immunised animals but clinical responses still occurred in some vaccinated animals when high challenge doses of virus (109.4TCD50) were used.  相似文献   

16.
OBJECTIVE: To develop a novel oral vaccine delivery system for swine, using the rough vaccine strain of Brucella abortus. ANIMALS: 56 crossbred pigs from a brucellosis-free facility. PROCEDURE: In 3 separate experiments, pigs were orally vaccinated with doses of 1 x 10(9) to > 1 x 10(11) CFU of strain RB51 vaccine. The vaccine was placed directly on the normal corn ration, placed inside a whole pecan, or mixed with cracked pecans and corn. RESULTS: Oral vaccination of pigs with vaccine strain RB51 resulted in a humoral immune response to strain RB51 and short-term colonization of the regional lymph nodes. CONCLUSIONS AND CLINICAL RELEVANCE: A viscous liquid such as Karo corn syrup in association with pecans that scarify the oral mucosa are necessary when placing the live vaccine directly onto corn or other food rations. Doses of > 1 x 10(11) CFU of RB51 organisms/pig in this mixture ensures 100% colonization of regional lymph nodes via the oral route. This method may allow an efficient and economical means to vaccinate feral swine for brucellosis.  相似文献   

17.
The aim of this study was to examine the efficacy of in ovo prime-boost vaccination against infectious bursal disease virus (IBDV) using a DNA vaccine to prime in ovo followed by a killed-vaccine boost post hatching. In addition, the adjuvant effects of plasmid-encoded chicken interleukin-2 and chicken interferon-γ were tested in conjunction with the vaccine. A plasmid DNA vaccine (pcDNA-VP243) encoding the VP2, VP4, and VP3 proteins of the very virulent IBDV (vvIBDV) SH/92 strain was injected into the amniotic sac alone or in combination with a plasmid encoding chicken IL-2 (ChIL-2) or chicken IFN-γ (ChIFN-γ) at embryonation day 18, followed by an intramuscular injection of a commercial killed IBD vaccine at 1 week of age. The chickens were orally challenged with the vvIBDV SH/92 strain at 3 weeks of age and observed for 10 days. In ovo DNA immunization followed by a killed-vaccine boost provided significantly better immunity than the other options. No mortality was observed in this group after a challenge with the vvIBDV. The prime-boost strategy was moderately effective against bursal damage, which was measured by the bursa weight/body weight ratio, the presence of IBDV RNA, and the bursal lesion score. In ovo DNA vaccination with no boost did not provide sufficient immunity, and the addition of ChIL-2 or ChIFN-γ did not enhance protective immunity. In the ConA-induced lymphocyte proliferation assay of peripheral blood lymphocyte collected 10 days post-challenge, there was greater proliferation responses in the DNA vaccine plus boost and DNA vaccine with ChIL-2 plus boost groups compared to the other groups. These findings suggest that priming with DNA vaccine and boosting with killed vaccine is an effective strategy for protecting chickens against vvIBDV.  相似文献   

18.
A study was carried out in Pichucalco, Chiapas (Mexico) to determine whether recently calved cows or those that aborted shed Brucella. Serological diagnosis of brucellosis was made in all animals (209). Six of the cows that calved normally and two that aborted underwent a bacteriological study of milk and vaginal exudate. Brucella abortus was isolated from vaginal exudate samples in two 3- to 4-year-old seronegative first-birth cows that had calved normally. This was confirmed through bacteriological identification and PCR as a field strain and smooth phenotypes. We conclude that seronegative cows vaccinated with RB51 which calved normally and shed B. abortus in the vaginal exudate after calving could be a serious problem because these cows are overlooked in routine diagnoses and are a source of Brucella infection.  相似文献   

19.
SUMMARY Three groups, each of 14 mature Jersey heifers, were vaccinated. They were mated about 2 months later and those that became pregnant were challenged at about 6.5 months of pregnancy by the conjunctival application of virulent Brucella abortus. Group 1 heifers received 2 doses of B. abortus 45/20 vaccine 2 months apart. Only 5 of the 14 heifers became pregnant, and of these 5 only one resisted challenge. Group 2 heifers received only one dose of 45/20 vaccine, 5 of the 10 challenged resisted infection. Group 3 heifers received 3 × 108 cfu of strain 19. Six of the 10 heifers challenged resisted infection. All of 5 non-vaccinated control cattle became infected. It appeared advantageous to give only one dose of 45/20 rather than 2 as presently recommended. A single dose of 45/20 vaccine induced resistance to virulent B. abortus approximately equal to that given by the reduced dose of strain 19. One dose of 45/20 vaccine stimulated transient serological positivity in 2 of 28 heifers whereas the reduced dose of strain 19 gave rise to persistent titres in 2 of 14 vaccinated heifers.  相似文献   

20.
Brucella abortus strain RB51, a rough mutant of the B. abortus 2308 virulent strain, was recently approved in the United States as the official vaccine for brucellosis in cattle. Following recent evidence of unauthorized use of RB51 vaccine in Italy, where the use of vaccines for brucellosis is no longer allowed, the suitability of an RB51-specific polymerase chain reaction assay for identifying the RB51 strain among Brucella field isolates from cattle in Italy was investigated. The oligonucleotide primers used in this study, belonging to a six-primer cocktail for Brucella species previously described by other authors, allowed the amplification of a 364-base pair (bp) fragment specific for RB51 and its parent strain 2308, and a 498-bp product specific for B. abortus. In addition, unresolved bands ranging from 600 to 700 bp were observed from RB51 strain. Brucella abortus biovars 1, 2 and 4 have only one specific sensitive 498-bp band. The B. abortus biovars 3, 5 and 6 did not give any signal. The 498-bp product from a reference Brucella strain was sequenced and submitted to EMBL with the accession number AJ271969 while the 364-bp fragment from RB51 strain was submitted to EMBL database with accession number AJ271968. The sequence studies confirmed the specificity of the detected fragments. No amplification was obtained by testing DNA from strains antigenically related to Brucella, such as Yersinia enterocolitica O:9, Escherichia coli O:157, Salmonella urbana and Pasteurella multocida. The results of this study indicate that this technique, in combination with specific serological tests, could be a useful diagnostic method to verify the use of RB51 vaccine and can contribute to the creation of a databank of circulating strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号