首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   21篇
林业   20篇
农学   7篇
基础科学   1篇
  38篇
综合类   37篇
农作物   9篇
水产渔业   22篇
畜牧兽医   328篇
园艺   12篇
植物保护   33篇
  2023年   9篇
  2022年   6篇
  2021年   19篇
  2020年   19篇
  2019年   12篇
  2018年   11篇
  2017年   13篇
  2016年   17篇
  2015年   8篇
  2014年   20篇
  2013年   19篇
  2012年   27篇
  2011年   30篇
  2010年   15篇
  2009年   11篇
  2008年   19篇
  2007年   19篇
  2006年   11篇
  2005年   18篇
  2004年   12篇
  2003年   14篇
  2002年   14篇
  2001年   11篇
  2000年   14篇
  1999年   13篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   13篇
  1991年   17篇
  1990年   15篇
  1989年   12篇
  1988年   11篇
  1987年   13篇
  1986年   7篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   6篇
  1978年   5篇
  1976年   3篇
  1975年   3篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1965年   1篇
排序方式: 共有507条查询结果,搜索用时 15 毫秒
1.
Context

Landscape and local habitat traits moderate wild bee communities. However, whether landscape effects differ between local habitat types is largely unknown.

Objectives

We explored the way that wild bee communities in three distinct habitats are shaped by landscape composition and the availability of flowering plants by evaluating divergences in response patterns between habitats.

Methods

In a large-scale monitoring project across 20 research areas, wild bee data were collected on three habitats: near-natural grassland, established flower plantings and residual habitats (e.g. field margins). Additionally, landscape composition was mapped around the research areas.

Results

Our monitoring produced a dataset of 27,650 bees belonging to 324 species. Bee communities on all three habitats reacted similarly to local flower availability. Intensively managed grassland in the surrounding landscape had an overall negative effect on the studied habitats. Other landscape variables produced diverging response patterns that were particularly pronounced during early and late season. Bee communities in near-natural grassland showed a strong positive response to ruderal areas. Flower plantings and residual habitats such as field margins showed a pronounced positive response to extensively managed grassland and woodland edges. Response patterns regarding bee abundance were consistent with those found for species richness.

Conclusion

We advise the consideration of local habitat type and seasonality when assessing the effect of landscape context on bee communities. A reduction in the intensity of grassland management enhances bee diversity in a broad range of habitats. Moreover, wild bee communities are promoted by habitat types such as ruderal areas or woodland edges.

  相似文献   
2.
  1. Species diversity is declining more rapidly in freshwater ecosystems than in any other, but the consequences for genetic diversity, and hence evolutionary potential, are poorly understood. In part this reflects limited use and development of modern molecular tools and genetic approaches to address conservation questions in rivers, lakes and wetlands. As widespread, diverse and functionally important organisms, freshwater macroinvertebrates are ideal candidates for genetic approaches to reveal, for example, the conservation consequences of demographic histories and past disturbances. However, the availability of microsatellite markers for this group is very limited.
  2. Using next generation sequencing, microsatellite markers were developed for Isoperla grammatica (Poda, 1761), Amphinemura sulcicollis (Stephens, 1836) and Baetis rhodani (Pictet, 1843) to enable conservation genetic investigations of these widespread invertebrate species. Fifty‐two robust microsatellite loci were developed (18, 21 and 13 per species), all with high levels of allelic diversity (7–27, 3–16, 5–13 alleles per loci, respectively).
  3. These tools will allow assessment of genetic structure, dispersal and demographic resilience in these model species as a function of environmental change and variation, thereby aiding freshwater monitoring and conservation. The authors urge further capacity building to support genetic applications to the conservation biology of other aquatic organisms.
Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
6.
In Israel, black spot caused by Alternaria alternata is the main postharvest factor that impairs the quality and reduces the storability of persimmon fruit (Diospyros kaki cv. Triumph). The fungus infects the fruit in the orchard and remains quiescent until harvest. After harvest, the pathogen slowly colonizes the fruit during storage at 0 °C, which elicits black spot symptom development 2–3 months after storage entry. A commercial postharvest dip treatment in chlorine at 500 mg L?1, released from sodium troclosene tablets, effectively controlled black spot in fruit stored for up to 2 months. However, decay incidence increased as the length of storage was extended beyond 2.5 months. The long incubation period that precedes black spot symptom development after harvest enabled the development of a series of integrative approaches for application at the pre- and postharvest stages, in combination with the commercial chlorine dip treatment, to improve the control of black spot disease. Preharvest treatments included treatment with the cytokinin-like N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU) 30 d after fruit set, or a single spray with the curative fungicide polyoxin B 14 d before harvest, and when one of these was applied in combination with the postharvest chlorine dip treatment, the black spot infected area was reduced by 3 and 60%, respectively, compared with the chlorine dip alone. At the postharvest stage, fogging during storage, or post-storage on-line spraying with sodium troclosene, when applied in combination with the postharvest chlorine dip, improved the percentage of marketable fruit by 2 or 10%, respectively, compared with the chlorine dip alone. The results indicate that postharvest pathogens that show a slow colonization pattern might enable the integration of pre- and postharvest disease control methods to improve quality and reduce postharvest disease development.  相似文献   
7.
Epiphyte mats (contiguous pieces of live and dead epiphytes perched upon branches of trees) are a conspicuous component of tropical cloud forests and harbor diverse meso- and microarthropod communities. We investigated differences in arthropod assemblage structure between the vegetative (green) and humic (brown) portions of epiphyte mats in a lower montane forest in Monteverde, Costa Rica. Because of qualitative differences between the two substrates, we hypothesized that they would support different arthropod communities and that variation in community parameters would be linked to the quantity of brown material present in a mat sample. The green fraction contained twice as many individuals and species per gram dry mass than the brown fraction. Morphospecies composition was very similar between green and brown portions, but the relative abundance of several taxa differed significantly between the substrates. Contrary to our prediction, total arthropod abundance and richness in a sample were not correlated with the proportion of brown material present. In laboratory trials, the most common morphospecies of oribatid mite in this system showed a preference for brown substrates.  相似文献   
8.
The elemental (including silica (Si), calcium (Ca), magnesium (Mg), manganese (Mn) and iron (Fe)) and nutrient composition of peatland surface pools and concentrations of Ca, Mg, Mn, and Fein peat interstitial waters and surface peat concentrations of oxides of Mn and Fe were determined for 15 peatlands sampled along a mineral gradient. Surface pool concentrations of Si wereca. ten fold less in surface pools of mineral-poor peatlands thanin the mineral rich, supporting the use of this element as an indicator of minerotrophic influence in peatlands. Principle component analysis of surface pool water chemistry parametersdifferentiated mineral-poor and moderately-poor peatlands frommineral-rich peatlands based on the concentrations of Ca, Mgand alkalinity of pools. Several lines of evidence indicated that peatland interstitial waters were important contributors to peatland alkalinity and included; (1) maximum interstitial water concentrations of Ca and Mg correlating with overlying surface pool alkalinity, (2) a negative correlation between interstitial water Ca:Mg ratios and surface pool concentrationsof Si and (3) Ca:Mg ratios of moderately-poor to mineral-poorpeatland interstitial waters approaching the Ca:Mg ratio of rainwater rather than those of bedrock. Interstitial water concentrations of dissolved Mn and Fe correlated with amountsof reducible Fe and Mn (oxides of Fe and Mn) recovered from thepeat/water interface indicating that groundwater inputs areimportant sources of these two elements to fens. As a consequence, for peatlands that are not truly ombrotrophic,groundwater inputs of Mn and Fe may interfere with interpretingpeat metal profiles thought to be due to anthropogenic inputs alone.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号