首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
高地隙自走式喷雾机多轮转向系统设计与试验   总被引:1,自引:0,他引:1  
大型高地隙自走式喷雾机在田间作业过程中,由于整车地隙高、质量以及体积较大,导致换行及转场作业困难,影响作业效率。为提高喷雾机的机动性能和作业效率,设计了一套全液压多轮转向系统,并提出了基于PID控制方法的四轮转向系统控制方法。在建立全液压转向系统数学模型的基础上,应用Matlab/Simulink进行了转向系统仿真分析。仿真结果表明:四轮转向过程中后轮转角对前轮转角的跟随存在0. 04 s的滞后,最大转角跟随误差为2. 82°,误差在阿克曼转向理论允许范围之内,满足转向要求。基于研发的3WPG-3000型大型高地隙自走式喷雾机,搭建了多轮转向系统实车试验平台,进行了后轮对前轮转向角的跟随控制试验,试验结果表明:在田间随机转向试验过程中,最大转角跟随误差为2. 60°,满足四轮转向要求,验证了所设计的多轮转向系统的响应性、准确性和稳定性。  相似文献   

2.
刘雪珂  王斐  蒋林 《农机化研究》2017,(10):246-250
以东风1204拖拉机为原型,通过分析拖拉机自动导航与车道偏离预警系统(LDWS)的异同,以LDWS转向控制模型为基础,推导出拖拉机动力学模型。通过分析液压转向机构工作原理,制定了液压自动转向机构的改装方案,并利用Sim Hydraulics工具箱搭建了液压自动转向系统模型,且基于此转向模型设计了自动导航拖拉机液压转向系统模糊控制器,在Mat Lab/Simulink中进行仿真试验。结果表明:所设计的转向系统模糊控制器具有良好的转向跟踪精度,其最大跟踪误差小于1°,控制效果良好。  相似文献   

3.
基于DGPS与双闭环控制的拖拉机自动导航系统   总被引:1,自引:0,他引:1       下载免费PDF全文
以东方红X-804型拖拉机为平台,设计了一种基于RTK-DGPS定位和双闭环转向控制相结合的自动导航系统,研究提高农业机械导航控制精度的方法。阐述了导航系统整体设计方案,以RTK-DGPS和AHRS500GA分别提供位置信息和辅助修正信息实现准确定位,以电控液压转向系统实现转向控制。分析了整体控制的策略,建立了路径跟踪的传递函数模型,阐述了双闭环转向控制算法的建立过程,以及控制器的硬件实现。试验结果表明:GPS定位数据经过校正后,平均偏差降低至0.031 m;双闭环控制算法提高了自动转向系统性能,稳态时方波信号以及正弦波信号的跟踪误差平均值为0.40°;在拖拉机田间作业跟踪过程中,路径跟踪误差平均值不超过0.019 m,转向轮偏角跟踪误差平均值为0.43°,标准差不超过0.041 m。  相似文献   

4.
基于PID控制的拖拉机自动转向系统   总被引:1,自引:0,他引:1  
为了提高自动行驶车辆转向系统的控制性能,以福田欧豹4040型拖拉机为研究对象进行拖拉机转向控制系统研究,以车辆目标前轮转角和实际转角的偏差为输入变量,设计车辆转向PID控制器,通过对转向驱动电机的控制实现拖拉机转向控制.仿真和实验结果表明,所设计的控制器具有良好的快速性和准确性,能够满足拖拉机转向控制的需求.  相似文献   

5.
农业机械自动导航车轮转角测量误差补偿模型   总被引:5,自引:0,他引:5  
针对农业机械自动导航中,把主销转角当作车轮转角来测量会造成测量误差的问题,通过对农业机械前轮转向结构的分析,建立了一种车轮-主销转角关系模型,该模型能够补偿把主销当作车轮转角来测量的误差,提高在农业机械自动导航时车轮转角的测量精度。仿真、试验并在雷沃M800型拖拉机上实际应用表明,该模型具有较好的合理性和准确性,车轮转角测量的平均误差减小了0.48°,最大误差减小了0.71°,提高了农业机械自动导航系统的性能。  相似文献   

6.
拖拉机自动导航摩擦轮式转向驱动系统设计与试验   总被引:2,自引:0,他引:2       下载免费PDF全文
针对农机导航系统中使用传统拖拉机前轮转向驱动子系统机构复杂、装卸不便等问题,设计了一种摩擦轮式转向驱动系统。摩擦轮式转向驱动系统主要由驱动装置和相匹配的自适应模糊转向控制器组成。驱动装置采用平行四连杆机构以实现工作模式的快速切换,使用夹持固定方式实现便捷装卸。搭建了试验台架以获取摩擦轮驱动装置的滑移特性数据。同时设计适用于该驱动装置的自适应模糊转向控制器,基于液压系统离散传递函数和滑移特性数据建立了驱动系统递推仿真模型,采用该仿真模型构建遗传算法参数优化器对控制器参数进行在线优化。进行了仿真模型验证试验、遗传算法参数优化器性能对比试验和驱动系统性能试验,结果表明:仿真模型与实际系统基本一致;经过遗传算法参数优化后控制器阶跃响应上升时间减少15%,稳态误差达到3%标准所需调节时间减少29%,消除了振荡现象;所设计驱动系统的20°阶跃响应平均绝对稳态误差为0.197°,平均上升时间为2.0 s,稳态误差达到3%标准的平均调节时间为2.4 s,拖拉机前轮控制效果良好。应用试验表明驱动系统能基本满足拖拉机配套2BFQ-6型油菜精量联合直播机机组自动导航作业要求。  相似文献   

7.
基于ISO 11783标准构建了拖拉机自动导航控制系统,系统包括5个电子控制单元(ECU),其中转向ECU节点可以根据从总线上接收到的转向指令来控制前轮转向。对自动导航控制系统的网络服务性能进行了分析,并进行了使用该系统的拖拉机直线路径跟踪试验。试验表明,基于ISO 11783的拖拉机自动导航控制系统能满足实时性要求,并能较好地实现路线跟踪,直线跟踪最大横向偏差为  相似文献   

8.
基于模糊控制的拖拉机路径跟踪仿真研究   总被引:2,自引:0,他引:2  
结合拖拉机实际工作性能与环境,建立了一种基于模糊控制的拖拉机路径跟踪仿真系统,分别对简化二轮模型、模糊控制模型、纯追踪模型及转向操纵控制模型等4个部分进行了阐述。此外,将模糊控制与纯追踪模型结合,分别对相同横向偏差下、不同航向偏差下前轮转角响应情况和相同航向偏差下、不同横向偏差下前轮转角响应情况进行了Matlab/Simulink仿真。仿真结果表明:该仿真系统可靠,具有一定的参考价值。  相似文献   

9.
为了解决前轮导向AGV的车轮侧滑问题,基于Ackermann转向原理设计了一种变长连杆的双曲柄转向系统。通过推导转向动力学模型,建立了考虑转向阻力矩的左、右前轮转向角闭环控制模型,提出了左、右前轮转向角PID同步控制算法,利用Matlab仿真转向控制模型的动态响应,获得了相关控制参数。以松下PLC为核心,构建了由左前轮转向交流伺服电机、推杆伺服电机、驱动器和编码器组成的AGV转向测控系统,设计了前轮转向系统同步闭环控制流程,实现了满足纯滚动转向原理的左、右前轮转角实时同步控制及转角信息采集。草地路面原地转向及硬质路面S型轨迹转向行驶试验表明,前轮导向AGV转向系统的左、右前轮期望转角与实际转角误差小于0.1°,AGV转向系统近似满足车轮纯滚动无侧滑运动条件,验证了轮式AGV纯滚动转向系统设计和转向控制的正确性与有效性。  相似文献   

10.
基于最优控制的导航拖拉机速度与航向联合控制方法   总被引:3,自引:0,他引:3  
为提高自动导航拖拉机工作效率和作业质量,以自动变速系统和自动转向系统为硬件支撑,结合最优控制理论,设计了基于速度和转向角的双参数最优控制算法.针对耙地作业要求,设计了直线路径跟踪与地头转弯路径跟踪控制器,运用Matlab软件对所设计的控制器进行了仿真分析,通过田间试验对所设计的控制器进行了验证.试验结果表明:控制器的横向偏差小于0.12m,航向偏差小于1.1°,速度偏差小于0.2 m/s,满足自动导航作业要求.  相似文献   

11.
基于ISO 11783的拖拉机导航控制系统设计与试验   总被引:1,自引:1,他引:0  
基于ISO 11783标准构建了拖拉机自动导航控制系统,系统包括5个电子控制单元(ECU),其中转向ECU节点可以根据从总线上接收到的转向指令来控制前轮转向.对自动导航控制系统的网络服务性能进行了分析,并进行了使用该系统的拖拉机直线路径跟踪试验.试验表明,基于ISO 11783的拖拉机自动导航控制系统能满足实时性要求,并能较好地实现路线跟踪,直线跟踪最大横向偏差为11cm.  相似文献   

12.
针对当前拖拉机自动导航转向控制系统结构复杂、算法繁琐及对上位所检测机位置姿态信息要求较高等特点,设计了一种基于51单片机为中央控制载体的拖拉机自动导航执行系统。本系统在不改变原车的液压转向控制系统的前提下,通过加装以步进电机为动力的驱动装置带动方向盘转动实现前轮转向;同时利用角度传感器不断检测前轮转角,为系统在进行转向决策时提供反馈,并且在执行过程中采用涡轮电机控制齿轮啮合与分离。控制系统采用单因子补偿控制算法,通过判断当前车辆的横向偏差走势判断当前的车身偏角。为验证程序算法以及结构设计的可行性,以TN954为实验对象,构建了转向系统和车身偏角的数学模型,运用Matlab/Simulink进行仿真。结果表明:拖拉机以3 km/h作业速度行驶时,在初始横向轨迹偏差设定在5 cm的调整过程中,稳态误差达到2%,单因子补偿控制算法所需的平均调整时间为1. 4 s,满足当今拖拉机自动驾驶控制实时性的要求。  相似文献   

13.
拖拉机机组无人作业协同控制系统设计与试验   总被引:1,自引:0,他引:1  
为提高拖拉机作业机组无人作业的智能化水平,实现机组横向运动、纵向运动和机具提升作业的协同控制,设计了无人作业协同控制系统。以播种作业机组为研究对象,将拖拉机机组无人作业协同控制系统划分为规划层、决策层和执行层。规划层结合播种农艺要求和机组运动学特性,采用经/纬度坐标规划作业路径,为了同时满足直线作业区域与转向曲线区域的路径跟踪,提出自适应预瞄路径跟踪控制算法。决策层制定了拖拉机机组无人作业联合控制策略,实现拖拉机-播种机联合作业精准控制。执行层对拖拉机转向机构、机具提升机构、油门踏板、制动器、离合器等机构进行硬件线控设计。在此基础上,分别开展无人播种作业仿真与田间试验,仿真结果验证了拖拉机播种机组无人作业协同控制系统的可行性。田间试验表明:拖拉机转向器、油门踏板、离合器、制动器、机具提升机构严格根据规划层与决策层制定的控制指令协同动作。试验过程车轮转向平均误差0.45°,直线段横向误差均值为0.035 m,转向段横向误差最大值为0.11 m;机具提升响应时间为1.2 s、机具提升转角超调量小于1.5°;油门踏板、制动器、离合器均根据决策指令完成操纵动作。无人作业协同控制系统满足拖拉机机...  相似文献   

14.
视觉导航拖拉机自动转向控制系统研究   总被引:1,自引:0,他引:1  
拖拉机的转向控制系统是实现自动驾驶的重要组成部分。为此,以铁牛654拖拉机为研究对象,进行了自动转向控制系统的研究,提出了基于简化的运动学模型模糊控制方法。将利用视觉传感器得到的方位偏差和侧向偏差作为控制器的输入,控制器可以根据输入实时输出相应的前轮转角。仿真和试验表明,该控制器有比较好的跟随性和响应性,可以较好地适应低速时拖拉机行驶的要求,为深入开展拖拉机的自动驾驶研究提供了有益尝试。  相似文献   

15.
为了提高拖拉机在农田环境中自主导航作业的控制精度,设计开发了3种基于不同类型电机的方向盘转向控制系统,在分析步进电机、伺服电机和步进伺服电机3种电机的参数及其性能差异的基础上,设计了拖拉机自动转向执行机构,并配备了工控机PC、PLC控制器、前轮转角检测机构和GNSS定位系统等设备。设计了工控机车载终端软件,能够实现自动导航的嵌套双闭环控制及相应PID控制算法,设计了控制系统的电气原理图和PLC转向程序,在混凝土路面和田间播种作业两种工况下进行了拖拉机自动导航实验。实验结果表明,当拖拉机作业速度为0. 8 m/s时,两种实验条件下,步进电机导航系统的均方根误差分别为8. 81 cm和12. 09 cm,伺服电机导航系统的均方根误差分别为4. 85 cm和10. 55 cm,步进伺服电机导航系统的均方根误差分别为4. 54 cm和5. 53 cm,步进伺服电机在方向盘转向控制系统中自动导航效果较好。  相似文献   

16.
接触式拖拉机导航控制系统   总被引:3,自引:0,他引:3  
为提高接触式拖拉机导航系统性能和导航精度,针对玉米秸秆行间作业,设计了双层控制器接触式导航控制系统.在分析接触式导航传感器检测信号的基础上,以触杆转角为输入、前轮目标转角为输出设计了模糊控制器作为导航控制的上层控制.下层控制针对电液系统的非线性,采用带非线性补偿的PID控制器实现对拖拉机前轮转向角的控制.该导航控制方法在Matlab/Simulink平台上进行了仿真,导航控制系统在秸秆行间进行了试验验证.仿真和田间试验结果表明,导航控制算法的响应快、稳定性好.当行驶速度不超过1 m/s时,拖拉机导航精度在50 mm以内,平均误差15 mm,能满足玉米秸秆行间作业要求.  相似文献   

17.
高速插秧机自动转向系统研制   总被引:3,自引:0,他引:3  
高速插秧机的液压助力转向装置为整体式安装,不能通过并联油路的方式实现其自动转向。为此,研制了以无刷电机作为动力源的电动自动转向系统,主要包括转角传感器、转向控制器、无刷电机及其驱动器和辅助传动机构。转角传感器用以测量高速插秧机的前轮转向角,转向控制器读取前轮的转向角度,基于数字PID控制方法计算无刷电机的旋转速度和旋转方向并将控制信号发送至电机驱动器。田间测试结果表明:自动转向系统在[-10°,10°]范围内的转向控制误差小于1°、均方根误差小于1°,具备良好的控制稳定性和可靠性,能够满足高速插秧机田间自动导航的基本要求。  相似文献   

18.
《农业机械学报》2010,41(11):148-152
阐述了一种基于自适应模糊控制的拖拉机自动导航系统。由PLC、电控开关液压阀和比例方向液压阀组成自动转向控制系统,设计了PD转向控制算法;为提高拖拉机自动导航的精度和稳定性,提出了一种基于遗传算法的自适应模糊控制方法,采用遗传算法在线优化模糊控制规则以及输出比例因子,既保留了传统模糊控制的优点,又有效改善了系统的控制品质;仿真和田间试验结果表明,该方法可以迅速消除跟踪误差,响应速度快,超调小,系统工作稳定,稳态跟踪误差不超过  相似文献   

19.
基于BDS的果园施药机自动导航控制系统   总被引:5,自引:0,他引:5       下载免费PDF全文
根据果园施药机自动导航喷药作业需求,设计了一种基于北斗卫星导航系统(BDS)的施药机自动导航控制系统。该系统主要包括RTK-BDS接收机、导航控制器、转向控制器、电控气动转向系统和三轴电子罗盘。其中转向控制器、电控气动转向系统和三轴电子罗盘构成转向角闭环控制回路,该回路可根据导航控制器发送的施药机期望转向角实现转向角的随动控制。将施药机的运动学模型和纯追踪模型相结合,设计了施药机直线跟踪导航控制器,输入为位置坐标和方位角,输出为期望转向角。针对果园地形特点对施药机进行了导航路径规划,并在果园进行现场试验。试验结果表明:所设计的导航控制系统,在施药机行进速度为2 km/h时,直线跟踪最大误差不大于0.13 m,平均跟踪误差不大于0.03 m,能满足果园自动导航作业精度要求。  相似文献   

20.
《现代农业装备》2021,42(3):11-16,21
提出一种基于PD控制的水田作业移动平台电控液压转向系统,基于AMESim和Simulink软件进行联合仿真,仿真结果表明,当目标转向角为20°和10°时,达到目标角度时间分别为1.3、0.8 s,响应时间较快。基于自建移动平台进行实车试验,试验结果表明,转角到达20°时响应时间为1.5 s,转角到达10°时响应时间为1.1 s,且前轮转角偏差不超过0.3°,试验验证了电控液压转向系统具有较好的动态响应性能和较高的控制精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号