首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Off‐shore fish farming can increase the organic load of nearby coastal marine ecosystems due to the deposition of fish food and faeces on seabeds. Seagrass meadows are particularly affected by aquaculture activities but there are few empirical data showing differential effects of the same farming activity on multiple habitat types. Here, we assessed over a 2‐year period whether macrofaunal assemblages inhabiting sandy bare seabeds and Cymodocea nodosa meadows varied in their macrofaunal community structure to the fish farming activities. We observed high spatial and temporal variability in macrofauna composition and dynamics among seabed habitats and a limited impact of fish cages in their area of influence as compared with control areas. Seagrass meadows showed a higher abundance in macrofauna communities than sandy bare bottoms. Local marine currents could partially explain some results because of their influence on grain size composition. Differences in grain size resulted in higher abundances of the tanaid Apseudes talpa beneath fish cages and the absence of the sensitive amphipod Ampelisca brevicornis. Differences of resilience of seabeds (seagrass meadows and sandy bare bottoms) should be taken into account for environmental monitoring studies of off‐shore fish cages. Our results suggest that hydrodynamics are a key factor to determine buffer areas between fish cages and seagrass meadows.  相似文献   

2.
The tufted puffin (Fratercula cirrhata) is a generalist seabird that breeds throughout the North Pacific and eats more than 75 different prey species. Using puffins as samplers, we characterized the geographic variability in pelagic food webs across the subarctic North Pacific from the composition of ~10,000 tufted puffin meals (~56,000 prey items) collected at 35 colonies in the Gulf of Alaska (GoA) and Aleutian Archipelago. Cluster analysis of diet species composition suggested three distinct forage fish communities: (i) in the northern GoA, multiple age‐classes of coastal and shelf residents such as capelin, sand lance and herring dominated the food web, (ii) in the western GoA to eastern Aleutians, the shelf community was dominated by transient age‐0 walleye pollock, and (iii) in the western Aleutians, shelf‐edge and mesopelagic forage species such as squid, lanternfish, and Atka mackerel were prevalent. Geographic patterns of abundance of capelin and sand lance in tufted puffin diets were corroborated by independent research fisheries and diets of piscivorous fish, indicating that puffin diets reflect the local abundance of forage species, not just selection of favored species. Generalized additive models showed that habitat characteristics predict, in a non‐linear fashion, forage species distribution and abundance across two large marine ecosystems. We conclude that major biogeographic patterns in forage fish distribution follow gradients in key habitat features, and puffin diets reflect those patterns.  相似文献   

3.
Chemistry in material laid down prior to capture along the edges of otoliths of Chilean jack mackerel (Trachurus murphyi) showed strong spatial heterogeneity corresponding to hydrographic structure across putative population boundaries between (i) the western and eastern South Pacific Ocean, and (ii) Chile and Peru. Yet the chemistry of the otolith nucleus, in material laid down during early life, showed no evidence supporting the existence of these boundaries. Instead, jack mackerel from New Zealand had similar nucleus chemistry to most sampling areas off South America; and those off southern Peru showed similar nucleus chemistry to most sampling areas off Chile. Strong differences were found between southern and northern Peru, and cluster analysis indicated this was caused by a group of fish off northern Peru with chemistry found nowhere else. Most other fish grouped in two clusters, which showed properties suggesting correspondence with a major spawning zone in oceanic water off central Chile, and a smaller area in coastal water off northern Chile, characterized by similar sea surface temperature, lack of westward transport, and low kinetic energy. Rather than discrete populations separated by boundaries, these results suggest complex spatial structure defined by environmentally mediated survival and connectivity: fish caught off New Zealand may be of South American origin; the spawning zone off central Chile may supply fisheries around the South Pacific; and spawning off northern Chile may be an important source of fish caught locally and in Peru. However, northern Peru does not supply areas further south.  相似文献   

4.
The fishing industry of the western and central regions of the coastal Gulf of Alaska (CGoA) directly employs over 17,000 people and processes fish with a wholesale value of US$618 million annually. Pacific halibut (Hippoglossus stenolepis) are a valued groundfish species because of the high quality of their flesh. In contrast, arrowtooth flounder (Atheresthes stomias) are much more abundant but of low value because their flesh degrades upon heating. Both are high trophic level predators but play different roles in the ecosystem because of differences in abundance and diet. Using an end‐to‐end ecosystem model, we evaluate the impact of alternate levels of fishing effort and large‐scale changes in oceanographic conditions upon both species, the ecosystem, and the fishing economy. Reduction of longline efforts to reduce Pacific halibut mortality led to reduction in total value of all CGoA landings but increase in value landed by sport fisheries, trawl fleets, and fish pot vessels as they exploit a greater share of available halibut, sablefish, and Pacific cod. Increased trawl effort to raise arrowtooth flounder mortality led to increase in total value of all landings but large reductions in value landed by longline, jig, fish pot, and sport fleets with greater competition for available Pacific cod, halibut, and sablefish. Oceanographic conditions that enhance pelagic food chains at the expense of benthic food chains negatively impact groundfish in general, though Pacific halibut and arrowtooth flounder are resilient to these effects because of the high importance of pelagic fish in their diets.  相似文献   

5.
ABSTRACT:   We examined the stomach contents of 26 Baird's beaked whales caught off the coast of Japan by small-type coastal whalers. The main prey for these whales was rat-tails and hakes in the western North Pacific. Pollock and squids were also important food in the whales collected from the southern Sea of Okhotsk. The prey species found in the stomachs of the whales were almost identical to those caught in bottom-trawl nets at depths greater than about 1000 m in the western North Pacific, which suggests that the Baird's beaked whale forages for prey at depths of about 1000 m or more. Baird's beaked whales in the western North Pacific migrate to waters of 1000–3000 m in depth, where demersal fish are abundant. This implies that Baird's beaked whales migrate to waters where demersal fish, especially rat-tails and hakes, are abundant. Although there is limited information on the feeding habits of ziphiid whales, they are generally thought to prefer squid. The present data suggest that demersal fish are also important prey for ziphiid whales.  相似文献   

6.
The nature of the western portions of the biogeographic temperate or transition zones in the North Pacific and North Atlantic is reviewed. The physical transport of nutrients and biomass into them from the Kuroshio and Gulf Stream as well as from the poleward sides are estimated. The conclusion is that the upwelling in the two western boundary currents makes the largest contribution to the nutrient and biomass fluxes into these transition zones. A conservative estimate of the amount of upwelled fluid is derived from absolute velocity sections in the Gulf Stream. The estimate suggests that upwelling into the euphotic zone exceeds 2 × 106 m3 s–1. This implies that upwelling in these western boundary currents matches or exceeds that in eastern boundary currents such as the California Current. The two western boundary regimes have very different poleward situations. The Oyashio extension flows parallel to the Kuroshio and is a deep current. The North Atlantic Shelf Front flow is to the west where it is ultimately entrained into the edge of the Gulf Stream. There does not seem to be any tendency for this to occur in the Kuroshio. Despite these differences in the northern and western boundaries, the two transition zones are similar with large amplitude meanders, anticyclonic rings and streamers dominating their physical structure. The physical features responsible for the transfer of materials from the boundary current extensions into the transition zones are similar in both systems. Ring formation contributes only ? 10% of the transfer, while ring‐induced streamers contribute 30%. The rest of the transport is contributed by branching of the boundary current front. Both currents have well developed secondary fronts consisting of subtropical surface water pulled into the transition zone. Biologically, the upwelling in both western boundary currents leads to a biomass maximum along the boundary in both secondary producers (copepods) and in small pelagic fish. In the Kuroshio, the latter are the Japanese sardine, Sardinops melanostictus, that spawn in the Kuroshio and then enter the transition zone for the summer and fall months. In the Gulf Stream, the dominate species are menhaden, Brevoortia tyrannus and B. smithi. These species make use of the coastal environments of North America and although the adults spawn in the Gulf Stream, they are not thought to play a major role in the Slope Water, transition zone. The similar differences in the use of the Kuroshio and the Gulf Stream ecosystems occurs in the behaviour of bluefin tuna, squid and other large pelagics. The Gulf Stream system also lacks an equivalent to Pacific saury, Cololabis saira. The biology therefore is at least subtly different, with saury and sardines being replaced by mid‐water fish in the North Atlantic. A fuller comparison of the biology with quantitative methods in both systems should be encouraged.  相似文献   

7.
Climate‐induced nonlinearity in biological variability and non‐stationary relationships with physical drivers are crucial to understand responses of marine organisms to climate variability. These phenomena have raised concerns in the northeastern North Pacific, but are out of the spotlight in the northwestern North Pacific in spite of potential implications for this productive system under increased climate variability. Pelagic communities in the Kuroshio ecosystem have both ecological and economic importance. However, patterns of climate‐induced nonlinearity in pelagic communities are not well understood, and existence of non‐stationarity in their relationships with physical drivers remains obscure. Here, we compile large numbers of climatic, oceanic and biological long‐term time‐series data and employ diverse statistical techniques to reveal such climate‐induced nonlinearity and non‐stationarity. Results show that pelagic communities in the Tsushima and Pacific areas (major areas in the Kuroshio ecosystem) had regime shifts in the late 1990s and late 1980s, respectively. Winter sea surface temperatures in the Kuroshio Current path and in the eastern part of East China Sea, which are respectively affected by the Kuroshio Current and Siberian High, correlate with dominant variability patterns in their pelagic communities. Furthermore, non‐stationarity was identified with threshold years in the 1990s in the Tsushima area and in the 1980s in the Pacific area as a possible result of the declined variances in the Siberian High and Aleutian Low, respectively. Our findings provide insights on spatial differentiation of climate‐induced nonlinearity and non‐stationarity, which are valuable for the management of pelagic communities in the northwestern North Pacific under changing climatic conditions.  相似文献   

8.
A study of common minke and Bryde's whales was conducted in the western North Pacific in the 2000 and 2001 summer seasons to estimate prey selection of cetaceans as this is an important parameter in ecosystem models. Whale sighting and sampling surveys and prey surveys using quantitative echosounder and mid‐water trawl were carried out concurrently in the study. Biomasses of Japanese anchovy, walleye pollock and krill, which were major prey species of common minke and Bryde's whales, were estimated using an echosounder. The results suggested that common minke whale showed prey selection for Japanese anchovy while they seemed to avoid krill in both the offshore and coastal regions and walleye pollock in the continental shelf region. Selection for shoaling pelagic fish was similar to that in the eastern North Atlantic. Bryde's whale showed selection for Japanese anchovy in August 2000 and July 2001, while it showed prey selection for krill in May and June in 2001.  相似文献   

9.
Interannual variability of the ecosystem of the Kii Channel, productive shelf water on the Pacific side of south‐western Japan, was analysed based on physicochemical environmental variables and abundance of major zooplankton taxa collected monthly for 12 yr from 1987 to 1999. The Kii Channel experienced both short‐term (i.e. 3–4 yr) cyclical changes and a long‐term (i.e. decadal) environmental trend. The short‐term variability was primarily associated with year‐to‐year differences in intrusion of subsurface, cold nutrient‐rich water along the bottom of the Kii Channel from the Pacific Ocean. When this bottom intrusion was intense, the Kii Channel experienced a cold, new production‐dominated ecosystem. The bottom intrusion, however, has become less intense in recent years, because of the closer proximity of the Kuroshio flow axis to the Kii Channel. Hence, there was a consistent trend towards warming and a regenerated production‐dominated ecosystem. In accordance with such environmental changes, the zooplankton community shifted towards more oceanic conditions; major herbivorous calanoids (i.e. Calanus sinicus, Paracalanus parvus (s.l.), Clausocalanus spp. and Acartia omorii) decreased, while carnivores (i.e. hydromedusae and Sagitta spp.) increased. The amount of total fish catch also decreased, while the catch of subtropical species increased. These findings lead us to conclude that the bottom intrusion from the Pacific Ocean plays a key role in determining the biological production in the Kii Channel.  相似文献   

10.
The Baltic Sea is a unique ecosystem and the largest body of brackish water in the world. It is inhabited by several originally freshwater fish species, one of them being pike (Esox lucius), which is adapted to the mesohaline conditions of the southern Baltic Sea and colonises its south‐western bays and lagoons. Using twelve microsatellite markers, we analysed the genetic structure of 407 Baltic Sea pike collected from ten locations in the coastal zone of the southern Baltic region and adjacent rivers and nearby lakes. We used traditional F‐statistics and a Bayesian approach implemented in STRUCTURE to investigate spatial structuring. Our results show an overall isolation by distance pattern with two distinct coastal clusters. The border area between the two clusters is characterised by a sharp salinity leap, indicating that the dispersal barrier is not physical, but physiological in nature. A third cluster was formed by three lake populations, presumably as a result of past stocking measures. Additional otolith microchemical studies demonstrate the brackish origin and residency of the majority of the pike from the coastal lagoons, supporting previous studies which suggest that the anadromous pike “ecotype” is scarce in this area of the Baltic Sea. Our results contribute to current knowledge on the population genetics of Baltic Sea pike in a previously unsampled area.  相似文献   

11.
12.
Long‐term studies of predator food habits (i.e., ‘predator‐based sampling’) are useful for identifying patterns of spatial and temporal variability of forage nekton in marine ecosystems. We investigated temporal changes in forage fish availability and relationships to ocean climate by analyzing diet composition of three puffin species (horned puffin Fratercula corniculata, tufted puffin Fratercula cirrhata, and rhinoceros auklet Cerorhinca monocerata) from five sites in the North Pacific from 1978–2012. Dominant forage species included squids and hexagrammids in the western Aleutians, gadids and Pacific sand lance (Ammodytes personatus) in the eastern Aleutians and western Gulf of Alaska (GoA), and sand lance and capelin (Mallotus villosus) in the northern and eastern GoA. Interannual fluctuations in forage availability dominated variability in the western Aleutians, whereas lower‐frequency shifts in forage fish availability dominated elsewhere. We produced regional multivariate indicators of sand lance, capelin, and age‐0 gadid availability by combining data across species and sites using Principal Component Analysis, and related these indices to environmental factors including sea level pressure (SPL), winds, and sea surface temperature (SST). There was coherence in the availability of sand lance and capelin across the study area. Sand lance availability increased linearly with environmental conditions leading to warmer ocean temperatures, whereas capelin availability increased in a non‐linear manner when environmental changes led to lower ocean temperatures. Long‐term studies of puffin diet composition appear to be a promising tool for understanding the availability of these difficult‐to‐survey forage nekton in remote regions of the North Pacific.  相似文献   

13.
Habitat models were developed from dedicated sighting survey data collected during summers between 1983 and 2006 in the North Pacific Ocean. Our aim was to examine the distribution pattern of the southern form of the short‐finned pilot whale (Globicephala macrorhynchus) in relation to the physical environment. We tested two different types of analytical procedures for habitat estimation: generalized linear models (GLMs) and ecological niche factor analysis (ENFA). The area under the receiver operating characteristic curve and the Boyce index suggested that GLM defined the core habitat well, whereas ENFA estimated the suitable habitat more correctly. These models indicated the core habitat within the subtropical gyre. Among the environmental variables used to construct the habitat models, the temperature at a depth of 200 m contributed most to both GLM and ENFA. This corresponds to the fact that the species mainly feeds on mesopelagic prey and that the axis of the Kuroshio Current, in the northwestern part of the subtropical gyre, is characterized by its temperature at 200 m. Habitat suitability in the coastal waters off southern Japan also correlated with the Kuroshio meander patterns. Thus, the southern form of the short‐finned pilot whale appears to be particularly well adapted to the ecosystem of the North Pacific subtropical gyre.  相似文献   

14.
  1. The Juan Fernandez Ridge, a vulnerable marine ecosystem located far off the coast of central Chile and formed by several seamounts, guyots and three islands (Robinson Crusoe, Santa Clara and Alejandro Selkirk), has recently been declared a Coastal Marine Protected Area of Multiple Uses with several National Parks embedded in it.
  2. Recent studies have highlighted the influence of remote and local oceanographic structures on the hydrographic dynamics of this ridge. However, there is still a gap in understanding how they affect the structure and dynamics of the surrounding insular planktonic communities.
  3. A hydroacoustic and oceanographic survey was conducted during the austral spring (October 2016), including hydrographic and zooplankton sampling around Robinson Crusoe Island. Oceanographic features were identified and tracked using satellite data (chlorophyll-a (Chl-a) and sea surface temperature) and modelling results.
  4. Two events of Chl-a increase relative to a threshold (>0.45 mg m−3) were forced by different physical processes, both affecting the western side of Robinson Crusoe Island. In event A during the cruise period, Chl-a subsurface maxima were associated with the arrival of a coastal meander originating on the continental shelf off Chile (remote process); the zooplankton was dominated by copepods and salps, with an evident coastal–oceanic gradient. In event B, Chl-a maxima were linked to a local upwelling forced by the intensification of a localized SSW wind. No influence of remote eddies or local Von Kármán vortices on Chl-a distribution was observed.
  5. These findings highlight the influence of remote and local physical processes on the structure of planktonic communities around Robinson Crusoe Island. Understanding the variability of these mechanisms and their effects at the base of the pelagic food web is critical in adopting an ecosystem-level approach.
  相似文献   

15.
Seagrass meadows support fisheries through provision of nursery areas and trophic subsidies to adjacent habitats. As shallow coastal habitats, they also provide key fishing grounds; however, the nature and extent of such exploitation are poorly understood. These productive meadows are being degraded globally at rapid rates. For degradation to cease, there needs to be better appreciation for the value of these habitats in supporting global fisheries. Here, we provide the first global scale study demonstrating the extent, importance and nature of fisheries exploitation of seagrass meadows. Due to a paucity of available data, the study used a global expert survey to demonstrate the widespread significance of seagrass‐based fishing activity. Our study finds that seagrass‐based fisheries are globally important and present virtually wherever seagrass exists, supporting subsistence, commercial and recreational activity. A wide range of fishing methods and gear is used reflecting the spatial distribution patterns of seagrass meadows, and their depth ranges from intertidal (accessible by foot) to relatively deep water (where commercial trawls can operate). Seagrass meadows are multispecies fishing grounds targeted by fishers for any fish or invertebrate species that can be eaten, sold or used as bait. In the coastal communities of developing countries, the importance of the nearshore seagrass fishery for livelihoods and well‐being is irrefutable. In developed countries, the seagrass fishery is often recreational and/or more target species specific. Regardless of location, this study is the first to highlight collectively the indiscriminate nature and global scale of seagrass fisheries and the diversity of exploitative methods employed to extract seagrass‐associated resources. Evidence presented emphasizes the need for targeted management to support continued viability of seagrass meadows as a global ecosystem service provider.  相似文献   

16.
Abundance of marine stocks fluctuates in response to both internal processes (e.g., density dependence) and exogenous drivers, including the physical environment, fishing, and trophodynamic interactions. In the United States, research investigating ecosystem drivers has been focused in data‐rich systems, primarily in the North Atlantic and North Pacific. To develop a more holistic understanding of important ecosystem drivers in the Southeast U.S. continental shelf Large Marine Ecosystem, we applied generalized linear and dynamic linear modeling to investigate the effects of climate and fishing covariates on the relative abundance trends of 71 demersal fish and invertebrate species sampled by a coastal trawl survey during 1990–2013. For the assemblage as a whole, fishing effects predominated over climate effects. In particular, changes in trawling effort within the penaeid shrimp fishery governed abundance trends of bony fishes, invertebrates, and elasmobranchs, a likely result of temporal changes in bycatch mortality. Changes in trawling intensity induced changes in overall community composition and appear to have altered trophic interactions among particular species. Among climate indices investigated, the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent in well‐supported dynamic linear models. Observed annual abundance trends were synchronous among some taxonomically related species, highlighting similar responses to exogenous influences based on life history. This study strengthens the foundation for generating hypotheses and advancing ecosystem‐based fisheries research within the region.  相似文献   

17.
Long‐term monitoring is critical for documenting population and community trends and for management, especially in large river‐floodplain ecosystems that provide important services. Levees have reduced active floodplains in most large rivers, but connectivity in some reaches could promote community resilience. Using multivariate tools and regression, we examined spatial and temporal structure in fish community samples from two decades (>1000 samples, >100 sites) in one of the largest relatively intact river‐floodplain ecosystems in North America – the Atchafalaya River (ARB), Louisiana. Assemblages exhibited significant structure temporally and spatially, with most substantial effects of year and hydrologic subdivisions; however, season and water level also influenced community structure. Temporal trends in communities were limited to few areas, while declines in species richness were more widespread; however, rarefied richness trends suggested that declines were slight. Recent and long‐term declines in abundance of economically important species (e.g., Black Crappie, Largemouth Bass, Bigmouth Buffalo) and increases in others (e.g., Smallmouth Buffalo, Blue Catfish, Freshwater Drum) drove differences among time periods. Our results suggest that the hydrologic subdivisions of the ARB may be an appropriate scale at which to manage fish populations, hydrology and water quality. Although we could not account for several important factors affecting fish communities in the ARB (e.g., hurricanes, major floods), and were limited by sampling variability, our findings highlight the utility of long‐term datasets from large river‐floodplain ecosystems for identifying important scales for management, determining species contributions to community change and forming hypotheses about anthropogenic and environmental drivers of variation in fish communities.  相似文献   

18.
19.
The distributions, concentrations, and community structure of pelagic larval fishes collected from the central and northern California Current in the northeast Pacific Ocean during May 2004, 2005, and 2006 were analyzed to investigate inter-annual, latitudinal, cross-shelf, and depth-stratified variability. The inter-annual climate-induced variability during the sampling period provided a unique opportunity to observe how larval fish communities adjust to rapidly changing environmental conditions. The 170 depth-stratified samples collected from three cruises yielded 14 819 fish larvae from 56 taxa representing 23 families. Dominant larval taxa were Engraulis mordax , Citharichthys spp., Sebastes spp., and Stenobrachius leucopsarus . Larval concentrations decreased significantly in 2006 from 2004 and 2005 levels following the anomalous oceanic conditions observed in 2005 and decreased water temperature in 2006. Larvae were generally found in higher concentrations at northern (>43°N) versus southern (<43°N) stations, with larval E. mordax and Citharichthys spp. found almost exclusively in the north during all sampled years. Inter-annual variability related to dynamic upwelling intensity was observed in cross-shelf larval distributions, although concentrations of S. leucopsarus larvae consistently increased in the offshore direction, while larval Sebastes spp. were generally found in highest concentrations at intermediate stations along the shelf. Multivariate analyses revealed that latitude, station depth, and sea-surface temperature were the most important factors explaining variability in larval concentrations. The present study shows that the ichthyoplankton community of the central and northern California Current changed dramatically in response to the variable environmental conditions of 2004–06.  相似文献   

20.
Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal pelagic fish targeted by multiple lucrative fisheries. Determining the distribution of swordfish larvae is important for indicating reproductive activity and understanding the early life history of swordfish. We identify and characterize larval swordfish distributions during peak swordfish spawning throughout the Gulf of Mexico and western Caribbean Sea with generalized additive models (GAMs) using catches of swordfish larvae during ichthyoplankton surveys in April and May of 2010, 2011, and 2012. The best fit GAM, as determined by stepwise, backward Akaike Information Criterion selection, included both physiochemical (temperature at 5 m, sea surface height anomaly (SSHA), eddy kinetic energy (EKE)), temporal (lunar illumination, hour of sampling) and spatial (location) variables, while near surface chlorophyll a concentration residuals remained as a random effect. The highest probability of larval swordfish catch occurred at sub‐surface temperatures, SSHA, and EKE values indicative of boundary currents. Standard lengths of larvae were larger further downstream in the boundary currents, despite high variability in length with location due to multiple spawning locations of swordfish near these currents. Probability of larval swordfish catch also peaked during the crescent and gibbous moons, indicating a lunar periodicity to swordfish spawning. These results suggest that swordfish may spawn during select moon phases near boundary currents that transport their larvae to larval and juvenile habitat including the northern Gulf of Mexico and coastal waters of the southeast United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号