首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We investigated the distributional shifts of groundfish in response to anomalous ocean conditions, particularly the recent anomalously warm period (2014–2016; “The Blob”), based on data from ten Gulf of Alaska bottom trawl surveys conducted by the Alaska Fisheries Science Center during 1996–2015. Six groundfish species were considered: Pacific cod (Gadus macrocephalus), arrowtooth flounder (Atheresthes stomias), walleye pollock (Gadus chalcogrammus), Pacific ocean perch (Sebastes alutus), northern rock sole (Lepidopsetta polyxystra), and southern rock sole (Lepidopsetta bilineata). Ontogenetic differences were examined by dividing data for each fish species into size classes. Our study demonstrated that after accounting for size‐specific depth preferences, the spatial responses of groundfish to anomalous ocean conditions differed by species and foraging guild in the central Gulf of Alaska. Pacific cod and arrowtooth flounder showed similar responses to ocean warming, but different responses to cooling. In general, Pacific cod moved to deeper depths in warmer years and moved to shallower depths in colder years. Arrowtooth flounder also moved deeper in warmer years. However, in colder years, large arrowtooth flounder (>40 cm) shifted toward shallower depths while smaller‐sized fish shifted toward deeper depths. In warmer years, large pollock (>30 cm) moved to deeper waters while smaller pollock (10–20 cm) moved to shallower waters. Pacific ocean perch exhibited an opposite response to thermal changes in habitat compared with Pacific cod and arrowtooth flounder. They moved deeper in colder years, but there was no clear change in depth as a function of size in response to warmer habitat.  相似文献   

2.
Ecosystem‐based fisheries management calls for the consideration of the indirect and cumulative effects of fishing, in addition to estimating direct fishing mortality. Here, we quantify such effects of fishing fleets, and their interactions, using a spatially explicit Atlantis simulation model of the food web and fisheries in the California Current. Simulations testing the effects of single fleets suggested that bottom trawl, fixed gear, and hake (Merluccius productus) trawl primarily have direct impacts on their target and bycatch species. Few indirect effects from these three fleets extended through predator–prey links to other parts of the food web. In contrast, effects of the purse seine fleet extended beyond the three groups it harvested, strongly altering the abundance of predators, planktonic prey, and benthos. In terms of nine ecosystem attributes, our experiments involving single fleets identified six fleets that caused the bulk of negative impacts. Specific fleets impacted different aspects of the ecosystem, for instance with groundfish gears causing reductions in piscivore abundance, and hake trawl and purse seine increasing krill through reducing abundance of planktivores. In terms of interactions among fleets' effects, the vast majority of effects were simply additive – the combined effect of two fleets was simply the sum of the individual fleets' effects. The analyses offer one way to sharpen the focus of ecosystem‐based fisheries management in the California Current, emphasizing impacts and interactions of particular stressors.  相似文献   

3.
  • 1. The fishing effort and turtle catch of vessels harbouring at Lampedusa island and fishing in the wider central Mediterranean area was monitored using a voluntary logbook programme. Two large trawlers were monitored between 2003 and 2005 and six small vessels using trawl nets, pelagic longline or bottom longline were monitored in the summer 2005.
  • 2. The observed turtle catch rates of pelagic longline and bottom trawl were among the highest recorded in the basin, and high catch rates by bottom longline were observed too. This suggests that the area contains major oceanic and neritic habitats for the loggerhead turtle Caretta caretta in the Mediterranean Sea.
  • 3. When fishing effort is considered, these results suggest a very high number of captures by Italian trawlers and longliners in the area, as well as by fleets from other countries. This is reason of concern for the conservation of the loggerhead turtle within the Mediterranean Sea.
  • 4. Different fishing gear have different technical/operational characteristics affecting turtle catch and mortality and the present knowledge about associated parameters of these gear varies too.
  • 5. All this considered, specific actions are recommended: (i) an awareness campaign to fishermen to reduce post‐release mortality, (ii) technical modifications to pelagic longline gear to reduce turtle catch, (iii) further investigation into turtle bycatch in all fishing gear, with priority given to bottom longline fishing and quantification of mortality caused by trawlers, (iv) assessment of the turtle populations affected by fishing activity in the area, and (v) international cooperation in undertaking threat assessments, and implementing regulations, management measures and monitoring.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Juvenile marine growth (SW1) of salmon and a new temperature change (TC) index were evaluated as ecosystem indicators and predictors for the post age‐0 year class strength (YCS) of groundfish in the Gulf of Alaska (GOA) and eastern Bering Sea (EBS). Our hypothesis was that SW1, as measured on the scales of adult Pacific salmon (Oncorhynchus spp.), is a proxy for ocean productivity on the continental shelf, a rearing area for young salmon and groundfish. Less negative TC index values are the result of a cool late summer followed by a warm spring, conditions favorable for groundfish YCS. In the GOA, SW1 was a positive predictor of age‐1 pollock (Theragra chalcogramma), but not age‐2 sablefish (Anoplopoma fimbria) YCS, indicating that the growth of the Karluk River sockeye salmon that enter Shelikof Strait is a proxy for ocean conditions experienced by age‐0 pollock. Contrary to our hypotheses, the TC index was a negative predictor of GOA pollock YCS; and the SW1 a negative predictor of EBS pollock and cod YCS since the 1980s. Recent fisheries oceanography survey results provide insight into possible mechanisms to support the inverse SW1 and YCS relationship. For the EBS, the TC index was a significant positive predictor for pollock and cod YCS, supporting the hypothesis that a cool late summer followed by a warm spring maximizes the over‐wintering survival of pollock and cod (Gadus macrocephalus), especially since the 1980s. The TC and SW1 index showed value for the assessment of pollock and cod, but not sablefish.  相似文献   

5.
Sea turtle by‐catch data in the Mediterranean were reviewed and analysed with fishing effort. The results indicate over 132 000 captures per year, with probably over 44 000 incidental deaths per year, while many others are killed intentionally. Small vessels using set net, demersal longline or pelagic longline represent most of the Mediterranean fleet and likely cause more incidental or intentional deaths than large vessels typically using bottom trawl or pelagic longline. When interactions, mortality, intentional killing, size (a proxy for reproductive value) and turtle populations are considered, results indicate that Mediterranean green (Chelonia mydas) and loggerhead turtles (Caretta caretta) are more affected (i) by fishing gears such as bottom trawlers, demersal longlines and set nets, (ii) by small‐scale fisheries, and (iii) by fishing in the eastern basin. Although small‐scale fisheries should be the priority target, available measures are easier to implement on the fewer large vessels. Moreover, these measures are few, and they are not implemented yet, while others should still be tested for the Mediterranean fisheries. Thus, measures for reducing captures or mortality through changing gear‐specific characteristics may help, but probably a more holistic conservation strategy aimed to an ecosystem‐based fishery management for a sustainable fishing would be the only solution for the long‐term survival of Mediterranean Sea turtle populations and their habitats. Small‐scale fisheries should manage marine resources, including turtles, in a responsible and sustainable way. Turtles may not only benefit from but can also help this process if their non‐consumptive value is fully recognized.  相似文献   

6.
Since the 1970s, South Pacific jack mackerel (Trachurus murphyi) is one of the world's most important commercial exploited fish stock. The peak in the catch was achieved in the 1990s, after which the catch for all fleets steadily decreased due to strong fishing mortality and potentially unfavourable environmental conditions. An application of the ecosystem and fish population model SEAPODYM was developed for this species in the South Pacific Ocean to determine the extent of environmental and fisheries drivers on the stock dynamics. We combined publicly available fishing data, acoustic biomass estimates and expert knowledge to optimise fish population dynamics parameters (habitats, movements, natural and fishing mortality). Despite a large proportion of missing catch over the simulation period, the model provides realistic distributions of biomass, a good fit‐to‐data and is in agreement with the literature. The feeding habitat is predicted to be delineated by water temperature between 15°C for the first cohorts and 8.5°C for the oldest and dissolved oxygen concentration above 1.8 ml/L. Optimal spawning temperature is estimated to 15.57°C (S.E.: 0.75°C). The core habitat is predicted off Central Chile which is also the main fishing ground. There are other areas of higher fish concentration east of New Zealand, in the eastern part of the southern convergence and off Peru and northern Chile. However, there is a clear continuity between these different large sub‐populations. Fishing is predicted to have by far the highest impact, a result that should be reinforced if all fishing mortality could be included.  相似文献   

7.
We evaluated the role of flatfishes in the organization and structure of the eastern Bering Sea ecosystem using the Ecopath/Ecosim approach. As basic input data for the Ecopath/Ecosim model, we used estimates of biomass from bottom trawl surveys and age-structured population models, production/biomass (P/B) ratio, consumption/biomass (Q/B) ratio, diet composition (DC), and fisheries harvests for each component of species or species groups. We estimated the trophic level of each component, niche overlaps among flatfishes, and the impacts of competition and predation on flatfish species in the eastern Bering Sea ecosystem. Based on those estimates, we developed the tropho-dynamic structure of the ecosystem, and the model was used to simulate ecological effects of fishery exploitation patterns. No single flatfish species appeared to have a profound and uniquely important role in the organization and structure of the ecosystem. Instead, the most important component among the guild of flatfish species appeared to be yellowfin sole Pleuronectes asper, which had greater biomass than other flatfish and a relatively diverse diet among the small flatfish species. Pacific halibut Hippoglossus stenolepis, Greenland turbot Reinhardtius hippoglossoides, and arrowtooth flounder Atheresthes stomias were important keystone predators in the eastern Bering Sea ecosystem together with some groups of marine mammals and sea birds. Intra flatfish complex cannibalism was not observed, however, substantial diet overlaps were common in the flatfish guild system.  相似文献   

8.
Georges Bank haddock is a recently recovered fish stock in the New England groundfish fishery. Due to federal constraints under the Magnuson–Steven Act, however, this stock cannot be optimally exploited due to the bycatch of other critical species in the New England groundfishery such as cod and yellowtail flounder which are overfished. The Ruhle trawl and Separator trawl are examples of recent advances in gear technology that have been shown to significantly increase haddock to bycatch ratios. This study models the groundfish fishery through a mixed-stock yield model which incorporates technological interactions. We also develop a socio-economic model that quantifies the amount of employment and producer surplus associated with three trawl types. Our results explore policy situations regarding the use of the new trawls. By bridging the biological and socio-economic models, we are able to view the fishery as a system that more accurately represents stakeholder views. Our model shows that each trawl, when used exclusively, produces different optimum strategies and therefore an optimum management strategy would most likely include a combination of trawl types. Our results also support the logic of using modified trawls for haddock fishing trips in which bycatch is strictly regulated (“B days”) as the Ruhle trawl is able to maintain 80% of catches caught by a conventional trawl while reducing bycatch up to over 60%. This paper is a first step towards an aid for policy makers to examine fishery gear trade-offs and the resulting biological and socio-economic consequences of different management actions within the constraints of the Magnuson–Stevens Act.  相似文献   

9.
Generalized linear mixed-effects models can be used to combine bottom trawl data from multiple vessels, each with a different fishing power, into a single time series of relative abundance. However, how important might it be to have a consistent set of vessels and vessel characteristics from year to year given we can model differences in fishing power among vessels? We demonstrate how changes in the suite of fishing vessels performing the survey can affect the results of the data analysis using sablefish catches in the U.S. west coast groundfish bottom trawl survey from 1998 to 2000. The results do not indicate that one must have a consistent set of vessels over time to provide useful data, but rather that there is benefit to consistency even when the survey data are analyzed using advanced statistical models. Further research should be undertaken to quantify these benefits specifically to aid in contracting and bidding of survey vessels.  相似文献   

10.
11.
Capturing the diversity of fishing fleets and identifying distinct subgroups is essential for effectively directing research and management efforts. In this study, the German Baltic gillnet fleet was split into distinguishable groups of vessels by applying a stepwise approach. Monthly landing profiles were classified using clustering techniques and arranged as annual landing sequences, as the basis to form groups of vessels with distinct annual landing sequences using sequence analysis. Commercial landings from 1243 vessels across 11 years (2008–2018) resulted in 8031 annual landing sequences, which were clustered into eight groups, each with a characteristic, annually recurring, seasonal landing pattern (cod group, cod-herring group, herring-flounder group, herring group, freshwater fish group, pikeperch group, eel group and port group). The results highlight the heterogeneity of the fleet and a strong adaptation to regional and seasonal resource availability. Studying sequences of landings instead of isolated events in time provides insight into the interlinkage and succession of landings and can aid at classifying fishing fleets and better targeting groups of vessels of interest.  相似文献   

12.
运用生产力-易捕率指数对10种热带太平洋鲨鱼种群的研究   总被引:2,自引:0,他引:2  
热带太平洋是全球产量最高的金枪鱼渔场,大洋性鲨鱼种群遭受金枪鱼渔业的影响受到国际社会的高度关注。由于缺少渔业统计资料,一般难以运用标准的资源评估方法对这些兼捕的种类进行评估。笔者运用种群生产力-易捕率分析(productivity-susceptibility analysis,PSA)方法,对热带太平洋10种鲨鱼遭受金枪鱼延绳钓渔业影响的风险程度进行比较分析,并计算风险指数(vulnerability)。风险指数从低到高的种类依次为锤头双髻鲨(Sphyrna zygaena)、路氏双髻鲨(S.lewini)、无沟双髻鲨(S.mokarran)、尖吻鲭鲨(Isurus oxyrinchus)、狐形长尾鲨(Alopias vulpinus)、长鳍真鲨(Carcharhinus longimanus)、大青鲨(Prionace glauca)、镰状真鲨(C.falciformis)、浅海长尾鲨(A.pelagicus)、大眼长尾鲨(A.superciliosus),表明大眼长尾鲨种群受延绳钓渔业影响而遭受过度捕捞的潜在风险最高,垂头双髻鲨的风险最低。该研究结果可以为热带太平洋金枪鱼延绳钓渔业的管理和生态系统保护提供科学参考。  相似文献   

13.
利用2001~2006年浙江省单拖渔业典型性调查数据和2005~2008年的单拖作业监测资料,从浙江省单拖捕捞力量和产量分布、渔获对象和资源密度变化及经济效益、劳动力组成等几个方面进行了初步分析。结果表明,近几年浙江省单拖作业船数保持在2200艘左右,产量在40×104t左右,单船净利润存在年间波动,以2005年最高;单拖作业渔场分布较广,渔获物以头足类和中下层鱼类为主;近年来经济鱼类比例下降,而其它低值鱼类比例上升。文章最后提出了当前浙江单拖渔业存在的问题,并提出了相应管理建议以供参考。  相似文献   

14.
Historically, to compensate for declining catches, fishers have usually shifted from species characterized by high catch rate onto less easily caught species or have moved into new fishing grounds. Such shifts are poorly documented for areas with a long history of exploitation (i.e. North Sea) as they occurred long time before the start of the regular assessments of the marine resources. The Swedish longline fisheries in the Kattegat‐Skagerrak and North Sea have a long history that spans over several centuries. These fisheries have historically targeted large demersal predator fish as ling (Molva molva), cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and skates (mainly Dipturus spp.). In this study, data from the Swedish longline fisheries from 1859 to 1960 have been collated. The data show that the geographical expansion of the fishery was extensive. At the turn of the 20th century, offshore longlining became concentrated north and west of the Shetlands and Hebrides, and after the WWII, the fishery expanded to Iceland and Rockall. In the offshore fishery, CPUE for the main target species, ling, remained stable, whereas for the other species, with the exception of tusk (Brosme brosme), CPUE showed a dramatic decline over time. In contrast, in the coastal longlining fishery, severe declines were revealed for all major target species except cod. We argue that the constant search for new fishing grounds in the Northeast Atlantic reflects a dwindling resource, where the fishermen kept the catch rates of ling high by travelling to more and more distant fishing grounds.  相似文献   

15.
We have extracted information on the habitats of bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) in the Eastern Tropical Pacific Ocean by matching the spatial‐temporal distribution of catch and effort of purse seine and longline fleets collected by the Inter‐American Tropical Tuna Commission with oceanographic conditions and subjecting the matched data to Quotient Analysis and General Additive Models (GAMs). These analyses yielded the following results. The habitats defined by the GAM analysis of young fish differ significantly between two periods, one before and one after the introduction of fish aggregation devices (FADs). This was not true for the older fish caught by longline. We speculate that these changes were caused by the extensive use of FADs. Younger bigeye and yellowfin caught by the purse seine fleet have a different preference of environmental variables compared to older fish caught by longline. This is to be expected since tuna of different age groups have different sizes, metabolic capabilities and swimming skills. Moreover, as revealed by GAMs, the habitats of young fish differ between species to a much larger degree than those of older fish. Our results indicate the fundamental differences between fishing methods, targeted species, and operating region of the two fisheries. Specifically, young bigeye occupy equatorial waters farther from the coast and where the hypoxic layer is deeper, young skipjack occupy more productive waters associated with equatorial and coastal upwelling, and young yellowfin occupy broad areas where waters are underlain by a shallow hypoxic layer.  相似文献   

16.
Abstract Fuzzy‐logic‐based methods and fuzzy logic formalism have been demonstrated as appropriate to address the uncertainty and subjectivity in complex environmental problems. This study investigates the use of three fuzzy logic methods in fisheries analysis, aiming towards the grouping and ranking of fishing subareas, according to their fisheries yield. Initially, a simple fuzzy c‐means clustering model was applied to the fishing subareas examined. A rule‐based Mamdani‐type fuzzy inference system was then developed to allow the direct fishing subarea classification. Finally, a species‐economic value weighted global fuzzy membership model was introduced, serving as an indirect classification and ranking scheme. Global memberships were plotted on simple ternary diagrams, producing representations that serve as tools in fisheries management. All methods examined the performance of the Greek fishing subareas, based on the annual landings series of the 10 most abundant fish species in terms of landed biomass, during the period 1985–1999.  相似文献   

17.
Reducing sea turtle by-catch in pelagic longline fisheries   总被引:6,自引:0,他引:6  
Reducing by‐catch of sea turtles in pelagic longline fisheries, in concert with activities to reduce other anthropogenic sources of mortality, may contribute to the recovery of marine turtle populations. Here, we review research on strategies to reduce sea turtle by‐catch. Due to the state of management regimes in most longline fisheries, strategies to reduce turtle interactions must not only be effective but also must be commercially viable. Because most research has been initiated only recently, many results are not yet peer‐reviewed, published or readily accessible. Moreover, most experiments have small sample sizes and have been conducted over only a few seasons in a small number of fisheries; many study designs preclude drawing conclusions about the independent effect of single factors on turtle by‐catch and target catch rates; and few studies consider effects on other by‐catch species. In the US North Atlantic longline swordfish fishery, 4.9‐cm wide circle hooks with fish bait significantly reduced sea turtle by‐catch rates and the proportion of hard‐shell turtles that swallowed hooks vs. being hooked in the mouth compared to 4.0‐cm wide J hooks with squid bait without compromising commercial viability for some target species. But these large circle hooks might not be effective or economically viable in other longline fisheries. The effectiveness and commercial viability of a turtle avoidance strategy may be fishery‐specific, depending on the size and species of turtles and target fish and other differences between fleets. Testing of turtle avoidance methods in individual fleets may therefore be necessary. It is a priority to conduct trials in longline fleets that set gear shallow, those overlapping the most threatened turtle populations and fleets overlapping high densities of turtles such as those fishing near breeding colonies. In addition to trials using large 4.9‐cm wide circle hooks in place of smaller J and Japan tuna hooks, other fishing strategies are under assessment. These include: (i) using small circle hooks (≤ 4.6‐cm narrowest width) in place of smaller J and Japan tuna hooks; (ii) setting gear below turtle‐abundant depths; (iii) single hooking fish bait vs. multiple hook threading; (iv) reducing gear soak time and retrieval during daytime; and (v) avoiding by‐catch hotspots through fleet communication programmes and area and seasonal closures.  相似文献   

18.
19.
Commercial landings of a rare pleuronectid flatfish, barfin flounder Verasper moseri, recovered drastically after large-scale stock enhancement in Hokkaido conducted since 2006. This study investigated commercial landings, fishing grounds, size distributions, and sex and age compositions of barfin flounder during 2007–2011 in southern Tohoku, their major spawning ground, which is over 700 km south of Hokkaido. Landings, mostly comprising stocked fish, increased drastically in southern Tohoku: from 2.0 tons in 2007 to 20.8 tons in 2010. Over 98 % of them were landed during January–April, with the peak period during February–March. Fishing logbook data of offshore bottom-trawl vessels during 2007–2010 revealed the upper continental slope off southernmost Tohoku as the main fishing ground (35°40′–36°50′N, annual weighted mean depth 267–299 m). Two size modes in the landings consisted of males (ca. 40 cm) and females (ca. 60 cm). The main age at fishery recruitment in southern Tohoku was younger for males (age 2+) than for females (ages 3+ and 4+), the result of which was that the female percentage was lowest at 1.5 % in 2009 and highest at 7.9 % in 2011. Our results showed clearly how the effectiveness of large-scale stock enhancement in Hokkaido extended to southern Tohoku in association with spawning migration of stocked barfin flounder.  相似文献   

20.
We report results from 28 yr of a midwater trawl survey of pelagic juvenile rockfish (Sebastes spp.) conducted off the central California coast. The fishery‐independent survey is designed to provide pre‐recruit indices of abundance for use in groundfish stock assessments. Standardized catch rate time series for 10 species were developed from delta‐generalized linear models that include main effects for year, station, and calendar date. Results show that interannual fluctuations of all 10 species are strongly coherent but highly variable, demonstrating both high‐ and low‐frequency components. A similarly coherent result is observed in the size composition of fish, with large fish associated with elevated catch rates. In contrast, spatial and seasonal patterns of abundance show greater species‐specific differences. A comparison of the shared common trend in pelagic juvenile rockfish abundance, derived from principal components analysis, with recruitments from five rockfish stock assessments shows that the time series are significantly correlated. An examination of oceanographic factors associated with year‐to‐year variability indicates that a signature of upwelled water at the time of the survey is only weakly related to abundance. Likewise, basin‐scale indices (the Multivariate El Niño‐Southern Oscillation Index, the Pacific Decadal Oscillation, the North Pacific Gyre Oscillation, and the Northern Oscillation Index) are poorly correlated with abundance. In contrast, sea level anomalies in the months preceding the survey are well correlated with reproductive success. In particular, equatorward anomalies in the alongshore flow field following the spawning season are associated with elevated survival and poleward anomalies with poor survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号