首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Purpose

Inorganic contaminants present a major challenge for the restoration of aquatic ecosystems. The objectives of this study were to determine the extent of trace metal contamination and investigate the influence of different plant communities on trace metal accumulation in the soils of the Florida Everglades.

Materials and methods

Soil samples (n?=?117) were collected from 0 to 10-cm depth using a stainless steel coring device from sites with three dominant plant communities—cattail, sawgrass, and slough—of Water Conservation Area-2A (43,281 ha) of Florida Everglades.

Results and discussion

The mean pH in soils collected from three plant communities was 6.75–6.82, whereas electrical conductivity was slightly greater in the sawgrass (0.69 dS m?1) than cattail (0.58 dS m?1) and slough (0.40 dS m?1). Mean reduction–oxidation potential was greatest in cattail (?113 mV) than sawgrass (?85.3 mV) and slough (?48.3 mV) soils. Among 11 trace metals (As, B, Co, Cr, Cu, Mn, Mo, Na, Ni, Pb, Zn) found in soil samples, Na had the greatest contents and was greater in cattail (2070 mg kg?1) and sawgrass (1735 mg kg?1) than slough (1297 mg kg?1). Four trace metals (B, Cu, Mo, Ni) were significantly greater in cattail than sawgrass and slough. Whereas, Mn was significantly lower in cattail (31 mg kg?1) than both sawgrass (84 mg kg?1) and slough (51 mg kg?1). Cattail also had significantly lower Cr (1.97 mg kg?1) and Pb (10 mg kg?1) than sawgrass (Cr 2.5 mg kg?1; Pb 20.8 mg kg?1). As (<6.9 mg kg?1), Co (<1.3 mg kg?1), and Zn (<17.2 mg kg?1) were not significantly different among soils collected from three plant community-dominant sites. Contents of Cd and Se were below the method detection limits (Cd 0.01 mg L?1; Se 0.2 mg L?1) and are not reported.

Conclusions

None of the trace metals in the soils exceeded the US Environmental Protection Agency sediment toxicity thresholds. Results from this study provided baseline concentrations of trace metals, which can be used to measure the success of restoration efforts in Florida Everglades.
  相似文献   

2.

Purpose

The objectives of this study were (1) to determine the concentrations and background concentrations of Ba, Co, Cr, Mn, and Ni in the urban soils of Talcahuano (Chile); (2) assess the level of contamination in the urban soils based on different pollution indexes; and (3) to identify natural or anthropogenic sources in order to obtain a spatial distribution of the pollutants.

Material and methods

A total of 420 samples were collected from the study area as follows: 140 topsoil samples (TS) (0–10 cm), 140 subsoil samples (SS) (10–20 cm), and 140 deep soil samples (DS) (150 cm). The soils were characterized, and the concentrations of Ba, Co, Cr, Mn, and Ni were analyzed by atomic absorption photospectrometry following aqua regia digestion. Correlations and principal component analysis combined with spatial analysis were implemented in order to distinguish the sources and their classification as geogenic or anthropogenic. Several simple and robust statistical methods were applied to datasets in order to explore their potential in the evaluation of a useful and robust background values. The degree of contamination along with the geoaccumulation index, enrichment factor, and contamination factor were also evaluated.

Results and discussion

The median concentrations obtained for various elements includes Ba 461 mg kg?1, Co 82.7 mg kg?1, Cr 134 mg kg?1, Mn 311 mg kg?1, and Ni 56.1 mg kg?1. In general, the concentrations of Ba, Co, Cr, Mn, and Ni decrease with depth. Correlations and principal component analysis suggest that Cr, Mn, and Ni are contributed by external sources. The spatial distribution of Cr, Mn, and Ni in TS displays a spatial pattern extending along industrial environments and emission sources.

Conclusions

The estimated background values determined with the iterative 2σ-technique includes 536 mg kg?1 for Ba, 95.9 mg kg?1 for Co, 208 mg kg?1 for Cr, 464 mg kg?1 for Mn, and 90.5 mg kg?1 for Ni. The geochemical index, enrichment factor, and the contamination factor register a moderate to considerable contamination in some soil samples.
  相似文献   

3.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

4.

Purpose

Fenugreek (Trigonella foenum-graecum L.) is a medicinal plant with antidiabetic effects. Chromium has been related to better glucose tolerance in humans. The objective of this study was to determine whether tannery sludge could be used for Cr biofortification of fenugreek.

Materials and methods

Soil was mixed with tannery sludge containing 6.03 g Cr kg?1. All Cr was in the form of Cr(III). Three treatments were disposed: control without sludge, and two treatments with 10 and 20 g sludge kg?1, respectively. Control and the 10 g sludge kg?1 treatments received NPK fertilizer to adjust the concentrations of major mineral nutrients to similar levels in all treatments. Soils were potted and planted with fenugreek. Plants harvested at the initial flowering stage were analysed for total Cr, Fe, Zn and Pb. Sequential soil extraction was applied to obtain operationally defined soil Cr fractions.

Results and discussion

Total Cr in all treatments was below or within the allowable range for agricultural soils (100–150 mg kg?1). In control soils, most Cr was in the residual fraction (HF/HClO4 digest). Tannery sludge-amended soils incorporated most Cr into the moderately reducible fraction (oxalic acid/ammonium oxalate extract). In fenugreek shoots, Cr concentrations reached 3.2 mg Cr kg?1, a higher concentration than that reported for other leafy vegetables. Lead concentrations in plant shoots from this treatment were enhanced but hardly exceeded 1 mg Pb kg?1.

Conclusions

Tannery sludge-amended soils containing Cr within the range of permissible concentrations can increase shoot Cr in fenugreek. Only sludge with low Pb concentrations should be used for Cr biofortification of fenugreek.  相似文献   

5.

Purpose

In soils from serpentinitic areas the natural background of Ni and Cr is so high that the assessment of contamination by comparing metal concentrations with some fixed thresholds may give unreliable results. We therefore sought a quantitative relation between serpentines and Ni and Cr concentrations in uncontaminated soils, evaluated if the approach may help in establishing a baseline, and discussed if additional anthropogenic inputs of Ni and Cr can be realistically individuated in these areas.

Materials and methods

We analysed the total, acid-extractable and exchangeable concentrations of Ni and the total and acid-extractable concentrations of Cr in 66 soil horizons, belonging to 19 poorly developed and uncontaminated Alpine soils. The soils had different amounts of serpentines, depending on the abundance of these minerals in the parent material. We calculated an index of abundance of serpentines in the clay fraction by XRD and related total metal contents to the mineralogical index. We then tested the regressions on potentially contaminated soils, developed on the alluvial plain of the same watershed.

Results and discussion

We found extremely high total concentrations of Ni (up to 1,887 mg kg–1) and Cr (up to 2,218 mg kg–1) in the uncontaminated soils, but only a small proportion was extractable. Total Ni and Cr contents were significantly related to serpentine abundance (r 2?=?0.86 and 0.74, respectively). The regressions indicated that even small amounts of serpentines induced metal contents above 200 mg kg–1, and the 95% confidence limits were 75 and 111 mg kg–1 of Ni and Cr, respectively. When the regressions were tested on the potentially contaminated soils, a good estimate was obtained for Cr, while the Ni concentration was overestimated, probably because of some leaching of this element.

Conclusions

The concentrations of Ni and Cr that can be expected in soils because of the presence of small amounts of serpentines are comparable to the amounts accumulated in the soil because of diffuse contamination and potentially contaminated soils had metal concentrations falling in the range expected from the presence of natural sources. Only in the case of very severe contamination events, the identification of anthropogenic sources adding to the natural background would be feasible.  相似文献   

6.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

7.

Purpose

Quarrying activities in areas with serpentinized rocks may have a negative impact on plant growth. Quarry soils generally offer hostile environments for plant growth due to their low-nutrient availability, low organic matter, and high-trace metal content.

Materials and methods

In order to determine the factors that can limit plant revegetation, this study was carried out in two serpentine quarries in Galicia (NW Spain): one abandoned in 1999 and the other still active.

Results and discussion

The results show that in soils developed in the abandoned quarry, the limitations for revegetation were: moderate alkaline pH (7.87–8.05), strong Ca/Mg (<1) imbalance, low N (<0.42 mg kg?1) and P (<2 mg kg?1) content, and high total heavy-metal content (Co 76–147 mg kg?1; Cr 1370–2600 mg kg?1; and Ni 1340–2040 mg kg?1). The limitations were much less intense in the soils developed in the substratum in the active quarry, which were incipient soils poorly developed and permanently affected by the quarrying activity.

Conclusions

Restoration work should be geared toward establishing a stable diverse vegetation cover, including serpentinophile species, which would provide the necessary modifications to correct nutritive imbalances and improve soil quality.
  相似文献   

8.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

9.

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.  相似文献   

10.

Purpose

The main objectives of the study were to (1) develop a one-step facile procedure for synthesizing a new chemical amendment agent with three chelating groups for solidifying multiple heavy metals, called sixthio guanidine acid (SGA), using guanidine hydrochloride and carbon disulfide as raw reactants and (2) assess its biodegradability, solidification effectiveness, and leachability in remedying soils contaminated with multiple heavy metals of various concentrations compared with other traditional amendment agents.

Materials and methods

Polluted soil samples were collected near a metalliferous mining site of Qixiashan in the southeast of Nanjing, China. Their concentrations were determined at 22.15–320 mg kg?1 for As, 3.30–29.31 mg kg?1 for Cd, 115.66–158.65 mg kg?1 for Ni, 165.04–1677.06 mg kg?1 for Pb, and 355.6–2426.91 mg kg?1 for Zn. Biodegradability of SGA was assessed in accordance with GB/T 21831-2008 and OECD-301D. Total concentration of heavy metals was determined according to ISO11466:1995. A modified three-step sequential Community Bureau of Reference (BCR) extraction procedure was used to examine speciation of heavy metals in the soil sample, and concentrations of heavy metals were measured by using inductively coupling plasma optical emission spectrometry (ICP-OES). Leachate extraction tests were carried out before and after the soil sample was solidified with different amendments in accordance with HJ/T 557-2009.

Results and discussion

It is found that the optimal conditions for SGA synthesis are a molar ratio of 4:1, a reaction temperature of 40 °C, and a reaction time of 2 h. Under such conditions, SGA yield is achieved as high as 91.5 %. The bioavailability and mobility of As, Cd, Ni, Pb, and Zn in highly contaminated soils can be reduced via using SGA. Our results indicate that SGA is nonbiodegradative and much more effective than other traditional chemical amendment agents in that it is highly effective in comprehensively solidifying As, Cd, Ni, and Pb.

Conclusions

SGA has the potential for comprehensive in situ remediation of soils contaminated with several heavy metal elements of various concentration levels, and such findings may be used as a guide to design new chemical amendment agents for rehabilitating soils contaminated with heavy metals.
  相似文献   

11.

Purpose

A study was carried out to evaluate the concentration of heavy metals (Pb, Cu, Cr, Cd, and Hg) and total petroleum hydrocarbons (TPH) in road-deposited sediments (RDS) from Tijuana, Mexico, and identify their possible sources.

Materials and methods

Thirty RDS samples were randomly collected during the dry season using a brush and dustpan and classified according to construction material, traffic intensity, and land use. Soil samples were collected from a nonurban area and their concentrations were used as background values. For TPH, the samples were quantified gravimetrically after Soxhlet extraction, whereas heavy metals were extracted by acid digestion and their concentrations were measured by atomic absorption spectrometry.

Results and discussion

The mean TPH concentrations for RDS were 4208 mg kg?1 and ranged from 1186 to 9982 mg kg?1. For heavy metals, mean concentrations were 31.8, 50.2, 17.1, 0.1, and 0.1 mg kg?1 for Pb, Cu, Cr, Cd, and Hg, respectively. The Igeo results showed that RDS from Tijuana are moderately to strongly polluted with Pb and Cu and moderately polluted with Cr. Principal component analysis (PCA) showed that Pb, Cu, and Cr could have their origin in tire wear, brake pads, bearings, and bushings.

Conclusions

The findings of this study revealed that RDS from Tijuana are polluted with TPH and heavy metals and that their principal sources are anthropogenic activities.
  相似文献   

12.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

13.

Purpose

In view that soils are bodies and that processes such as storage and release of water, carbon, nutrients and pollutants, and aeration and rooting happen in these bodies, it is of interest to know the density of elements and compounds in soils. On the basis of soil bulk and element density of organic carbon (OC), N, and heavy metals in soils and of horizon thickness, stocks of these elements for garden soils were calculated.

Materials and methods

Fourteen gardens in four allotments of the northwestern part of the Ruhr area, Germany were investigated. The research included 14 vegetable patches, 13 lawns, 2 compost heaps, and 1 meadow. Volume samples were taken. The soil analysis included pH, soil bulk density, and OC, N, Pb, Cd, Zn, Cu, and Ni contents.

Results and discussion

The soils were from sandy loam to loamy sand. The pH was slightly acid and C/N ratio about 20. Soil bulk density was between 0.8 and 1.4 g cm?3 and mean bulk density was 1.1 g cm?3. Mean OC content was for compost 7.4 %, vegetable patches 5.2 % (0–30 cm depth), and lawns and meadow 5.8 and 5.2 % (0–5 cm depth). OC density for compost was 76 mg cm?3, vegetable patches 56 mg cm?3, and lawns 67 mg cm?3 (0–5 cm). Mean OC stock in 0–30 cm soil depth in vegetable patches was 16.4 kg m?2, lawns 15.5 kg m?2, and meadow 11.1 kg m?2. N contents were between 0.06 and 0.46 %. For compost, the mean was 0.39 %, vegetable patches 0.27 % (0–30 cm), lawn 0.28 %, and meadow 0.26 % (0–5 cm). Mean stock of N in 0–30 cm depth for vegetable patches was 0.84 kg m?2, lawn 0.76 kg m?2, and meadow 0.55 kg m?2. For heavy metals in compost, vegetable patches, lawn and meadow, Cd contents were in the range of 1.7 to 3.0 mg kg?1, Pb 49 to 152 mg kg?1, and Zn 52 to 1830 mg kg?1. The amounts stored per square meters in 30 cm depth were for Cd 0.6–1.1 g, Pb 15–52 g, Zn 41–440 g, Cu 4–39 g, and Ni 1–8 g.

Conclusions

Allotment gardens have a high capacity to store CO2 as OC. Roughly, there will be 7–8 million tons of OC stored in the 1.3 million allotment gardens of Germany. The high amount of 8000 kg N ha?1 could damage the groundwater when released by wrong soil management. Cd, Zn, Pb, Cu, and Ni amounts of 7.8, 1000, 300, 135, and 30 kg ha?1, respectively, are a lasting burden.
  相似文献   

14.

Purpose

The area of cadmium (Cd)-contaminated soil in China is increasing due to the rapid development of the Chinese economy. To ensure that the rice produced in China meets current food safety and quality standards, the current soil quality standards for paddy soils urgently need to be updated.

Materials and methods

We conducted a pot experiment with 19 representative paddy soils from different parts of China to study the effects of soil properties on bioaccumulation of Cd in rice grains. The experiment included a control, a low treatment concentration (0.3 mg kg–1 for pH?<?6.5 and 0.6 mg kg–1 for pH?≥?6.5), and a high treatment concentration (0.6 mg kg–1 for pH?<?6.5 and 1.2 mg kg–1 for pH?≥?6.5) of Cd salt added to soils.

Results and discussion

The results showed that the Cd content in grains of the control and low and high Cd treatments ranged from 0.021 to 0.14, 0.07 to 0.27, and 0.12 to 0.33 mg kg–1, respectively. Stepwise multiple regression analysis indicated that soil pH and organic carbon (OC) content could explain over 60 % of the variance in the (log-transformed) bioaccumulation coefficient (BCF) of Cd in grains across soils. Aggregated boosted trees analysis showed that soil pH and OC were the main factors controlling Cd bioavailability in paddy soils. Validation of the models against data from recent literature indicated that they were able to accurately predict the BCF in paddy soils.

Conclusions

These quantitative relationships between the BCF of Cd in grains and soil properties are helpful for developing soil-specific guidance on Cd safety threshold value for paddy soils.  相似文献   

15.
The effect of high concentrations of nickel (Ni) and chromium (Cr) in alkaline serpentine Fluvisol (FL 1) on their uptake by grapevine as a perennial plant was compared to their accumulation on alkaline Fluvisol (FL 2) and an acid Cambisol (CM). The FL 1 revealed high pseudo total Ni (900–1737 mg kg?1) and Cr (263–775 mg kg?1) concentrations, whereas those in FL 2 and CM were low. Diethylenetriaminepentaacetic acid (DTPA)–extractable Ni was greatest in FL 1; DTPA‐extractable Cr was less than the detection limit. Concentrations of metals in grapevines revealed the pattern root > leaves > shoots > grapes. At FL 1, high Ni and Cr concentrations (40.7–68.8; 23.3–41.3 mg kg?1) in roots were measured. In grapes, these concentrations were low (Ni 0.4–0.9; Cr 0.1–0.6 mg kg?1), whereas those on FL 1 do not differ significantly from others, indicating that alkaline serpentine soils may be used for grapevine or other perennial plant growth.  相似文献   

16.
Eight fly ash samples collected from South African power stations were evaluated for various chemical properties, liming potential and metal species release under incubation. All fly ashes had alkaline pH ranging from 10.97 to 12.75 with much wider variations of electrical conductivity (range 0.46–8.27 dS m?1). Their total P content ranged from 553.3 to 1514 mg P kg?1 and Olsen extractable P from 130 to 345.5 mg P kg?1. Application of two of the fly ashes to three different soils showed a high ability to neutralize acidity, resulting in an average of 41% change in pH after 8 weeks of incubation. Across all three soils, the fly ash incorporation increased extractable P content from a P-deficient level to levels above 25 mg P kg?1 in two of the three soils. Except for Cu, all metal species (Cr, Pb, Ni and Fe) showed significantly (P ≤ 0.05) low extractability under fly ash treated soils compared to the soil alone control. These results suggest that the South African fly ashes studied are effective liming materials and can provide essential elements such as P with minimum risk of soil contamination from metal species release.  相似文献   

17.

Purpose

Heavy metal distribution in soils is affected by soil aggregate fractionation. This study aimed to demons trate the aggregate-associated heavy metal concentrations and fractionations in “sandy,” “normal,” and “mud” soils from the restored brackish tidal marsh, oil exploitation zone, and tidal mudflat of the Yellow River Delta (YRD), China.

Materials and methods

Soil samples were sieved into the aggregates of >2, 0.25–2, 0.053–0.25, and <0.053 mm to determine the concentrations of exchangeable (F1), carbonate-bound (F2), reducible (F3), organic-bound (F4), and residual fraction (F5) of Cd, Cr, Cu, Ni, Pb, and Zn.

Results and discussion

The 0.25–2 mm aggregates presented the highest concentrations but the lowest mass loadings (4.23–12.18 %) for most metal fractions due to low percentages of 0.25–2 mm aggregates (1.85–3.12 %) in soils. Aggregates <0.053 mm took majority mass loadings of metals in sandy and normal soils (62.04–86.95 %). Most soil aggregates had residual Cr, Cu, Ni, Zn, and reducible Cd, Pb dominated in the total Cd, Cr, Cu, Ni, Pb, and Zn concentrations. Sandy soil contained relatively high F4, especially of Cu (F4) in 0.25–2 mm aggregates (10.22 mg kg?1), which may relate to significantly high organic carbon contents (23.92 g kg?1, P?<?0.05). Normal soil had the highest total concentrations of metals, especially of Cu, Ni, and Pb, which was attributed to the high F3 and F5 in the <0.053 mm aggregates. Although mud soil showed low total concentrations of heavy metals, the relatively high concentrations of bioavailable Cd and Cu resulted from the relatively high Cd (F2) and Cu (F2) in the >2 mm aggregates indicated contribution of carbonates to soil aggregation and metal adsorption in tidal mud flat.

Conclusions

Soil type and aggregate distribution were important factors controlling heavy metal concentration and fractionation in YRD wetland soil. Compared with mud soil, normal soil contained increased concentrations of F5 and F3 of metals in the 0.053–0.25 mm aggregate, and sandy soil contained increased concentrations of bioavailable and total Cr, Ni, and Zn with great contribution of mass loadings in the <0.053 mm aggregate. The results of this study suggested that oil exploitation and wetland restoration activities may influence the retention characteristics of heavy metals in tidal soils through variation of soil type and aggregate fractions.
  相似文献   

18.

Purpose

Acid rain can accelerate the acidification of the chromium-contaminated soils, resulting in chromium releasing into soil solution and causing ecological risk. The current study aims to investigate the release of chromium in the remedied soils by Pannonibacter phragmitetus BB under the simulated acid rain leaching and to assess its risk to groundwater.

Materials and methods

P. phragmitetus BB was utilized to remedy the Cr(VI)-contaminated soils at two levels (80 and 1,276 mg kg?1) by the column leaching experiment, and the chemical remediation with ferrous sulfate was used as a control. The remedied soils by P. phragmitetus BB and ferrous sulfate were leached under the simulated acid rain to evaluate the release of chromium. Furthermore, the risk of chromium release from the remedied soils to the groundwater was assessed by a fuzzy comprehensive evaluation method.

Results and discussion

The average concentrations of water-soluble Cr(VI) in the remedied soils by P. phragmitetus BB were reduced to less than 5.0 mg kg?1. Under leaching situation with the simulated acid rain, the release of total chromium and Cr(VI) from the remedied soils by P. phragmitetus BB and ferrous sulfate declined rapidly with the extended leaching time. However, the release amounts of total chromium and Cr(VI) from the remedied soil by P. phragmitetus BB more efficiently deceased as compared with that by ferrous sulfate remediation. Carbonate-bounded, exchangeable, and organics-bonded chromium were the major chromium-releasing sources under the simulated rain leaching. After microbial remediation with P. phragmitetus BB and chemical remediation with ferrous sulfate, the risk grades of the remedied soils to groundwater declined from classes 11 to 5 and 6, respectively.

Conclusions

The risks of the remedied soils by both microbial remediation with P. phragmitetus BB and chemical remediation with ferrous sulfate to groundwater effectively decreased and microbial remediation more significantly declined the chromium risk to groundwater than chemical remediation.  相似文献   

19.

Purpose

The aim of this study was to obtain a complete picture of the geochemical character of the sediment in the eastern Posavina region, Serbia, an area which has thus far not been systematically investigated. Geological mapping and impact assessment were thus carried out for this area.

Materials and methods

Sediments were sampled (from 0 to 0.5 m depth) in four locations in eastern Posavina between 2002 and 2014. Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg) and a wide variety of organic parameters (16 EPA polycyclic aromatic hydrocarbons (PAHs), mineral oils, selected pesticides and polychlorinated biphenyls (PCBs)) were monitored. Metals were analysed by flame and graphite atomic absorption spectrometry, and gas chromatography with mass detection was used for the PAH analyses. The origins of the monitored substances were classified using geoaccumulation index (I geo), ecological risk index (RI) and principal component analysis (PCA/FA).

Results and discussion

The sediments all contained higher heavy metals concentrations than the upper continental crust (UCC), suggesting dynamic natural and anthropogenic processes in this unique region. Significant variations (RSD values from 13 to 190) were observed for Cd (0.001–80.00 mg kg?1), Hg (0.01–5.40 mg kg?1), mineral oil (2.00–1851 mg kg?1) and the sum of 16 EPA PAHs (0.003–5.57 mg kg?1). The I geo index classified the pollution risk due to Cr as strong, Cd, Zn and Hg as moderate to strong and Ni as moderate. Based on PCA/FA analysis, the parameters were grouped somewhat differently, with anthropogenic activity found to be responsible for much of the Hg, Cd and Cr pollution present in the sediments.

Conclusions

The analysis revealed eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), the sum of 16 EPA PAHs and mineral oil as parameters of great interest for this unique region. These parameters must be the focus of future monitoring programs, in support of appropriate remediation techniques and/or dredging activities, which are required in order to comply with the new Serbian regulations and the relevant EU recommendations.
  相似文献   

20.
三峡库区土壤重金属背景值研究   总被引:34,自引:1,他引:33  
在大规模、系统采样的基础上,通过不同均值计算方法的比较,提出了三峡库区土壤重金属含量背景值:As为5.835mg&#183;kg^-1,Cd为0.134mg&#183;kg^-1,Cr为78.03mg&#183;kg^-1,Cu为25.00mg&#183;kg^-1,Hg为0.046mg&#183;kg^-1,Ni为29.47mg&#183;kg^-1,Pb为23.88mg&#183;kg^-2,Zn为69.88mg&#183;kg^-1。与全国土壤背景值比较,三峡库区As、Hg背景含量低于全国背景值,Pb、Zn含量略低于全国背景值,Cd、Cr含量高于全国土壤背景值,Cu、Ni含量略高于全国背景值。根据本研究成果进行三峡库区环境质量评价,将能更加真实地反映三峡库区的实际情况,有利于库区土壤环境质量管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号