首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 376 毫秒
1.
杂种落叶松家系变异分析与优良家系选择   总被引:1,自引:0,他引:1  
以黑龙江省龙江县错海林场10年生杂种落叶松家系试验林为研究对象,对生长与材性性状进行调查分析,结果表明:杂种落叶松家系生长性状存在较丰富的变异,材性性状变异相对较小,其中,日12×兴9、日3×兴2、兴10×日13和兴12×兴2这4个家系变异较大。利用方差分析与多重比较等方法对杂种落叶松家系间差异性进行比较,结果表明:生长性状家系间差异达到显著水平,日5×兴9、日12×兴9、兴7×日77-2、日11×兴2这4个家系相比其它家系表现优异,树高方面,4个家系的平均值比总平均值高出9.32%,高出对照为22.86%,生长最快的日5×兴9家系比生长较慢的日3×长51家系高出21.64%,高出家系总平均值15.22%,高出对照为29.49%。胸径方面:4个家系的平均值比总平均值高出10.23%,高出对照为26.34%,生长最快的日5×兴9家系比生长较慢的日5×兴12家系高出24.67%,高出家系总平均值17.42%,高出对照为34.59%。木材密度方面,兴9×日76-2、日5×长78-3、日5×兴9、日11×兴2这4个家系表现较好,与其它多数家系存在差别,4个家系的平均值比总平均值高出11.79%,高出对照为11.98%,木材密度最大的的兴9×日76-2家系比密度较小的兴10×日13家系高出55.27%,高出家系总平均值15.18%,高出对照为15.33%,结合生长与材性性状分析结果,最终选择日5×兴9、日11×兴2这2个家系为杂种落叶松优良家系,家系遗传力为树高0.632,胸径0.807,木材密度0.460,遗传增益为树高0.139 5,胸径0.237 3,木材密度0.244 3。相关分析结果显示,木材密度与生长性状表现为正相关,纤维素质量分数与其它多数性状均表现为正相关,与木材密度相关达到显著水平,生长性状早晚相关均达到显著或极显著水平。  相似文献   

2.
杂种落叶松优良家系选择与生长节律分析   总被引:1,自引:1,他引:0  
以黑龙江省林口县青山林场10年生杂种落叶松家系试验林为研究对象,对生长性状调查数据进行分析。变异分析结果显示:杂种落叶松生长性状家系内存在较丰富的变异,树高方面,日本落叶松5×兴安落叶松12(K5×G12)、日本落叶松3×兴安落叶松2(K3×G2)、日本落叶松12×兴安落叶松9(K12×G9)、日本落叶松3×兴安落叶松9(K3×G9)这4个家系变异系数平均值比总平均值高出26.09%,高出对照(CK)1.04倍,高出长白落叶松白刀山种源37.88%,高出小北湖种源16.23%,高出兴安落叶松乌伊岭种源42.02%;胸径方面,K5×G12、K3×G2、K12×G9、兴安落叶松6×长白落叶松6这4个家系变异系数平均值比总平均值高出24.94%,高出CK 20.39%,高出长白落叶松白刀山种源23.39%,低于小北湖种源2.14%,高出兴安落叶松乌伊岭种源32.10%。对杂种落叶松家系进行差异性分析,方差分析结果显示,树高与胸径家系间差异均达到显著水平。杂种落叶松家系各组分生物量分配比例分析结果显示:日本落叶松5×兴安落叶松9(K5×G9)与日本落叶松11×兴安落叶松2(K11×G2)这2个家系总生物量高于其他参试家系,且具有更大比重的树干生物量,树叶生物量所占比例相对较小。结合以上结果与生态适应指数分析结果,最终选择K5×G9与K11×G2为杂种落叶松优良家系,树高方面,K5×G9家系比生长较慢的K5×G12家系高出24.91%,高出家系总平均值12.23%,高出CK 2.87%;胸径方面,K5×G9家系比生长较慢的K5×G12家系高出40.68%,高出家系总平均值21.51%,高出CK 8.50%。生长节律分析结果显示,与参试家系平均生长节律相比,优良家系生长期相对更长,且在快速生长阶段表现出更快的生长速度。   相似文献   

3.
以黑龙江省龙江县错海林场10年生杂种落叶松家系试验林为研究对象,对生长与材性性状进行调查分析,结果表明:杂种落叶松家系生长性状存在较丰富的变异,材性性状变异相对较小,其中,日12×兴9、日3×兴2、兴10×日13和兴12×兴2这4个家系变异较大。利用方差分析与多重比较等方法对杂种落叶松家系间差异性进行比较,结果表明:生长性状家系间差异达到显著水平,日5×兴9、日12×兴9、兴7×日77-2、日11×兴2这4个家系相比其它家系表现优异,树高方面,4个家系的平均值比总平均值高出9.32%,高出对照为22.86%,生长最快的日5×兴9家系比生长较慢的日3×长51家系高出21.64%,高出家系总平均值15.22%,高出对照为29.49%。胸径方面:4个家系的平均值比总平均值高出10.23%,高出对照为26.34%,生长最快的日5×兴9家系比生长较慢的日5×兴12家系高出24.67%,高出家系总平均值17.42%,高出对照为34.59%。木材密度方面,兴9×日76-2、日5×长78-3、日5×兴9、日11×兴2这4个家系表现较好,与其它多数家系存在差别,4个家系的平均值比总平均值高出11.79%,高出对照为11.98%,木材密度最大的的兴9×日76-2家系比密度较小的兴10×日13家系高出55.27%,高出家系总平均值15.18%,高出对照为15.33%,结合生长与材性性状分析结果,最终选择日5×兴9、日11×兴2这2个家系为杂种落叶松优良家系,家系遗传力为树高0.632,胸径0.807,木材密度0.460,遗传增益为树高0.1395,胸径0.2373,木材密度0.2443。相关分析结果显示,木材密度与生长性状表现为正相关,纤维素质量分数与其它多数性状均表现为正相关,与木材密度相关达到显著水平,生长性状早晚相关均达到显著或极显著水平。  相似文献   

4.
杂种落叶松幼龄期变异与优良家系初步选择   总被引:2,自引:0,他引:2  
对林口县青山林场7年生杂种落叶松21份参试材料生长性状进行了遗传变异与相关分析,其4年生、5年生、6年生和7年生树高的变异系数分别为29.19%、35.03%、35.70%和28.27%,呈两头小中间大的规律,胸径也呈类似的趋势。家系变异系数较大的前3个家系同较小的3个家系相比,7年生、6年生、5年生、4年生树高家系间变异幅度呈现两头高中间低的现象,胸径类似。树高、胸径、树高与胸径之间都呈显著或极显著相关,7年生树高与4年生、5年生、6年生树高的相关系数分别为0.801、0.892和0.941,随着林龄的增加,生长性状更紧密相关。各处理年度间生长稳定,早晚相关显著,家系间变异较为丰富,可以进行早期选择。各杂交组合中兴安落叶松种内杂种家系表现突出,7年生树高、胸径分别超过2个长白落叶松种源43.1%、60.0%,其次是兴安落叶松×日本落叶松、日本落叶松×兴安落叶松组合;虽然组合间存在优劣,但组合内家系间生长差别更大,在选择组合的同时更应重视家系间的选择。兴5×兴9、日5×兴9、日5×长78-3和日11×兴2入选优良家系,7年生树高、胸径的遗传力分别为0.964、0.946,遗传增益分别为17.5%、24.3%。4个家系的树高、胸径平均值分别大于白刀山40.7%、67.1%,大于小北湖52.8%、81.1%。  相似文献   

5.
以黑龙江林口县青山林场12年生杂种落叶松家系试验林为研究对象,利用树高、胸径、材积等指标,采用方差分析法对家系间生长性状差异性进行比较,利用最佳线性无偏估计(BLUP)法对各家系材积性状育种值进行估算,对各参试家系生长性状进行遗传变异分析,筛选出生长表现较好家系。结果表明:杂种落叶松家系生长性状存在较丰富的变异,家系树高、胸径平均变异系数分别为21.23%和28.40%,材积变异系数最大,为58.87%;各家系间生长性状差异显著,家系间胸径与材积差异达到极显著水平,其中日12×兴9、日5×兴9、兴5×兴9、兴6×和6家系在材积方面表现较好;结合材积性状各家系育种值估算结果,筛选出日12×兴9、日5×兴9、兴5×兴9这3个家系作为杂种落叶松优良家系;生长性状间均为正相关关系,冠幅与树高相关性未达到显著水平,但与胸径、材积存在极显著正相关关系,说明冠幅对杂种落叶松的径生长具有积极的促进作用,对高生长的影响弱于径生长。  相似文献   

6.
杂种落叶松区域化试验与幼龄期选择   总被引:1,自引:0,他引:1  
在黑龙江、吉林以及辽宁省8个地点对杂种落叶松21个处理进行了区域化试验,用Eberhart和Rus-sell模型等4种方法对5年生树高进行稳定性分析,并筛选出生长好且稳定性高的处理。结果表明:5年生树高和胸径各地点处理间差异均极显著。各地树高和胸径生长较好的家系分别为:北安,日5×兴9、日3×兴9;草河口,日5×长77-3、兴10×日13、兴5×兴9;错海,日12×兴9、日5×兴9、兴10×日13;富锦,日5×兴9、兴7×日77-2、兴6×和6;吉林,日3×石51、日5×长78-3、兴10×日13;林口,日5×长78-3、兴7×日77-2、兴6×和6;尚志,日5×长77-3、日5×兴9;铁力,日3×兴9、日5×兴9、兴10×日13、兴7×日77-2.5。5年生树高多点联合方差分析表明:处理间、地点间以及处理×地点差异均极显著。秩次分析法与Shukla模型适合评价杂种落叶松生长的稳定性。家系日5×长78-3、日5×兴9、兴5×兴9生长好且稳定性高,家系日5×长77-3、兴6×和6、兴7×日77-2生长好但不稳定。  相似文献   

7.
17年生杂种落叶松遗传变异及优良家系选择   总被引:3,自引:0,他引:3  
以黑龙江省林口县青山实验林场17年生杂种落叶松自由授粉家系子代测定林为对象,测定其树高、胸径、材积与基本密度,估算各性状的变异系数、相关系数、遗传力及遗传增益,以筛选生长和材质兼优的家系。结果表明:树高、胸径和材积都存在较大变异,变异系数分别为13.3%、22.5%和49.0%,基本密度变异系数为9.1%;树高、胸径、材积和基本密度4个性状家系间都存在显著差异,家系遗传力分别为94.2%、92.1%、92.7%和30.8%,生长性状受较强的遗传控制,基本密度遗传力稍低;树高、胸径、材积与基本密度间的遗传相关系数分别为-0.093、-0.140、-0.159,呈微弱负相关,但相关不显著,可以进行独立选择。通过对10个家系的生长性状分析,选出了日3×兴2和兴7×日77-2生长性状优良的2个家系,在20%的入选率下,树高、胸径、材积其遗传增益分别为9.4%、17.3%、42.3%。基本密度较大的家系是兴7×日77-2,在10%的入选率下,家系遗传增益为3.3%。综合生长和密度性状,确定兴7×日77-2家系为优良家系。家系兴7×日77-2高出对照均值:树高15.1%、胸径23.1%、材积49.5%、基本密度4.1%;高出家系均值:树高5.4%、胸径5.0%、材积16.6%、木材密度4.4%。  相似文献   

8.
落叶松单交种与三交种生长量分析   总被引:1,自引:0,他引:1  
为了探讨单交种、三交种的杂种优势及多次杂交的成效,以便更好地利用杂种优势,对林口县青山林场14年生杂种落叶松子代测定林进行了分析。结果表明:落叶松杂种具有明显的杂种优势,12个三交种家系材积平均值分别超过亲本31.8%,超过长白落叶松种子园41.2%,超过小北湖种源214.8%;4个单交种材积平均值分别超过亲本31.4%,超过长白落叶松种子园44.6%,超过小北湖种源222.5%。单交种与三交种生长性状差异不显著:落叶松亲本、单交种以及三交种树高、胸径及材积生长量间差异显著,其中单交种与亲本间差异显著,而与三交种生长量间差异不显著。不同组合表现不同,日12×兴9组三交种高生长较好,日5×兴9组单交种高生长较好,兴7×日77-2组单交与三交种胸径、树高及材积差异均不显著。  相似文献   

9.
通过对杂种落叶松子代测定林(16年生)10个家系的树高、胸径及立木材积进行分析,结果表明:3个性状家系间和家系内都存在着丰富的变异,高生长量最大的家系与最小的家系相差1.3倍,胸径相差1.4倍,材积相差2.3倍,各性状家系内单株间相差1倍多。树高、胸径及立木材积的家系遗传力分别为0.741、0.718和0.642,遗传增益分别为15.7%、20.8%和41.5%。筛选出4个优良家系:兴7×日77-2、日5×长77-3、日5×长78-3和日5×兴9,其树高、胸径及材积较当地落叶松分别提高27.9%、42.9%、131.5%,22.6%、28.1%、79.4%,18.8%、28.3%、78.9%和14.1%、26.8%、78.2%。  相似文献   

10.
樟子松种源含碳量遗传变异分析与高碳汇种源选择   总被引:4,自引:0,他引:4  
以黑龙江省尚志市帽儿山实验林场28年生樟子松种源试验林为对象,测定了树高、胸径、材积、木材密度、含碳率、干材生物量、碳储量、木质素质量分数、综纤维素质量分数,并运用Spass18分析软件估算了各性状及指标的变异系数、相关系数,以筛选含碳率高、碳储量大的种源。结果表明,树高、胸径、材积、干材生物量、碳储量都存在较大的变异。其中:干材生物量变异系数最大,为26.818%;木材密度、含碳率、木质素质量分数、综纤维素质量分数的变异相对较小,含碳率变异系数最小,为1.479%;碳储量与胸径、树高、材积、木材密度、干材生物量、含碳率各项指标均正相关极显著,含碳率与木材密度和干材生物量正相关显著。对生长性状及各项指标进行方差分析表明:种源干材生物量存在显著差异;木质素质量分数存在显著差异;碳储量、木材密度、立木材积在10%水平上达到显著。通过对8个种源的生长性状及干材生物量、含碳率、碳储量的分析,选择出含碳率较高、碳储量较大的2个种源,即红花尔基和图强,其含碳率分别为0.469、0.472,单株碳储量分别为31.268、29.175 kg,2个种源的单株碳储量均值高于对照37.2%。  相似文献   

11.
以黑龙江省林口县青山林场30年生杂种落叶松子代测定林中的16个家系为研究对象,测定其生长及材性性状,估算其变异系数、相关系数、遗传力及遗传增益,以筛选出优良家系。结果表明:家系间的生长与材性性状存在较丰富变异,树高、胸径以及材积变异系数较大,其中材积的变异系数最大,为21.77%,纤维素质量分数、半纤维素质量分数、木质素质量分数以及基本密度变异系数相对较小,纤维素质量分数的变异系数最小,为3.78%。生长性状与材性性状之间相关性不显著,可以进行独立选择。家系间的树高、胸径、材积以及纤维素质量分数差异显著,基本密度、半纤维素质量分数以及木质素质量分数差异不显著。材积以及纤维素质量分数的家系遗传力分别为68.4%、49.1%,受中等强度的遗传控制。综合生长与材性性状筛选出适合做纸桨材的优良家系为日3×兴8、日5×兴8和日11×石51,在20%入选率下材积和纤维素质量分数的遗传增益分别为25.0%、6.9%,3个家系材积和纤维素质量分数的均值分别高于家系平均值13.46%、1.95%。  相似文献   

12.
落叶松胚性愈伤组织诱导与未成熟胚形态的关系   总被引:1,自引:0,他引:1  
以13落叶松未成熟胚为材料进行胚性愈伤组织的诱导,其中,长73-44、日5*、日5、日5×长77-1、日5×兴9、日12×兴9等6个家系诱导出胚性愈伤组织,7月1日采集的日5×长77-1未成熟胚的胚性愈伤诱导率最高,达13.93%。研究结果表明,不同采集时间的落叶松合子胚形态存在一定区别,诱导出的愈伤组织形态也有所不同,其胚性愈伤组织诱导明显受到取材时间及家系的影响。落叶松胚胎发育存在多胚现象,胚性愈伤组织的诱导率与散粉后时间及胚胎长度呈负相关,而与多胚发生率呈显著正相关(p=0.028)。  相似文献   

13.
杂种落叶松苗高生长稳定性分析   总被引:2,自引:0,他引:2  
在黑龙江、吉林和辽宁3省7个试验点对杂种落叶松13个处理播种育苗,用Eberhart和Russell模型等5种方法进行苗期稳定性分析,并筛选生长好且稳定性高的处理。结果表明,1年生和2年生高生长表现出极显著的正相关,Pearson和Spearman 相关系数分别为0.535和0.536,2年生各地点处理间均差异极显著(P<0.01),各地生长较快的家系:草河口为日本落叶松Larrix kaempferi 5 × 兴安落叶松Larrix gmelinii 12,兴安落叶松9 × 日本落叶松76-2;错海为日本落叶松5 × 长白落叶松Larrix olgensis77-3,日本落叶松5 × 长白落叶松78-3;富锦为兴安落叶松9 × 日本落叶松76-2,兴安落叶松5 × 兴安落叶松9;吉林为兴安落叶松12 × 兴安落叶松2,兴安落叶松7 × 日本落叶松77-2;林口为兴安落叶松12 × 兴安落叶松2,兴安落叶松5 × 兴安落叶松9;尚志为日本落叶松5 × 兴安落叶松9,日本落叶松5 × 长白落叶松77-3;铁力为兴安落叶松5 × 兴安落叶松9,兴安落叶松7 × 日本落叶松77-2。AMMI模型方差分析表明,处理间、地点间以及处理 × 地点差异极显著(P<0.01),方差分量分别为16.00%,56.25%,27.75%。AMMI模型、George模型和高稳系数法适合评价苗期高生长的稳定性。家系日本落叶松5 × 长白落叶松78-3,日本落叶松11 × 兴安落叶松2,兴安落叶松9 × 日本落叶松76-2和兴安落叶松5 × 兴安落叶松9生长好且稳定性高,兴安落叶松12 × 兴安落叶松2,日本落叶松5 × 兴安落叶松9,日本落叶松5 × 长白落叶松77-3和日本落叶松3 × 兴安落叶松9家系在部分地区生长好。图1表6参13  相似文献   

14.
落叶松杂种与亲本ISSR鉴别技术   总被引:1,自引:0,他引:1  
以兴安落叶松(Larix gmelini)、长白落叶松(Larix olgensis)和日本落叶松(Larix Kaempferi)及其杂种子代当年生嫩叶为研究材料,采用ISSR分子标记技术对落叶松亲本与杂种进行了鉴别.结果表明:用ISSR16和ISSR19号引物扩增的特异条带能够分别鉴别兴安落叶松×长白落叶松杂交种和...  相似文献   

15.
日本落叶松与长白落叶松及其杂种光合特性比较   总被引:4,自引:3,他引:1  
以采穗圃中的采穗母株为研究对象,对日本落叶松、长白落叶松及其杂种进行了光响应曲线和CO2响应曲线的测定,通过估算光合参数,比较了它们的光合特性。结果表明:与日本落叶松相比,日本落叶松×长白落叶松杂种的最大净光合速率、表观量子效率和光合能力等与光合效率正相关的参数都较低,光强和CO2的利用范围也更窄,暗呼吸速率却更高,而羧化效率和光呼吸速率没有差别。与长白落叶松相比,尽管长白落叶松×日本落叶松杂种的暗呼吸速率较低,但其表观量子效率更低,CO2补偿点更高,而羧化效率、光呼吸速率、光补偿点没有差别。日本落叶松×长白落叶松杂种与长白落叶松×日本落叶松杂种相比,光呼吸速率和CO2补偿点稍高,羧化效率稍低,而表观量子效率、暗呼吸速率、光补偿点没有差别。因此,认为落叶松杂种的光合效率不具有超亲杂种优势。   相似文献   

16.
日本落叶松、长白落叶松及其杂种光合生产力比较   总被引:1,自引:0,他引:1  
对辽东地区无性系评比林中的日本落叶松、长白落叶松及其正反交杂种的光合速率、呼吸速率、全株总叶面积、生长期、生长节律和生长量等指标进行了测定,以比较它们光合生产力的差异。结果表明:与光合速率相比,生长期和全株总叶面积是形成光合生产力差异的主要因素。与长白落叶松相比,日本落叶松的光合速率较低而呼吸速率较高,但因生长期和总叶面积的优势而光合生产力较高。与纯种相比,杂种光合速率和呼吸速率较高,但没有达到差异显著性水平;由于生长期、总叶面积呈偏母系遗传特性,日本落叶松×长白落叶松杂种继承了日本落叶松生长期长和总叶面积大的特点,因而拥有最高的光合生产力,而长白落叶松×日本落叶松杂种的光合生产力较低。综合来看,日本落叶松×长白落叶松杂种的光合生产力最高,长白落叶松的光合生产力最低,日本落叶松和长白落叶松×日本落叶松杂种居中。  相似文献   

17.
以新疆落叶松为母本,华北、日本、兴安和长白落叶松为父本进行控制授粉制种、育苗和造林。结果表明:各杂交组合苗木均具有较强的杂交优势,但以日本、兴安和长白落叶松为父本的杂交子代苗,新梢木质化程度较差;以华北落叶松为父本的杂交苗抗性好,且花期与新疆落叶松较为吻合。综合分析认为,华北落叶松可作为杂交利用的首选组合亲本。  相似文献   

18.
不同抚育间伐强度对落叶松人工林生态系统碳储量影响   总被引:4,自引:2,他引:2  
以三江平原丘陵区佳木斯市孟家岗林场的长白落叶松人工幼龄林(17年生)为对象,设置5种长期、多次、不同强度的间伐试验:2次高强度间伐(L1,35.6%~43.4%)、2次中强度间伐(L2,23.1%~24.3%)、3次中强度间伐(L3,15.3%~23.8%)、4次低强度间伐(L4,5.8%~17.1%)和对照(CK,历次间伐时仅移出枯立木)。通过5种处理后幼龄林生长至成熟林时(56年生)生态系统各组分碳储量调查,结合1974—2013年历次间伐木和枯死木碳储量,从枯死木、间伐木和成熟林活立木生物量碳、土壤碳、生态系统碳分配和林分累计固碳量方面,评价长期间伐对落叶松人工林碳储量的影响。间伐不仅能够明显降低成熟林累计枯死木生物量碳,由CK处理的40.3 t/hm2降低至8.3(3.1~14.1)t/hm2,而且能够提供32.8(21.9~50.1)m3/hm2的间伐材和10.4(6.9~13.8)t/hm2的生物量碳用作生物质燃料。间伐虽然降低成熟林枯枝落叶层碳储量(比CK降低14.8%),但能增加矿质土壤碳储量(比CK提高5.6%),尤其是L3处理后矿质土壤碳储量明显增加(比CK提高15.5%);间伐没有改变成熟林活立木生物量碳和生态系统碳储量分配特征(林分尺度活立木生物量碳中树干、树根、树枝、树皮和树叶比例依次为67.7%~68.7%、17.5%~18.0%、6.8%~7.0%、4.8%~4.9%和2.2%~2.3%。生态系统碳储量中活立木、0~30 cm矿质土壤层、枯枝落叶层、枯立木、灌木层和草本层所占比例依次为69.7%~72.0%、24.7%~27.7%、1.5%~2.2%、0~1.3%、0.1%~1.3%和0.1%~0.2%);但能提高地下碳储量(活立木和枯立木树根+矿质土壤层+枯枝落叶层+灌木层+草本层)占生态系统碳储量比例(间伐为40.5%~42.4%,CK为40.0%),降低树干、树枝和树皮之和所占比例(间伐为56.0%~57.9%,CK为58.3%),维持针叶比例恒定(1.6%)。成熟林主伐时,仅利用干材而枝桠留地时,能使活立木生物量碳的26.5%~27.4%留存于林地(CK为27.7%),而将枝桠随树干一起移出系统时,能使活立木碳储量的19.7%~20.3%(CK为20.5%)、生态系统碳储量的42.1%~44.0%(CK为41.7%)留存于系统。落叶松幼龄林(17年生)多次间伐后至成熟林时(56年生)活立木生物量碳、生态系统碳储量和林分累计固碳量能够恢复至CK相近似水平,分别仅比CK降低1.7%(-4.3%~1.5%)、1.7%(-5.9%~1.4%)和1.1%(-4.0%~0.8%),L3和L4处理,尤其是L4处理在上述指标方面甚至高于CK 处理1.5%、1.4%和0.8%。5.8%~23.8%的3~4次中、低强度抚育间伐至成熟林时既可提供间伐材和生物质燃料又能维持高的活立木生物量碳、生态系统碳储量和林分累计固碳量。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号