首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同土壤类型对硫酸钾镁肥中钾、镁、硫吸附特性研究   总被引:1,自引:1,他引:0  
在水稻土、红壤、潮土中分别加入不同浓度的硫酸钾镁肥溶液,研究3种土壤在不同浓度硫酸钾镁肥下pH值的变化及对K、Mg、S吸附的能力。结果表明:在3种土壤中加入硫酸钾镁肥都使土壤pH值下降,下降速度是红壤>水稻土>潮土。3种土壤对K的吸附能力较强,可用一元线性方程拟合,在0~354 mg kg-1的K加入量范围内,吸附率在50.4%~74.1%;对S的相对吸附率居中,可用一元二次方程拟合,在0~311 mg kg-1的S加入量范围内,吸附率在35.6%~88.1%;对Mg的吸附能力极弱。3种土壤对K、S吸附能力大小顺序为:潮土>红壤>水稻,对镁吸附能力大小顺序为:潮土>水稻土>红壤。土壤田间施用硫酸钾镁肥量应根据不同土壤对养分的吸附能力大小进行相应的调整。  相似文献   

2.
龚子同 《土壤通报》2012,(5):1025-1028
着重介绍了宋达泉先生在土壤发生分类中建立黑土作为一个独立土类的贡献。  相似文献   

3.
我国灌淤土的形成和分类   总被引:1,自引:0,他引:1       下载免费PDF全文
史成华  龚子同 《土壤学报》1995,32(4):437-448
本文从全国范围内全国地研究了灌淤土的形成特点,主要表现在:(1)地面的抬升和耕层的加厚;(2)有机质及N、P、K等养分的增加;(3)土体含水量的提高;(4)可溶盐和石膏的淋洗;(5)碳酸盐和石膏的淋溶与补充;(6)灌淤层理的消失和土壤物理性状的改善等。总结了灌淤土的诊断层-灌淤表层的特点,阐明了灌淤土在土壤系统分类中的位置:灌淤土作为人为土壤,它与干旱土、潮湿土、始成土和新成土等其它土壤具有很大的  相似文献   

4.
Abstract

Three methods for soil potassium extraction (M NH4OAc pH 7, 0.01 M AgTU and 30 % hot H2SO4) were compared for a variety of kaolinitic soils of the tropics. The AgTU‐extractable K was much higher than the M NH4OAc‐extractable K when vermiculite clay was present in the soil. The correlation between both was given by an R value of 0.937. The amounts of K extracted by 0.01 M AgTU and by hot H2SO4 were approximately the same. The R value for these two methods was 0.843.

It is suggested that the AgTU extractant could be used for determination of plant‐available K in soil and for testing for the presence or absence of vermiculite clay in soils.  相似文献   

5.
6.
在当今世界城市化高速发展的背景下,土壤资源的保护也越来越受到人们的关注,土壤多样性骤减也成为了全球关注的焦点,界定和评价稀有濒危土壤对于保护土壤资源及其多样性具有非常重要的指导意义。本文以郑州市为例,应用土壤类型密度和土壤多样性两种多样性测度方法分别对郑州市1 km×1 km和5 km×5 km网格尺度下基于不同分类级别的土壤空间多样性分布格局进行了分析和定量化研究;利用1988、2001、2007和2013年4期遥感资料进行土地利用分类,结合基于第二次土壤普查的1∶20万郑州市土壤图,采用多时相连续对比法对郑州市近25年来土地利用变化对土壤的扰动情况进行了分析;结合土壤多样性方法和传统评价方法界定和评价了稀有濒危土壤。结果表明,郑州市土壤整体分布较为均匀,且随着分类单元级别的降低,构成组分多样性指数升高,即分类越细,土壤类型分布越均匀;1988~2013年郑州市土壤受到非农建设扰动剧烈,干扰比例为16.01%,随着时间的推移,土壤受扰动的速度是呈上升趋势的;稀有土属有16种,濒危土属有2种,稀有濒危土属有4种。截止2013年濒危土属整体受到扰动比例高达35.38%,而稀有土属受到扰动比例为8.76%。  相似文献   

7.
Red soils in Greece are distributed throughout the country, but they occur more frequently in the southern provinces and constitute important soil resources supporting several land utilization types. They can be grouped into two categories: the autochthonous and the allochthonous. The former soils are found on hard limestone and on basic igneous rocks in sloping mountainous or hilly landscapes. Moreover, they can be found on mica schists and gneisses in locations adjacent to marble or calcareous mica schists.Allochthonous red soils are wide-spread on late Tertiary and Pleistocene surfaces in the lowlands. Many of these deep deposits have red strata, a few decimeters to several meters thick, or red-colored and fine-textured layers interbedded with light colored deposits of marl, or conglomerates and also with thick strata enriched with calcareous concretions. They are distributed in the thermo- and meso-mediterranean bioclimatic zones. These sites have a common feature, the gently sloping terrain that ensures efficient drainage.There are some differences in chemical and physical properties and in the clay mineralogy of the two groups of Greek red soils. Palygorskite is present in some soils developed on basic rocks; the clay minerals of the allochthonous soils on Pleistocene and late Pliocene seems to be mixed with micas in significant amounts.Soil forming factors required for the formation of red soils are: (a) parent material containing iron-bearing minerals, and rich in bases, (b) slope gradients and/or water permeabilities of the bed-rock securing excessive drainage and (c) vegetation cover that does not produce high amounts of, and deeply distributed organic matter.The allochthonous red soils have likely inherited their color from their parent materials that were transported from the originally formed residual soils on hard limestone. The soils retain the red color in the thermo-mediterranean zone only on sloping terrains. The soils on these landscapes are frequently stratified.The Greek red soils belong to the great groups of: Rhodoxeralfs, Palexeralfs, Xerochrepts, Orthents. Large portions of the allochthonous soils have been desertified or have been severely degraded and their extensive exploitation is not recommended.Soil management practices applied in the allochthonous soils include erosion control, preservation of organic matter, minimum tillage, split application of nitrogen using non-acidifying fertilizers, irrigation, soil water conservation and sheltered agriculture.  相似文献   

8.
A study was conducted of the Mediterranean Red soils of a region in Central Western Spain with a goal of describing the relationship between their main characteristics and the age of the geomorphic surfaces over which they have developed. The main macromorphological characteristics of the soils were analyzed, with a statistical study of the analytical data on 70 samples of Mediterranean Red soils. The oldest surfaces contain Palexerults and Ultic Palexeralfs, Calcic Rhodoxeralfs, Calcic-vertic Palexeralfs, Typic Rhodoxeralfs, Typic Palexeralfs, Vertic Haploxeralfs and Typic Haploxeralfs have been observed in a chronosequence on terraces of the River Tormes. The soil typology changes with the age of the surfaces, from soils with a sharp textural contrast at the upper limit of the argillaceous horizon, with a dark red very clayey and very thick Bt horizon (on the oldest surface) to not very thick brown soils without a clear clay illuviation and with a lower content in clay (on the youngest surface).The effect of recent erosion on the morphology of the soils located on a single surface has caused new soils to form superimposed on pre-existing soils.  相似文献   

9.
Although a great deal of information exists about the effect of land use on soil enzyme activities, much of this is contradictory and brings into question the suitability of soil enzyme activities as indicators of how land use affects soil quality. The purpose of this study was to investigate the effect of land use on different soil biochemical properties, especially hydrolytic enzyme activities, with the aim of providing knowledge about the problems related to the use of enzymes as indicators of soil quality. The data presented derive from various studies in which a large number of soils under different types of forest or agricultural management were analysed by the same methods. All of the soil samples were characterized in terms of their main physical and chemical properties, the activity of several hydrolases, microbial biomass C and soil basal respiration. The results indicate that soil use causes a large reduction in organic matter content and that the effect on enzyme activity varies depending on the type of land use or management and the type of enzyme. Furthermore, the enzyme activities per carbon unit (specific activities) in soils affected by land use are almost always higher than in maximum quality soils (climax soils under oak vegetation or oak soils), and land use also generates greater increases in the specific activity as the C content decreases. The mechanism responsible for these increases probably involves loss of the most labile organic matter. Enzyme enrichment is not always produced to the same degree, as it varies as a function of the enzyme and the type of land use under consideration. It is concluded that the complexity of the behaviour of the soil enzymes raises doubts about the use of enzyme activities as indicators of soil degradation brought about by land use.  相似文献   

10.
施用生物炭抑制塌陷区复垦土壤硝化作用   总被引:5,自引:1,他引:5  
生物炭具有培肥土壤和影响土壤氮素转化的效应,但对于不同肥力尤其是极低肥力的采煤塌陷复垦区土壤氮素转化方面缺乏研究。该文采用室内恒温控湿好气培养的方法,研究生物炭在不同氮肥水平下对肥力差异较大的两种土壤(肥力高的菜地土壤、肥力极低的塌陷区复垦土壤)硝化作用的影响。试验设2种氮肥水平、3种生物炭施用量。结果发现,相对于菜地土壤,塌陷区复垦土壤硝化作用缓慢,土壤最大硝化速率仅为菜地土壤的17.32%,且最大硝化速率出现的时间延迟4.2 d。高氮条件下,土壤硝化作用进行得较慢,施入生物炭后对硝化作用的抑制增强,并使土壤硝化加速阶段延长6 d(塌陷区复垦土壤)至11 d(菜地土壤)。塌陷区土壤尤其在高氮条件下最大硝化速率出现的时间明显随生物炭添加量增加而逐渐延迟,而土壤最大硝化速率不受生物炭及氮肥水平的影响。但菜地土壤土壤最大硝化速率值、最大硝化速率出现的时间值显著受氮肥水平及生物炭施用量影响。因此,生物炭对硝化作用的抑制主要表现在硝化作用的加速阶段,抑制强度受氮肥水平和土壤类型交互作用影响。  相似文献   

11.
原状土与装填土热特性的比较   总被引:2,自引:2,他引:0  
土壤热特性是研究土壤—植物—大气系统中能量传输的必要参数。目前的研究集中在室内装填土柱上热特性与含水率、质地、温度和体积质量(容重)等因素的关系,田间条件下土壤结构对热特性影响的报道很少。该研究通过比较2种质地土壤田间原状土和室内装填土热特性的差异,初步探讨了不同含水率范围内结构形成对土壤热特性的影响。采集田间原状土,在室内利用热脉冲技术测定其热容量、热导率和热扩散率;然后将样品磨碎、过2mm土筛,填装后得到相同体积质量和含水率的装填土壤样品,并测定其热特性。结果表明,装填土和原状土的热容量基本一致;在中等含水率区域(砂壤土:0.07~0.24m3/m3;壤土:0.15~0.31m3/m3),重新装填后砂壤土和壤土的热导率分别降低了9.7%和9.8%。另外,结构形成增加了土壤热扩散率,在中等含水率区域尤其明显;在接近饱和区域,原状土与装填土的热扩散率趋于一致。因此,土壤结构形成对土壤热容量没有显著影响,但提高了中等含水率区域土壤的热导率和热扩散率。  相似文献   

12.
Abstract. The phosphorus (P) sorption and desorption dynamics of eleven major agricultural grassland soil types in Ireland were examined using laboratory techniques, so that soils vulnerable to P loss might be identified. Desorption of P from soil using the iron-oxide paper strip test (Pfeo), water extractable P (Pw) and calcium chloride extractable P (Pcacl2) depended on soil P status in all soils. However, soil types with high organic matter levels (OM), namely peat soils (%OM >30), had lower Pfeo and Pw but higher Pcacl2 values compared to mineral soils at similar soil test P levels. Phosphorus sorption capacity remaining (PSCr) was measured using a single addition of P to soils and used to calculate total P sorption capacities (PSCt) and degree of P saturation (DPS). Phosphorus sorption capacities correlated negatively with % OM in soils indicating that OM may inhibit P sorption from solution to soil. High organic matter soils exhibited low P sorption capacities and poor P reserves (total P, oxalate extractable P) compared to mineral soils. Low P sorption capacities (PSCt) in peat soils were attributed to OM, which blocked or eliminated sorption sites with organic acids, therefore, P remained in the soil solution phase (Pcacl2). In this work, peat and high organic matter soils exhibited P sorption and desorption characteristics which suggest that these soils may not be suitable for heavy applications of manure or fertilizer P owing to their low capacities for P sorption and storage.  相似文献   

13.
陇东和陇中黑垆土的发生与演变   总被引:3,自引:0,他引:3  
胡双熙 《土壤学报》1994,31(3):295-304
前人认为,我国黑垆土是现代草原环境条件下形成的。我们通过对陇东和陇中黑垆土理化性质分析,14C年代和孢粉组成的测定。认为这里的黑垆土是由深色埋藏古土壤层和浅色表土覆盖层叠加构成。剖面呈两段性构造。古土壤层由晚更新世晚期开始发育,主要成壤于全新世中期,具有与现代成土环境不相符合的深厚腐殖质蓄积层,理化性质,孢粉成分等残遗埋藏特性。浅色表土层是全新世晚期气候传向旱型化条件下发育的土壤,其性质和现代成土  相似文献   

14.
不同侵蚀程度下地带性土壤的结构及渗透性能分析   总被引:2,自引:0,他引:2  
为探讨侵蚀退化过程中地带性土壤结构的变化规律,选取湖北省不同侵蚀程度(微度、轻度、强度、剧烈)的3种典型地带性土壤(黄褐土、黄棕壤、红壤),比较分析了土壤结构稳定性和土壤渗透特性差异。结果表明:随侵蚀程度增加,3种地带性土壤团聚体水稳性逐渐降低,容重增加,饱和导水率呈现不同程度的下降,机械稳定性变化存在差异;在侵蚀程度相同时,3种地带性土壤团聚体机械稳定性、水稳性和饱和土壤导水率的高低顺序均为红壤黄棕壤黄褐土。相关分析表明,土壤团聚体机械稳定性和水稳性与游离氧化铝呈极显著正相关关系(相关系数=0.77和0.81,P0.01),与游离氧化铁呈显著正相关关系(相关系数=0.73和0.76,P0.05),说明游离态铁铝氧化物是影响土壤结构稳定性并形成地带性差异的关键因素,饱和导水率与团聚体水稳性指标和非毛管孔隙度、容重呈显著相关关系(P0.05),其中与水稳性团聚体分形维数达到极显著水平(相关系数=0.76,P0.01),表明水稳性团聚体分形维数可以作为预测和表征饱和导水率的指标。  相似文献   

15.
High levels of phosphorus (P) often induce zinc (Zn) deficiency in plants grown on Zn-poor soils. We investigated P-induced Zn deficiency in durum wheat (Triticum durum L. ‘Carpio’) grown on 16 noncalcareous and 31 calcareous soils differing in levels of available (Olsen) P and available (diethylenetriaminepentaacetic acid (DTPA)-extractable) Zn using micropots. A completely randomized factorial design with two levels of P (0 and 40 mg P kg?1 soil) and Zn (0 and 3 mg Zn kg?1 soil), i.e. four treatments (‘control’, + P, + Zn, and + PZn), were used. Grain yield of control plants depended mainly on the Olsen P level. Phosphorus had a negative effect on yield in 6 soils with Olsen P/ZnDTPA > 25, and Zn a positive one in 5 soils with Olsen P/ZnDTPA > 50; and the + PZn treatment generally resulted in the highest yield. Grain Zn concentration of control plants was negatively correlated with growth and Olsen P. Calcareous soils were less sensitive to P-induced Zn deficiency than noncalcareous soils because phosphate is sorbed by calcite rather than being co-adsorbed with Zn on the Fe oxides. Co-application of P and Zn to soil at low and application of Zn at high Olsen P ensured both maximum yield and grain Zn bioavailability.  相似文献   

16.
Abstract

Knowledge of the distribution of soil organic matter (SOM) fractions is important in managing soils toward a sustainable agricultural system in a tropical environment. However, data on Histosols is limited. This study developed 19 profiles of Histosols and soils with high organic-matter content from different regions of Brazil. Soil organic matter was fractionated into fulvic acids (FAF), humic acids (HAF), and humin (HUM). The ratios HAF/FAF and AE (alkaline extract)/HUM were calculated. The objectives were to evaluate the method for SOM fractionating in Histosols and related soils and to correlate the distribution of organic fractions with other soil attributes. The humic fractions presented significant correlations with other soil attributes, the best being the correlation between FAF and nutrient level. The HAF and HUM presented high correlation with cationic exchange capacity, active acidity (H+) and pH. Humin and the alkaline extract absorbance measured at 380 nm and 465 nm and presented good correlation with total organic carbon.  相似文献   

17.
18.
Greenhouse gas emissions from farmed organic soils: a review   总被引:14,自引:0,他引:14  
Abstract. The large boreal peatland ecosystems sequester carbon and nitrogen from the atmosphere due to a low oxygen pressure in waterlogged peat. Consequently they are sinks for CO2 and strong emitters of CH4. Drainage and cultivation of peatlands allows oxygen to enter the soil, which initiates decomposition of the stored organic material, and in turn CO2 and N2O emissions increase while CH4 emissions decrease. Compared to undrained peat, draining of organic soils for agricultural purposes increases the emissions of greenhouse gases (CO2, CH4, and N2O) by roughly 1t CO2 equivalents/ha per year. Although farmed organic soils in most European countries represent a minor part of the total agricultural area, these soils contribute significantly to national greenhouse gas budgets. Consequently, farmed organic soils are potential targets for policy makers in search of socially acceptable and economically cost-efficient measures to mitigate climate gas emissions from agriculture. Despite a scarcity of knowledge about greenhouse gas emissions from these soils, this paper addresses the emissions and possible control of the three greenhouse gases by different managements of organic soils. More precise information is needed regarding the present trace gas fluxes from these soils, as well as predictions of future emissions under alternative management regimes, before any definite policies can be devised.  相似文献   

19.
Potential acid sulfate soils (PASS) are drained for agriculture, resulting in the formation of active acid sulfate soils (AASS), which gradually evolve into post-active acid sulfate soils (PAASS). Various redox concentrations (precipitates, costings, and mottles) occur in these soils as a result of pedogenic processes including biological activity and effects of land management. Although several studies have determined the mineralogy and geochemistry of ASS, the mineralogy and geochemistry of redox concentrations occurring in a sequence of ASS through PASS to PAASS have not been investigated. This study examined the mineralogy and geochemistry of redox concentrations and matrices within 5 PASS, 8 AASS, and 5 PAASS in Thailand. The labile minerals were predominantly controlled by oxidation status and management inputs. The unoxidized layers of PASS, AASS, and PAASS contained pyrite and mackinawite. The oxidation of Fe sulfides caused acidification and accumulation of yellow redox concentrations of jarosite and Fe (hydr)oxides at shallow depths. As the soils became well developed, they were recognized as PAASS, and the jarosite and goethite transformed to hematite. As ASS were drained, Co, Mn, Ni, and Zn moved downward and were associated with Fe sulfides and Mn oxides in the unoxided layer. Concentrations of As, Cu, Cr, Fe, and V did not change with depth because these elements became associated with jarosite and Fe (hydr)oxides in yellow and red redox concentrations, as well as the root zone, in the partly oxidized layer of AASS and PAASS. Arsenic was associated with pyrite under reducing conditions.  相似文献   

20.
Abstract. We investigated whether a Na-K polyacrylate polymer could be used to remediate a sandy soil artificially contaminated with copper. An experiment, carried out in solution culture, showed that ionic copper was rapidly trapped within the polymer to a maximum content of c. 190mg Cu g -1 dry polymer, the proportion needed for chelation of each copper ion by four carboxylic groups present in the polymer chains. Cu-EDTA was not retained by the polymer. Growth of perennial rygrass in 10 kg pots was stimulated in the gel-amended soil, and even in the pots with the highest levels of copper, growth was much less impaired than in pots without polymer. Copper concentrations of the shoot.; were smaller in the plants cultivated in the amended soil. Water extractable copper was considerably reduced in the contaminated gel-amended soil and polymer particles removed from the soil were shown to contain high levels of copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号