首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

2.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.  相似文献   

3.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

4.
Crop growth in sandy soils is usually limited by plant‐available nutrients and water contents. This study was conducted to determine whether these limiting factors could be improved through applications of compost and biochar. For this purpose, a maize (Zea mays L.) field trial was established at 1 ha area of a Dystric Cambisol in Brandenburg, NE Germany. Five treatments (control, compost, and three biochar‐compost mixtures with constant compost amount (32.5 Mg ha–1) and increasing biochar amount, ranging from 5–20 Mg ha–1) were compared. Analyses comprised total organic C (TOC), total N (TN), plant‐available nutrients, and volumetric soil water content for 4 months under field conditions during the growing season 2009. In addition, soil water‐retention characteristics were analyzed on undisturbed soil columns in the laboratory. Total organic‐C content could be increased by a factor of 2.5 from 0.8 to 2% (p < 0.01) at the highest biochar‐compost level compared with control while TN content only slightly increased. Plant‐available Ca, K, P, and Na contents increased by a factor of 2.2, 2.5, 1.2, and 2.8, respectively. With compost addition, the soil pH value significantly increased by up to 0.6 (p < 0.05) and plant‐available soil water retention increased by a factor of 2. Our results clearly demonstrated a synergistic positive effect of compost and biochar mixtures on soil organic‐matter content, nutrients levels, and water‐storage capacity of a sandy soil under field conditions.  相似文献   

5.
In extensive farmer‐led trials practicing conservation farming (CF) in three regions of Zambia (Mongu: sandy soils; Kaoma: sandy or loamy sand soils; Mkushi: sandy loam or loamy soils), we studied the effects of biochar made of maize cobs (0, 2, and 6 t ha?1 corresponding to 0, 0.8, and 2.5% per basin) at different fertilizer rates of NPK and urea on crop yield of maize (Zea mays) and groundnuts (Arachis hypogaea). Conservation farming in this case combines minimum tillage (how basins), crop rotation and residue retention. For the first time, the effect of biochar on in situ soil nutrient supply rates [determined by buried Plant Root Simulator (PRS?) exchange resins] was studied, as well as the effects of biochar on elemental composition of maize. Effects of 0–10% (w:w) biochar addition on soil physical and soil chemical properties were determined in the laboratory. At all sites there was a consistent positive response in crop yield upon the addition of biochar. However, due to a great variability between farms there were no significant differences in absolute yields between the treatments. In the sandy soils at Mongu, relative yields (i.e., percentage yield with biochar relative to the same fertilizer rate without biochar) of maize grains and maize stover were significantly increased at recommended fertilizer rates (232 ± 60%) and at half the recommended rate (128 ± 6%), respectively. In addition, biochar significantly increased concentrations of K and P in maize stover. In situ soil nutrient supply rates as measured by PRS?‐probes were highly spatially variable with no consistent effects of the different treatments in the three regions. By contrast, the fraction of plant available water (Vol.‐%) significantly increased upon the addition of biochar in all three soils. The increase caused by 10% biochar addition was of factor 2.5 in Mongu (from 4.5% to 11.2%) and 1.2 in both Kaoma (from 14.7% to 18.2%) and Mkushi (from 18.2% to 22.7%). Cation exchange capacity, pH, and exchangeable K significantly increased upon the addition of 10% (w:w) biochar in all three regions with a subsequent increase in base saturation and decrease of available Al3+. Our findings suggest that the addition of biochar in combination with CF might have a positive impact on crop growth and that this positive effect is mainly caused by increases in plant‐available water and decreased available Al.  相似文献   

6.
The production and composition of leaf litter, soil acidity, exchangeable nutrients, and the amount and distribution of soil organic matter were analyzed in a broad‐leaved mixed forest on loess over limestone in Central Germany. The study aimed at determining the current variability of surface‐soil acidification and nutrient status, and at identifying and evaluating the main factors that contributed to the variability of these soil properties along a gradient of decreasing predominance of European beech (Fagus sylvatica L.) and increasing tree‐species diversity. Analyses were carried out in (1) mature monospecific stands with a predominance of beech (DL 1), (2) mature stands dominated by three deciduous‐tree species (DL 2: beech, ash [Fraxinus excelsior L.], lime [Tilia cordata Mill. and/or T. platyphyllos Scop.]), and (3) mature stands dominated by five deciduous‐tree species (DL 3: beech, ash, lime, hornbeam [Carpinus betulus L.], maple [Acer pseudoplatanus L. and/or A. platanoides L.]). The production of leaf litter was similar in all stands (3.2 to 3.9 Mg dry matter ha–1 y–1) but the total quantity of Ca and Mg deposited on the soil surface by leaf litter increased with increasing tree‐species diversity and decreasing abundance of beech (47 to 88 kg Ca ha–1 y–1; 3.8 to 7.9 kg Mg ha–1 y–1). The soil pH(H2O) and base saturation (BS) measured at three soil depths down to 30 cm (0–10 cm, 10–20 cm, 20–30 cm) were lower in stands dominated by beech (pH = 4.2 to 4.4, BS = 15% to 20%) than in mixed stands (pH = 5.1 to 6.5, BS = 80% to 100%). The quantities of exchangeable Al and Mn increased with decreasing pH and were highest beneath beech. Total stocks of exchangeable Ca (0–30 cm) were 12 to 15 times larger in mixed stands (6660 to 9650 kg ha–1) than in beech stands (620 kg ha–1). Similar results were found for stocks of exchangeable Mg that were 4 to 13 times larger in mixed stands (270 to 864 kg ha–1) than in beech stands (66 kg ha–1). Subsoil clay content and differences in litter composition were identified as important factors that contributed to the observed variability of soil acidification and stocks of exchangeable Ca and Mg. Organic‐C accumulation in the humus layer was highest in beech stands (0.81 kg m–2) and lowest in stands with the highest level of tree‐species diversity and the lowest abundance of beech (0.27 kg m–2). The results suggest that redistribution of nutrients via leaf litter has a high potential to increase BS in these loess‐derived surface soils that are underlain by limestone. Species‐related differences of the intensity of soil–tree cation cycling can thus influence the rate of soil acidification and the stocks and distribution of nutrients.  相似文献   

7.
Both biochar and compost may improve carbon sequestration and soil fertility; hence, it has been recommended to use a mixture of both for sustainable land management. Here, we evaluated the effects of biochar–compost substrates on soil properties and plant growth in short rotation coppice plantations (SRC). For this purpose, we planted the tree species poplar, willow, and alder in a no‐till field experiment, each of them amended in triplicate with 0 (= control) or 30 Mg ha?1 compost or biochar–compost substrates containing 15% vol. (TPS15) and 30% vol. biochar (TPS30). For three years running, we analyzed plant growth as well as soil pH, potential cation exchange capacity (CEC), stocks of soil organic carbon (SOC), total N, and plant‐available phosphate and potassium oxide.Biochar‐compost substrates affected most soil properties only in the topsoil and for a limited period of time. The CEC and total stocks of SOC were consistently elevated relative to the control. After three years the C gain of up to 6.4 Mg SOC ha?1 in the TPS30 plots was lower than the added C amount. Especially in the case of TPS30 treatment, C input was characterized by the greatest losses after application, although the black carbon of the biochar was not degraded in soil. Additionally, tree growth and woody biomass yield did not respond at all to the treatments. Overall, there were few if any indications that biochar–compost substrates improve the performance of SRC under temperate soil and climate conditions. Therefore, the use of biochar for such systems is not recommended.  相似文献   

8.
We examined the possibility of an environment‐friendly slow‐release fertilizer (SRF) made of biochar impregnated by anaerobically digested slurry. The biochar materials were produced from three types of feedstocks (orange peel, residual wood, water‐treatment sludge) at different temperatures of 300°C, 500°C, and 700°C via pyrolysis. The release behaviors of the water‐soluble K+, Ca2+, and Mg2+ were similar for all impregnated biochars and the commercial SRF used. The water‐retention capacity was greatly improved by mixing the biochar‐SRF with the soil. The yield of lettuce was lower for the biochar‐SRF applications of 3.7 to 34.2 t ha–1 than for the commercial SRF application of 51.4 t ha–1. This might be due to excessive increase of soil pH for the biochar‐SRF application. Based on these results, the authors concluded that the biochar impregnated with nutrients could become an effective slow‐release K+ fertilizer.  相似文献   

9.
In dryland areas, integrating biochar soil amendment with in situ rainwater harvesting systems may decrease soil erosion, improve soil quality, and increase crop productivity and yield. This study was conducted to investigate the effect of maize straw biochar amendment and ridge-furrow rainwater harvesting systems on run-off, sediment yield and the physico-chemical properties of a Calcic Cambisol soil in semiarid areas. The experiment was conducted on alfalfa (Medicago sativa) production land at the Anjiagou Catchment experimental station in Gansu province, China. The experimental layout was a split-plot design with three replications. Biochar was applied at a rate of 0 and 30 t ha−1, respectively. The tillage treatments were flat planting, open-ridging, and tied-ridging (TR). Overall, the integration of maize straw biochar with TR decreased soil bulk density at 0–40 cm depth. Biochar application reduced run-off by 37.8% and soil loss by 55.5% during alfalfa-growing seasons compared to the control. In general, biochar addition increased soil total potassium, but the same effect was not observed for soil pH, total nitrogen, total phosphorus, and available phosphorus. These findings demonstrate the potential of integrating maize straw biochar and tillage systems to reduce soil erosion and improve soil quality for rainfed crop production in semiarid areas. Further studies on the effect of biochar-tillage system interaction are warranted to improve soil conditions for plant growth and increase crop yield in dryland areas.  相似文献   

10.
Low soil fertility and soil acidity are among the major bottlenecks that limit agricultural productivity in the humid tropics. Soil management systems that enhance soil fertility and biological cycling of nutrients are crucial to sustain soil productivity. This study was, therefore, conducted to determine the effects of coffee‐husk biochar (0, 2.7, 5.4, and 16.2 g biochar kg?1 soil), rhizobium inoculation (with and without), and P fertilizer application (0 and 9 mg P kg?1 soil) on arbuscular mycorrhyzal fungi (AMF) root colonization, yield, P accumulation, and N2 fixation of soybean [Glycine max (L.) Merrill cv. Clark 63‐K] grown in a tropical Nitisol in Ethiopia. ANOVA showed that integrated application of biochar and P fertilizer significantly improved soil chemical properties, P accumulation, and seed yield. Compared to the seed yield of the control (without inoculation, P, and biochar), inoculation, together with 9 and 16.2 g biochar kg?1 soil gave more than two‐fold increment of seed yield and the highest total P accumulation (4.5 g plant?1). However, the highest AMF root colonization (80%) was obtained at 16.2 g biochar kg?1 soil without P and declined with application of 9 mg P kg?1 soil. The highest total N content (4.2 g plant?1) and N2 fixed (4.6 g plant?1) were obtained with inoculation, 9 mg P kg?1, and 16.2 g biochar kg?1 soil. However, the highest %N derived from the atmosphere (%Ndfa) (> 98%) did not significantly change between 5.4 and 16.2 g kg?1 soil biochar treatments at each level of inoculation and P addition. The improved soil chemical properties, seed yield, P accumulation and N2 fixation through combined use of biochar and P fertilizer suggest the importance of integrated use of biochar with P fertilizer to ensure that soybean crops are adequately supplied with P for nodulation and N2‐fixation in tropical acid soils for sustainable soybean production in the long term.  相似文献   

11.
This study investigated the impacts of organic- and clay-based soil amendments, and their combinations on crop water productivity (CWP) using maize as a test crop. On-station field trials were established over two consecutive years at the Naphok and Veunkham sites in Laos. At each site, 10 treatments were applied in a randomized complete block design with three replications. The treatments were control, rice husk biochar (10 t ha?1), bentonite clay (10 t ha?1), compost (4 t ha?1), clay-manure compost (10 t ha?1), rice husk biochar compost (10 t ha?1), bentonite clay + biochar, bentonite-clay + compost, biochar + compost, and bentonite clay + biochar + compost. All treatments were applied in 2011. Significant (p < 0.05) treatment effects in CWP and growing period evapotranspiration were determined. At Naphok, differences between the amended and control plots in CWP varied between 0.1 and 0.6 kg m?3 in 2011 and from 0.1 to 0.4 kg m?3 in 2012, whereas differences at Veunkham varied between 0.3 and 1.0 kg m?3 in 2011 and from 0.05 to 0.29 kg m?3 in 2012. At both sites, CWP in 2012 was significantly lower than 2011. Our results illustrate that organic- and clay-based soil amendments improve CWP, indicating that soil-based interventions could be suitable options for improving agricultural productivity.  相似文献   

12.
Biochar is derived from the pyrolysis of biomass, and when buried in soil, can act as a long-term soil carbon store. Evidence suggests that biochar can improve soil fertility and crop production in some circumstances. However, the potential for promoting crop growth in agroecosystems is poorly understood, with different reports of soil properties following biochar application. Therefore, this study aims to investigate the spatial variability of soybean growth parameters in different biochar application rates and the reasons for the results obtained. The study used field plots with five biochar application rates (0, 20,40, 80, and 160 t·ha?1). There were 15 field plots in total and the trial was fully randomized with three replications. The biochar was mixed into the topsoil (0–20 cm depth) before the soybean was sown. Soybean growth parameters were determined during the flowering–podding phase. The results showed that biochar not only improved the growth parameters of soybean, but also reduced growth differences in the same treatment, and higher biochar application rates would result in a larger effect size in a certain range (0–103.4 t·ha?1). The leaf area in the no biochar treatment showed moderate variation, whereas the growth parameters (height, stem diameter, and leaf area) showed weak variation in the other biochar treatments; and the growth parameters, when the soybean were subjected to the biochar treatments, had moderate spatial dependence. In addition, the introduction of geostatistical theory can provide a theoretical foundation for further studying biochar–soil–crop system and the spatial variability of soybean growth and their relevance.  相似文献   

13.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

14.
Experimental application of eight acidifying, neutral, or alkalizer compounds (range: –16 to 16 kmol ha–1 of acid‐neutralizing capacity [ANC]) was realized in two northern hardwood stands having significantly different soil base saturation (BS) (a “poor” and a “rich” site) to assess responses of soil physico‐chemical properties, and nutrition, growth, and health of sugar maple (Acer saccharum Marsh.) trees in the short (3 y) and longer term (10 y). The treatments influenced the main indicators of acidity in the forest floor (soil exchangeable‐Ca saturation [SCa], BS, exchangeable‐acidity saturation [SH+Al], and the SCa/SH+Al ratio) at both sites, their values increasing (decreasing for SH+Al) along the ANC treatment gradient in both the short and longer term, except for pH. Base saturation of the upper 15 cm of the mineral B horizons of soils was influenced at the two sites 10 y after treatment application. Although ANC treatments affected nutrient concentrations of tree foliage in the short term, their effect was no longer detectable after 10 y at the two sites. Growth, however, was strongly related to ANC treatments after 10 y, but only at the poor site. From 1990 to 2000, the basal‐area growth rate of trees at the poor site was (mean ± SE) –0.62 ± 0.28 cm2 y–2 tree–1 for the most negative ANC treatment to +0.90 ± 0.20 cm2 y–2 tree–1 for the most positive ANC treatment. A climatic‐stress episode occurring in 1995/96 appeared to accentuate the growth decline of trees subjected to the most negative ANC treatment at the poor site. The experimental results support the hypothesis that atmospheric acid deposition load can cause forest soil base‐cation depletion, acidification, and predispose sugar maple to health and growth decline in the longer term in base‐cation‐poor soils, and that the phenomenon may be reversible by adding alkalizers.  相似文献   

15.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

16.
Biochar application can improve soil properties, such as increasing soil organic carbon content, soil pH and water content. These properties are important to soil dissolved organic carbon (DOC); however, the effects of biochar on DOC concentration and composition have received little research attention, especially several years after biochar application under field conditions. This study was conducted in a long‐term experimental field where the biochar was only applied once in 2009. The purpose of the study was to investigate the effect of different biochar application rates (0, 30, 60 and 90 t ha?1) on the dynamics of soil water content, DOC concentration and DOC compositions (reducing sugar, soluble phenol and aromatics) over nine samplings during a 12‐month period in 2014. Our results showed that soil water content and DOC concentration varied from 7.1% to 14.5% and 59 to 230 mg C kg?1 soil during the 12 months, respectively. However, the biochar application rates did not significantly (p > 0.05) affect soil water content, DOC concentration and DOC composition at the same sampling period. The DOC concentration across the biochar treatments was positively correlated to soil water content. Moreover, the DOC composition (reducing sugar, soluble phenol or aromatics) and their concentrations were positively correlated to the total DOC concentration. In addition, biochar did not affect soil bulk density, pH, saturated hydraulic conductivity and crop yields. The results indicated that some benefits of biochar to soil may not persist 5 years after the application of biochar under a field condition.  相似文献   

17.
 The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia. Received: 19 January 2000  相似文献   

18.
Purpose

The majority of biochar studies use soils with only a narrow range of properties making generalizations about the effects of biochar on soils difficult. In this study, we aimed to identify soil properties that determine the performance of biochar produced at high temperature (700 °C) on soil pH, cation exchange capacity (CEC), and exchangeable base cation (Ca2+, K+, and Mg2+) content across a wide range of soil physicochemical properties.

Materials and methods

Ten distinct soils with varying physicochemical properties were incubated for 12 weeks with four rates of biochar application (0.5, 2, 4, and 8% w/w). Soil pH, CEC, and exchangeable base cations (Ca2+, K+, and Mg2+) were determined on the 7th and 84th day of incubation.

Results and discussion

Our results indicate that the highest biochar application rate (8%) was more effective at altering soil properties than lower biochar rates. Application of 8% biochar increased pH significantly in all incubated soils, with the increment ranging up to 1.17 pH unit. Biochar induced both an increment and a decline in soil CEC ranging up to 35.4 and 7.9%, respectively, at a biochar application rate of 8%. Similarly, biochar induced increments in exchangeable Ca2+ up to 38.6% and declines up to 11.4%, at an 8% biochar application rate. The increment in CEC and exchangeable Ca2+ content was found in soils with lower starting exchangeable Ca2+ contents than the biochar added, while decreases were observed in soils with higher exchangeable Ca2+ contents than the biochar. The original pH, CEC, exchangeable Ca2+, and texture of the soils represented the most crucial factors for determining the amount of change in soil pH, CEC, and exchangeable Ca2+ content.

Conclusions

Our findings clearly demonstrate that application of a uniform biochar to a range of soils under equivalent environmental conditions induced two contradicting effects on soil properties including soil CEC and exchangeable Ca2+ content. Therefore, knowledge of both biochar and soil properties will substantially improve prediction of biochar application efficiency to improve soil properties. Among important soil properties, soil exchangeable Ca2+ content is the primary factor controlling the direction of biochar-induced change in soil CEC and exchangeable Ca2+ content. Generally, biochar can induce changes in soil pH, CEC, and exchangeable Ca2+, K+, and Mg2+ with the effectiveness and magnitude of change closely related to the soil’s original properties.

  相似文献   

19.
Soil erosion is a major constraint to crop production on smallholder arable lands in Sub‐Saharan Africa (SSA). Although different agronomic and mechanical measures have been proposed to minimize soil loss in the region and elsewhere, soil management practices involving biochar‐inorganic inputs interactions under common cropping systems within the framework of climate‐smart agriculture, have been little studied. This study aimed to assess the effect of different soil and crop management practices on soil loss characteristics under selected cropping systems, typical of the sub‐region. A two‐factor field experiment was conducted on run‐off plots under different soil amendments over three consecutive cropping seasons in the semi‐deciduous forest zone of Ghana. The treatments, consisting of three soil amendments (inorganic fertilizer, biochar, inorganic fertilizer + biochar and control) and four cropping systems (maize, soyabean, cowpea, maize intercropped with soyabean) constituted the sub‐plot and main plot factors, respectively. A bare plot was included as a soil erosion check. Seasonal soil loss was greater on the bare plots, which ranged from 9.75–14.5 Mg ha?1. For individual crops grown alone, soil loss was 31%–40% less under cowpea than under maize. The soil management options, in addition to their direct role in plant nutrition, contributed to significant (p < 0.05) reductions in soil loss. The least soil loss (1.23–2.66 Mg ha?1) was observed under NPK fertilizer + biochar treatment (NPK + BC) over the three consecutive cropping seasons. Biochar in combination with NPK fertilizer improved soil moisture content under cowpea crops and produced considerably smaller bulk density values than most other treatments. The NPK + BC consistently outperformed the separate mineral fertilizer and biochar treatments in biomass yield under all cropping systems. Biochar associated with inorganic fertilizers gave economic returns with value–cost ratio (VCR) > 2 under soyabean cropping system but had VCR < 2 under all other cropping systems. The study showed that biochar/NPK interactions could be exploited in minimizing soil loss from arable lands in SSA.  相似文献   

20.
Biochar combined with fertilizer as a soil amendment benefits to improving soil fertility, especially soil organic carbon and crop yield. However, the effect of biochar on the improvement of soil properties and crop yield was varied from soil properties and limited for medium–low-yield farmland in the North China. During the completely randomized field experiment, SIX treatments (biochar applied as 0, 15 and 30 t·ha-1, under 240 and 300 kg N ha-1 nitrogen fertilizer) were applied in wheat season and examined to reveal changes in the SOC and other properties of 0- to 10-cm and 10- to 20-cm soil layers. The results showed that two years after the application of biochar, a significant increase in the SOC was observed, ranging from 19.52% to 97.50% (p < 0.05) in the 0- to 20-cm soil layer. Wheat yield and SOC content increased with increasing amount of biochar applied under the same amount of nitrogen fertilizer. The content of soil available potassium increased significantly under 30 t·ha-1 biochar application (p < 0.05). Both biochar and nitrogen fertilizer application could increase wheat yield, and the effect of biochar application for increasing wheat yield was better than that of nitrogen fertilizer. Wheat yield and SOC content increased with increasing nitrogen fertilizer at the same amount of biochar application. The principal component analysis results showed that biochar input, SOC, available potassium and total nitrogen were the key factors affecting wheat yield. Biochar application is a fast and effective measure to improve SOC and wheat yield in medium- and low-yield farmlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号