首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

2.
The infection process of Fusarium avenaceum on wheat spikes and the alteration of cell wall components in the infected host tissue were examined by means of electron microscopy and cytochemical labelling techniques following spray inoculation at growth stage (GS) 65 (mid-flowering). Macroconidia of the pathogen germinated with one to several germ-tubes 6–12 h after inoculation (hai) on host surfaces. The germ-tubes did not penetrate host tissues immediately, but extended and branched on the host surfaces. Hyphal growth on abaxial surfaces of the glume, lemma and palea was scanty 3–4 days after inoculation (dai) and no direct penetration of the outer surfaces of the spikelet was observed. Dense mycelial networks formed on the inner surfaces of the glume, lemma, palea and ovary 36–48 hai. Penetration of the host tissue occurred 36 hai by infection hyphae only on the adaxial surfaces of the glume, lemma, palea and upper part of ovary. The fungus penetrated the cuticle and hyphae extended subcuticularly or between the epidermal wall layers. The subcuticular growth phase was followed by penetration of the epidermal wall, and hyphae spread rapidly inter- and intracellularly in the glume, lemma, palea and ovary. During this necrotrophic colonization phase of the wheat spike, a series of alterations occurred in the host tissues, such as degeneration of cytoplasm and cell organelles, collapse of host cells and disintegration of host cell walls. Immunogold labelling techniques showed that cell walls of spike tissues contained reduced amounts of cellulose, xylan and pectin near intercellular hyphae or infection pegs compared to walls of healthy host tissues. These studies suggest that cell wall degrading enzymes produced by F. avenaceum facilitated rapid colonization of wheat spikes. The different penetration properties of abaxial and adaxial surfaces of the spikelet tissues as well as the two distinct colonization strategies of host tissues by F. avenaceum are discussed. The penetration and colonization behaviour of F. avenaceum in wheat spikelets resembled that of F. culmorum and F. graminearum, although mycotoxins produced by F. avenaceum differed from those of the latter two Fusarium species.  相似文献   

3.
The aim of this research was to study levels of resistance to Fusarium basal rot in onion cultivars and related Allium species, by using genetically different Fusarium isolates. In order to select genetically different isolates for disease testing, a collection of 61 Fusarium isolates, 43 of them from onion (Allium cepa), was analysed using amplified fragment length polymorphism (AFLP) markers. Onion isolates were collected in The Netherlands (15 isolates) and Uruguay (9 isolates), and received from other countries and fungal collections (19 isolates). From these isolates, 29 were identified as F. oxysporum, 10 as F. proliferatum, whereas the remaining four isolates belonged to F. avenaceum and F. culmorum. The taxonomic status of the species was confirmed by morphological examination, by DNA sequencing of the elongation factor 1-α gene, and by the use of species-specific primers for Fusarium oxysporum, F. proliferatum, and F. culmorum. Within F. oxysporum, isolates clustered in two clades suggesting different origins of F. oxysporum forms pathogenic to onion. These clades were present in each sampled region. Onion and six related Allium species were screened for resistance to Fusarium basal rot using one F. oxysporum isolate from each clade, and one F. proliferatum isolate. High levels of resistance to each isolate were found in Allium fistulosum and A. schoenoprasum accessions, whereas A. pskemense, A. roylei and A. galanthum showed intermediate levels of resistance. Among five A. cepa cultivars, ‘Rossa Savonese’ was also intermediately resistant. Regarding the current feasibility for introgression, A. fistulosum, A. roylei and A. galanthum were identified as potential sources for the transfer of resistance to Fusarium into onion.  相似文献   

4.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

5.
Leaves of tomato and barley were inoculated with conidia of Blumeria graminis f. sp. hordei race 1 (R1) or Oidium neolycopersici (KTP-01) to observe cytological responses in search of resistance to powdery mildew. Both conidia formed appressoria at similar rates on tomato or barley leaves, indicating that no resistance was expressed during the prepenetration stage of these fungi. On R1-inoculated tomato leaves, appressoria penetrated the papillae, but subsequent haustorium formation was inhibited by hypersensitive necrosis in the invaded epidermal cells. On the other hand, KTP-01 (pathogenic to tomato leaves) successfully developed functional haustoria in epidermal cells to elongate secondary hyphae, although the hyphal elongation from some conidia was later suppressed by delayed hypersensitive necrosis in some haustorium-harboring epidermal cells. Thus, the present study indicated that the resistance of tomato to powdery mildew fungi was associated with a hypersensitive response in invaded epidermal cells but not the prevention of fungal penetration through host papilla.  相似文献   

6.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

7.
Fusarium wilt is a soil-borne disease caused by formae specialis of Fusarium oxysporum on a large number of cultivated and wild plants. The susceptibility of the model legume plant Medicago truncatula to Fusarium oxysporum was studied by root-inoculating young plants in a miniaturised hydroponic culture. Among eight tested M. truncatula lines, all were susceptible to F. oxysporum f.sp. medicaginis, the causal agent of Fusarium wilt in alfalfa. However, a tolerant line, F83005.5, and a susceptible line, A17, could be distinguished by scoring the disease index. The fungus was transformed with the GFP marker gene and colonisation of the plant roots was analysed by epifluorescence and confocal microscopy. A slightly atypical pattern of root colonisation was observed, with massive fungal growth in the cortex. Although colonisation was not significantly different between susceptible and tolerant plants, the expression of some defence-related genes showed discrimination between both lines. A study with 10 strains from various host-plants indicated that M. truncatula was a permissive host to F. oxysporum.  相似文献   

8.
A new bacterial black spot disease was observed on Odontoglossum, Odontioda, Odontocidium, and Vuylstekeara orchids in Japan. Typical symptoms on the leaves were dark or black spots (or both) with a yellow halo. The causal agent was identified as Burkholderia andropogonis (Smith 1911) Gillis, Van Van, Bardin, Goor, Hebbar, Willems, Segers, Kersters, Heulin and Fernandez 1995. The isolates were pathogenic on four original host orchids, Phalaenopsis orchid, and tulip; they were not pathogenic on white clover or corn after needle stab inoculation. An antibiotic bactericide (oxytetracycline/streptomycin mixture WP) was most effective for controlling the disease.  相似文献   

9.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

10.
In many Gram-negative plant pathogenic bacteria the type III secretion system (TTSS), encoded by hrp genes, is essential for pathogenicity in the host and induction of a hypersensitive reaction (HR) in nonhost plants. The expression of hrp genes has been suggested to be repressed in complex media, whereas it is induced in planta and under certain in vitro conditions. We recently reported that XOM2 medium allows efficient hrp expression by Xanthomonas oryzae pv. oryzae. In this study, we investigated hrp-dependent secretion of proteins by the bacteria in vitro. Using modified XOM2, in which bovine serum albumin was added and the pH was lowered to 6.0, we detected at least 10 secreted proteins and identified one as Hpa1. This is the first evidence of protein secretion via TTSS in X. oryzae pv. oryzae.  相似文献   

11.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

12.
In the present study, the pathogenicity of 36 isolates of Guignardia species isolated from asymptomatic ‘Tahiti’ acid lime fruit peels and leaves, ‘Pêra-Rio’ sweet orange leaves and fruit peel lesions, and a banana leaf were characterized. For pathogenicity testing, discs of citrus leaves colonized by Phyllosticta citricarpa under controlled laboratory conditions were kept in contact with the peels of fruit that were in susceptible states. In addition, pathogenicity was related to morphological characteristics of colonies on oatmeal (OA) and potato dextrose agar (PDA). This allowed the morphological differentiation between G. citricarpa and G. mangiferae. Polymerase chain reactions (PCRs) were also used to identify non-pathogenic isolates based on primers specific to G. citricarpa. A total of 14 pathogenic isolates were detected during pathogenicity tests. Five of these were obtained from leaf and fruit tissues of the ‘Tahiti’, which until this time had been considered resistant to the pathogen. Given that the G. citricarpa obtained from this host was pathogenic, it would be more appropriate to use the term insensitive rather than resistant to categorize G. citricarpa. A non-pathogenic isolate was obtained from lesions characteristic of citrus black spot (CBS), indicating that isolation of Guignardia spp. under these conditions does not necessarily imply isolation of pathogenic strains. This also applied to Guignardia spp. isolates from asymptomatic citrus tissues. Using fluorescent amplified fragment length polymorphism (fAFLP) markers, typically pathogenic isolates were shown to be more closely related to one another than to the non-pathogenic forms, indicating that the non-pathogenic isolates display higher levels of genetic diversity.  相似文献   

13.
Thirty-two isolates of Fusarium species were obtained from wilted Welsh onion (Allium fistulosum) grown on nine farms from six regions in Japan and identified as F. oxysporum (18 isolates), F. verticillioides (7 isolates), and F. solani (7 isolates). The pathogenicity of 32 isolates was tested on five commercial cultivars of Welsh onion and two cultivars of bulb onion in a seedling assay in a greenhouse. The Fusarium isolates varied in the degree of disease severity on the cultivars. Five F. oxysporum isolates (08, 15, 17, 22, and 30) had a higher virulence on the cultivars than the other isolates. The host range of these five isolates was limited to Allium species. Molecular characterization of Fusarium isolates was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer (ITS) regions of ribosomal DNA. The 32 isolates were grouped into eight types (four types for F. oxysporum, one for F. verticillioides, and three for F. solani). Restriction patterns of the ITS region were not related to pathogenicity. However, the haplotypes obtained with five enzymes (RsaI, HinfI, HaeIII, ScrFI, and MspI) and the phylogenetic analysis permitted the discernment of the three Fusarium species. The PCR-RFLP analysis should provide a rapid, simple method for differentiating Fusaruim species isolated from wilted Welsh onion in Japan.  相似文献   

14.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

15.
The present study was conducted to determine if there is specificity in the host-pathogen relationship between the isolates of Xanthomonas oryzae pv. oryzae, the causal bacterium for rice blight and Leersia grasses, the alternative weed hosts of the disease. Plants of three species of Leersia, namely, L. sayanuka, L. oryzoides and L. japonica, were collected from various parts of Japan and were inoculated with the X. oryzae pv. oryzae isolates obtained from various locations in Japan and from 11 Asian countries. Four L. sayanuka plants were found susceptible to all Race II isolates and some Race I isolates, but were resistant to all Race III isolates. Race III is known to have a wider range pathogenicity to rice cultivar groups compared with Race I and II. Although the reactions of two L. oryzoides plants to Race I and II isolates were similar to that of L. sayanuka, the L. oryzoides plant collected from Niigata Prefecture showed a susceptible reaction to some Race III isolates. On the other hand, L. japonica plants gave reactions different those of L. sayanuka and L. oryzoides, with two plants of L. japonica found to be resistant to all test isolates collected from Japan. The Asian isolates exhibited a wide host range against the international differential rice cultivars, but almost all of them were avirulent to Leersia plants. These results indicate that the relationship between the pathogenicity of the causal bacterium and the resistance of host plants is very complex, and suggest that pathogenic diversity of X. oryzae pv. oryzae might be related to the resistance of Leersia spp.  相似文献   

16.
In a field experiment between 2004 and 2006, 14 winter wheat varieties were inoculated with either a mixture of three isolates of F. poae or a mixture of three isolates of F. avenaceum. In a subsequent climate chamber experiment, the wheat variety Apogee was inoculated with individual single conidium isolates derived from the original poly conidium isolates used in the field. Disease symptoms on wheat heads were visually assessed, and the yield as well as the fungal incidence on harvested grains (field only) was determined. Furthermore, grains were analysed using LC-MS/MS to determine the content of Fusarium mycotoxins. In samples from field and climate chamber experiments, 60 to 4,860 μg kg−1 nivalenol and 2,400 to 17,000 μg kg−1 moniliformin were detected in grains infected with F. poae and F. avenaceum, respectively. Overall, isolate mixtures and individual isolates of F. avenaceum proved to be more pathogenic than those of F. poae, leading to a higher disease level, yield reductions up to 25%, and greater toxin contamination. For F. poae, all variables except for yield were strongly influenced by variety (field) and by isolate (climate chamber). For F. avenaceum, variety had a strong effect on all variables, but isolate effects on visual disease were not reflected in toxin production. Correlations between visual symptoms, fungal incidence, and toxin accumulation in grains are discussed.  相似文献   

17.
Random insertional mutagenesis using a marker DNA fragment is an effective method for identifying fungal genes relevant to morphogenesis, metabolism, and so on. Agrobacterium tumefaciens-mediated transformation (AtMT) has long been used as a tool for the genetic modification of a wide range of plant species. Recent study has indicated that A. tumefaciens could transfer T-DNA not only to plant cells but also to fungal cells. In this study, AtMT was applied to Colletotrichum lagenarium for random insertional mutagenesis. We constructed a binary vector pBIG2RHPH2 carrying a hygromycin-resistant gene cassette between the right and left borders of T-DNA. Optimal co-cultivation of C. lagenarium wild-type 104-T with pBIG2RHPH2-introduced A. tumefaciens C58C1 led to the production of 150–300 hygromycin-resistant transformants per 106 conidia. Southern blot analysis revealed that T-DNA was mainly integrated at a single site in the genome and at different sites in transformants. The T-DNA inserts showed small truncations of either end, but the hygromycin-resistant gene cassette inside the T-DNA was generally intact. The mode of T-DNA insertion described above resulted in highly efficient gene recovery from the transformants by thermal asymmetrical interlaced-polymerase chain reaction. The fungal genomic DNA segments flanking T-DNA were identified from five of eight mutants that had defective melanin biosynthesis. The sequence from one of the segments was identical to that of the melanin biosynthesis gene PKS1 of C. lagenarium, which we previously characterized. These results strongly support our notion that AtMT is a possible tool for tagging genes relevant to pathogenicity in the plant pathogenic fungus C. lagenarium.  相似文献   

18.
Wasabi (Wasabia japonica) is grown for its highly-valued rhizome which is used as a condiment in Japanese food. Symptoms of vascular blackening in the rhizome were first observed in 2005 in plants grown in British Columbia, Canada. Microscopic observations and microbial isolation from infected tissues revealed that most of the xylem tracheid cells were blackened and bacteria were consistently associated with symptomatic plants. The bacterium most frequently recovered was identified as Pectobacterium carotovorum subsp. carotovorum (Pcc) using BioLog™ and sequencing of a specific ~510 bp IGS region. Pathogen-free plants obtained using meristem-tip micropropagation were inoculated with a wasabi isolate of Pcc. Vascular blackening symptoms developed in the rhizome after 8 weeks when the rhizome was first wounded by stabbing or cutting, or if the roots were pre-inoculated with Pythium species isolated from rhizome epidermal tissues, followed by inoculation with Pcc at 1 × 108 cells ml−1. Xylem tracheid cells were blackened and Pcc was reisolated from all diseased tissues. The highest frequency of rhizome vascular blackening occurred at 22°C and 27°C and these tissues occasionally succumbed to soft rot at higher temperatures, but not when inoculated tissues were incubated at 10°C. The rooting medium used by growers for vegetative propagation of wasabi was shown to contain Pcc but the pathogen was not recovered from the irrigation water. Entry of Pcc through wounds on wasabi rhizomes and the host tissue response result in symptoms of vascular blackening.  相似文献   

19.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

20.
The aims of this study were to select bacterial isolates from the non-rhizophere of maize soil and to examine their antagonistic activity against Aspergillus section Flavi strains. The first selection was made through ecophysiological responses of bacterial isolates to water activity (aw) and temperature stress. Subsequently, an Index of Dominance test (ID), ecological similarity and inhibition of the lag phase prior to growth, growth rate and aflatoxin B1 accumulation were used as criteria. From the first assay nine bacterial strains were selected. They grew well at 25 and 30 °C, with growth optima between 0.982 and 0.955 aW using 48 h of incubation. There was ecological similarity between the bacterial strains Bacillus subtilis (RCB 3, RCB 6), Pseudomonas solanacearum RCB 5, Amphibacillus xylanus RCB 27 and aflatoxigenic Aspergillus section Flavi strains at 0.982 at 25 °C. The predominant interaction between all selected bacteria and fungi in dual culture was mutual intermingling at 0.982. Mutual inhibition on contact and mutual inhibition at a distance was observed at 0.955 aw, between only four bacteria and some Aspergillus strains. Bacillus subtilis RCB 55 showed antifungal activity against Aspergillus section Flavi strains. Amphibacillus xylanus RCB 27, B.␣subtilis RCB 90 and Sporolactobacillus inulinus RCB 196 increased the lag phase prior to growth and decreased the growth rate of Aspergillus section Flavi strains. Bacillus subtilis strains (RCB 6, RCB 55, RCB 90) and P. solanacearum RCB 110 inhibited aflatoxin accumulation. Bacillus subtilis RCB 90 completely inhibited aflatoxin B1 accumulation at 0.982 aW. These results show that the bacterial strains selected have potential for controlling Aspergillus section Flavi over a wide range of relevant environmental conditions in the stored maize ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号