首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Although agrosystems are recognized for their socio-economic value, few works have been conducted to assign its sequestration potential and ecological services. Accordingly, this study aimed to evaluate the ecological services of the eucalyptus stands in order to permit to small producers the access in carbon credit market. Three stands were selected according to age. Data were compared to that of a savannah (control). In total, 12,817 individuals belonging to 30 families, 53 genera and 70 species were identified in the plantations against 7107 individuals belonging to 24 families, 36 genera and 42 species in the savannah. Gmelina, Annona, Hymenocardia, Allophyllus, Daniellia, Terminalia and Piliostigma were the most represented genera. There was no significant difference between Savannah and plantations in terms of diversity (p > 0.05). The largest stock of carbon was found in oldest stands (108.51 ± 26.46 t C/ha) against 13.62 ± 3.03 t C/ha in Savannah. Eucalyptus saligna stored 39.66 t C/ha (4 t C ha?1year?1) in young stands; 57.28 t C/ha (6 t C ha?1year?1) in medium stands and 85.46 t C/ha (9 t C ha?1year?1) in old stands. The sequestration potential was higher in eucalyptus stands (398.25 t CO2eq/ha) than savannah (50.05 t CO2eq/ha). In total 956.82 t CO2eq/ha were sequestered for an economic value of $9568.45/ha against 50.05 t CO2eq/ha corresponding to $500.56/ha in Savannah. Eucalyptus stands are carbon sinks and could be an opportunity for financial benefits in the event of payment for environmental services in the context of the CDM process.  相似文献   

2.
Although afforestation of farmlands has been proposed as an effective method of carbon (C) sequestration, there remain uncertainties that deter us from developing a clear picture of C stocks in plantation ecosystems. This study investigated the dynamics of stand structure and plant diversity, and C and nitrogen (N) pools in trees, herbs, litter, and soil (0–100 cm depth) in black locust plantations aged 9, 17, 30, and 37 years, and in newly abandoned farmlands as pre-afforestation sites, on the Loess Plateau, China. Stand density decreased significantly, while tree diameter at breast height and height increased during stand development. The dominant species of the herb layer differed with age. Afforestation resulted in slight increases in tree C and N storage in plantations from 9 to 30 years of age, and then significantly increased from 30 to 37 years. Compared to pre-afforestation, C and N storage in soil decreased to minimum values in stands aged 17 and 9 years, respectively. The soil re-accumulated C and N during stand development, attaining equilibrium levels similar to those in pre-afforestation when stands reached about 30 years of age. Soil C and N storage in 37-year stands were 29 and 16% higher, respectively, than in pre-afforestation levels. However, C and N concentrations in the subsoil (20–40 cm) were still less than the pre-afforestation levels for stands of all ages (from 9 to 37 years). The relative contribution to the total ecosystem C and N pools increased in trees and decreased in soil during the observed period. Our results indicate that afforestation reduced soil C and N storage during the early stages of stand development. We conclude that the growing phase of an afforested stand over its initial 30 years is important for C and N sequestration by black locust due to the C and N storage that result from recovered soil quality and an increase in tree biomass.  相似文献   

3.
Most Eucalyptus plantations are intensively managed as short-rotation plantations and carbon (C) storage in plants and soils in stands older than 10 years is not well understood. We examined the changes in plant biomass C and soil organic C (SOC) storage across a chronosequence of E. urophylla × E. grandis forests (4-, 7-, 10-, 13-, and 21-year-old) in subtropical China. Biomass C stock significantly increased with stand age. SOC storage increased initially after afforestation, peaking in 10-year-old stands, and declined gradually. Ecosystem C pools in the five development stages were 111.76, 167.66, 234.04, 281.00, and 299.29 Mg ha?1, respectively. Trees and soils were the dominant C pools across all stand ages with the contribution of tree biomass C storage significantly increasing and SOC storage decreasing with age. Eucalyptus plantations are still in vigorous growth phase and have great potential for C sequestration at the end of the current rotation length (within 7 years). Considering the sharp decrease of annual biomass C increment rate and the gradual loss of SOC storage in stands older than 13 years, we recommend the optimal length for one full Eucalyptus plantation cycle should be 12–15 years in subtropical China to maximize land-use value and carbon sink value.  相似文献   

4.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

5.
不同林龄马尾松人工林土壤有机碳特征及其与养分的关系   总被引:2,自引:0,他引:2  
选择5个不同林龄阶段的马尾松(Pinus massoniana)人工林,研究土壤有机碳的含量、碳储量以及有机碳与氮、磷、钾及pH值之间的关系.结果表明:土壤各层含碳率、碳储量均随林龄的增加而增大,8、12、18、22、30年生林分的碳储量分别为151.62、177.64、201.19、216.19、331.60 t/hm2;同一林龄,不同土壤层含碳率与碳贮量,均随土层深度的增加而减少,表现为:0~20 cm> 20~ 40 cm>40~60cm;有机碳与氮、磷、钾之间均呈现极显著相关,与土壤的pH值相关性不显著.  相似文献   

6.
In order to restore biodiversity in the degraded forest landscape and to use forest plantations for climate change mitigation, experimental plantations of indigenous trees (including mahogany species) and important exotic trees species like Tectona grandis have been established in pure and in mixed stands in the degraded Tain Tributaries Block II Forest Reserve in the dry semi-deciduous forest zone of Ghana. This study assessed the performance of an important indigenous species, Khaya grandifoliola, in pure and in mixed stands, and compared its performance to the exotic tree species, T. grandis. The results from the study indicated that after 4 years, there was a significant difference in the diameter of K. grandifoliola (P = 0.001) between pure and mixed stands with the pure stands having an average diameter of 9.15 ± 0.19 cm compared with 7.81 ± 0.33 cm for mixed stands. Pure stands had a correspondingly higher basal area at breast height for individual trees in pure stands compared with mixed stands. K. grandifoliola also recorded average total height of 5.50 ± 0.13 m and merchantable height 3.63 ± 0.09 m in pure stands, compared to total height of 5.04 ± 0.24 m and merchantable height of 3.52 ± 0.18 m in mixed stands. However, these values were not significantly different between the stands (P > 0.05). Basal area at breast height for K. grandifoliola grown in pure stands was 5.5 ± 0.3 m2/ha at age four, which was significantly higher than the basal area of 1.1 ± 0.4 m2/ha at breast height for K. grandifoliola in mixed stands. Also total volume per hectare was higher in pure stands (17.8 ± 0.9 m3/ha) than in mixed stands (3.4 ± 0.6 m3/ha). Consequently, K. grandifoliola accumulated more carbon in pure stands (10,126 ± 557.2 kg/ha) than in mixed stands (1,976 ± 335.1 kg/ha), but the mixture of the tree species, including K. grandifoliola, accumulated more carbon (11,929 ± 401.3 kg/ha) than the K. grandifoliola in pure stands though not statistically different. Overall, K. grandifoliola performed better in pure stands than in mixed stands. With regards to the tolerance to pest attacks on K. grandifoliola, it was more tolerant to pests’ attacks in mixed stands than in pure stands. There was no statistical difference in diameter growth between K. grandifoliola (9.15 ± 0.19 cm) and T. grandis (9.61 ± 0.26 cm) in pure stands. The values of total height, merchantable height and total volume for T. grandis were 8.22 ± 0.20 m, 5.38 ± 0.18 m and 22.5 ± 1.7 m3/ha respectively which differed significantly from 5.50 ± 0.13 m, 3.63 ± 0.09 m and 17.8 ± 0.9 m3/ha for K. grandifoliola for the same parameters (P < 0.05). However, there was no significant difference between the two species with respect to basal area per hectare (P = 0.189); K. grandifoliola grew to 5.5 ± 0.3 m2/ha and T. grandis grew to 4.8 ± 0.3 m2/ha. T. grandis in pure stands accumulated slightly more aboveground biomass than K. grandifoliola in pure stands after 4 years though not statistically different.  相似文献   

7.
Optimal management of Korean pine plantations in multifunctional forestry   总被引:1,自引:0,他引:1  
Korean pine is one of the most important plantation species in northeast China.Besides timber,it produces edible nuts and plantations sequester carbon dioxide from the atmosphere.This study optimized the management of Korean pine plantations for timber production,seed production,carbon sequestration and for the joint production of multiple benefits.As the first step,models were developed for stand dynamics and seed production.These models were used in a simulation–optimization system to find optimal timing and type of thinning treatments and optimal rotation lengths.It was found that three thinnings during the rotation period were optimal.When the amount or profitability of timber production is maximized,suitable rotation lengths are 65–70 years and wood production is 5.5–6.0 m~3 ha~(-1) a~(-1).The optimal thinning regime is thinning from above.In seed production,optimal rotation lengths are over 100 years.When carbon sequestration in living biomass is maximized,stands should not be clear-cut until trees start to die due to senescence.In the joint production of multiple benefits,the optimal rotation length is 86 years if all benefits(wood,economic profits,seed,carbon sequestration) are equally important.In this management schedule,mean annual wood production is 5.5 m~2 ha~(-1) and mean annual seed yield 141 kg ha~(-1).It was concluded that it is better to produce timber and seeds in the same stands rather than assign stands to either timber production or seed production.  相似文献   

8.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

9.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

10.
基于对5个林龄尾巨桉林分不同层次植被生物量和碳含量的测定,本文研究了5个不同林龄尾巨桉林分植被碳储量的分配格局.结果表明:5个不同林龄尾巨桉林分中乔木层、林下灌木层、林下草本层和凋落物层碳含量均值分别为47.64%、50.59%、44.41%和48.92%,碳储量为7.17~145.15 t·hm-2,随林龄增加而增大.乔木层碳储量所占比例最大,随林龄增加乔木层碳储量所占比例也逐渐增大.  相似文献   

11.
Forest biomass pools are the major reservoirs of atmospheric carbon in both coniferous and broad-leaved forest ecosystems and thus play an important role in regulating the regional and global carbon cycle. In this study, we measured the biomass of trees, understorey, and detritus in temperate (coniferous and broad-leaved) forests of Kashmir Himalaya. Total ecosystem dry biomass averaged 234.2 t/ha (ranging from 99.5 to 305.2 t/ha) across all the forest stands, of which 223 t/ha (91.9–283.2 t/ha) were stored in above- and below-ground biomass of trees, 1.3 t/ha (0.18–3.3 t/ha) in understorey vegetation (shrubs and herbaceous), and 9.9 t/ha (4.8–20.9 t/ha) in detritus (including standing and fallen dead trees, and forest floor litter). Among all the forests, the highest tree, understorey, and detritus biomass were observed in mid-altitude Abies pindrow and Pinus wallichiana coniferous forests, whereas the lowest were observed in high-altitude Betula utilis broad-leaved forests. Basal area has showed significant positive relationship with biomass (R2 = 0.84–0.97, P < 0.001) and density (R2 = 0.49–0.87). The present study will improve our understanding of distribution of biomass (trees, understorey, and detritus) in coniferous and broad-leaved forests and can be used in forest management activities to enhance C sequestration.  相似文献   

12.
We estimated forest biomass carbon storage and carbon density from 1949 to 2008 based on nine consecutive forest inventories in Henan Province,China.According to the definitions of the forest inventory,Henan forests were categorized into five groups: forest stands,economic forests,bamboo forests,open forests,and shrub forests.We estimated biomass carbon in forest stands for each inventory period by using the continuous biomass expansion factor method.We used the mean biomass density method to estimate carbon stocks in economic,bamboo,open and shrub forests.Over the 60-year period,total forest vegetation carbon storage increased from34.6 Tg(1 Tg = 1×10~(12)g) in 1949 to 80.4 Tg in 2008,a net vegetation carbon increase of 45.8 Tg.By stand type,increases were 39.8 Tg in forest stands,5.5 Tg in economic forests,0.6 Tg in bamboo forests,and-0.1 Tg in open forests combine shrub forests.Carbon storageincreased at an average annual rate of 0.8 Tg carbon over the study period.Carbon was mainly stored in young and middle-aged forests,which together accounted for 70–88%of the total forest carbon storage in different inventory periods.Broad-leaved forest was the main contributor to forest carbon sequestration.From 1998 to 2008,during implementation of national afforestation and reforestation programs,the carbon storage of planted forest increased sharply from 3.9 to 37.9 Tg.Our results show that with the growth of young planted forest,Henan Province forests realized large gains in carbon sequestration over a 60-year period that was characterized in part by a nation-wide tree planting program.  相似文献   

13.
Fast-growing poplar plantations are considered of great benefit to both timber production and carbon (C) sequestration, and are increasingly planted for multiple purposes worldwide. Irrigation and fertilization are common management practices in plantations in semiarid regions. However, quantitative investigation of the integrative effect of surface drip irrigation and fertigation (SDIF) on biomass and C storage in poplar plantations remains limited. In this study, we conducted a field experiment on a fast-growing poplar cultivar (Populus × euramericana cv. Guariento) plantation to compare the combination of surface drip irrigation and fertigation in growing seasons with conventional management (control; CK). Experiments repeated over 2 years showed that SDIF significantly increased biomass and C storage in both trees and soil in the plantation compared with the CK. Tree biomass C in SDIF-treated and CK stands after the first year of the experiment (age 5) was 6.20 and 4.05 t C ha?1, respectively, and the difference further increased, i.e., 15.18 and 8.63 t C ha?1, respectively, after the second year of the experiment (age 6). There was 53 and 76 % higher C storage in SDIF-treated trees than in the CK trees after the first and second years of the experiment, respectively. The SDIF increased the soil C concentration, especially in the surface soil at 0- to 40-cm depth. Soil organic C at a depth of 0–60 cm under the SDIF treatment was 45.42, 50.87 and 61.32 t C ha?1 in the 1st, 2nd and 3rd years, respectively, with annual increases of 12 and 21 % between the first and second, and second and third year, respectively. The corresponding soil organic C in the CK was 43.08, 43.57 and 47.92 t C ha?1 in the 1st, 2nd and 3rd years; the annual increases were only 1 and 10 %, respectively. The results confirmed the significant effect of the combined management on C storage in poplar plantations, thus we suggest it can be applied in forestry management, even though it generally did not change C concentrations of tree components.  相似文献   

14.
We studied variations in tree biomass and carbon sequestration rates of Chir Pine(Pinus roxburghii. Sarg.) forest in three categories of forest disturbance, protected, moderately disturbed, and highly disturbed. In the first year, total biomass was 14.7 t?ha-1 in highly disturbed site, 94.46 t?ha-1 in moderately disturbed forest, and 112.0 t?ha-1 in protected forest. The soil organic carbon in the top 20 cm of soil ranged from 0.63 to 1.2%. The total rate of carbon sequestration was 0.60(t/ha)·a-1on the highly disturbed site, 1.03(t/ha)·a-1 on the moderately disturbed site, and 4.3(t/ha)·a-1 on the protected site.  相似文献   

15.
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

16.
A carbon-flow model for managed forest plantations was used to estimate carbon storage in UK plantations differing in Yield Class (growth rate), thinning regime and species characteristics. Time-averaged, total carbon storage (at equilibrium) was generally in the range 40-80 Mg C ha(-1) in trees, 15-25 Mg C ha(-1) in above- and belowground litter, 70-90 Mg C ha(-1) in soil organic matter and 20-40 Mg C ha(-1) in wood products (assuming product lifetime equalled rotation length). The rate of carbon storage during the first rotation in most plantations was in the range 2-5 Mg C ha(-1) year(-1).A sensitivity analysis revealed the following processes to be both uncertain and critical: the fraction of total woody biomass in branches and roots; litter and soil organic matter decomposition rates; and rates of fine root turnover. Other variables, including the time to canopy closure and the possibility of accelerated decomposition after harvest, were less critical. The lifetime of wood products was not critical to total carbon storage because wood products formed only a modest fraction of the total.The average increase in total carbon storage in the tree-soil-product system per unit increase in Yield Class (m(3) ha(-1) year(-1)) for unthinned Picea sitchensis (Bong.) Carr. plantations was 5.6 Mg C ha(-1). Increasing the Yield Class from 6 to 24 m(3) ha(-1) year(-1) increased the rate of carbon storage in the first rotation from 2.5 to 5.6 Mg C ha(-1) year(-1) in unthinned plantations. Thinning reduced total carbon storage in P. sitchensis plantations by about 15%, and is likely to reduce carbon storage in all plantation types.If the objective is to store carbon rapidly in the short term and achieve high carbon storage in the long term, Populus plantations growing on fertile land (2.7 m spacing, 26-year rotations, Yield Class 12) were the best option examined. If the objective is to achieve high carbon storage in the medium term (50 years) without regard to the initial rate of storage, then plantations of conifers of any species with above-average Yield Classes would suffice. In the long term (100 years), broadleaved plantations of oak and beech store as much carbon as conifer plantations. Mini-rotations (10 years) do not achieve a high carbon storage.  相似文献   

17.

? Key message

The optimal management of larch (Larix olgensis) plantations in Northeast China consisted of 2 or 3 thinnings and a rotation length of 55–61 years when economic profitability, wood production, and carbon sequestration were simultaneously maximized. Wood production ranged from 5.4 to 11.7 m3 ha?1 a?1, depending on site quality.

? Context

L. olgensis is an important tree species in the northeast forest region of China, playing a significant role in the establishment of fast-growing and high-yielding plantation forests in China. However, the management of these plantations has not been optimized in previous studies.

? Aims

The objective of the study was to find the optimal combinations of thinning times, thinning types, and rotation length for L. olgensis stands when both timber production and carbon stock are considered.

? Methods

First, a growth and yield model was developed to simulate the dynamics of larch plantations. Then, the models were linked with the Hooke and Jeeves optimization algorithm to optimize forest management for two commonly used planting densities and three site qualities.

? Results

Two thinnings were found to be suitable for larch plantations when the stand density at 10 years was 2125 trees/ha (corresponding to a planting density of 2500 trees/ha) whereas three thinnings were recommended when the density at 10 years was 2800 trees/ha (planting density of 3300 trees/ha). When the stand density was 2800 trees/ha, the optimal rotation length was 61, 58, and 55 years for site indices (SI) 12, 16, and 20 m (dominant height at 30 years), respectively. The mean annual wood production was 5.4 m3 ha?1 for SI 12, 8.2 m3 ha?1 for SI 16, and 11.7 m3 ha?1 for SI 20. The results were nearly the same for the lower initial stand density. The better the site quality of the stand, the earlier the thinnings were conducted.

? Conclusion

In multifunctional forestry, optimal rotation lengths of larch plantations were 10–20 years longer than advised in the current silvicultural recommendations for Northeast China.
  相似文献   

18.
Urban expansion increases the need for, and pressure on, green areas. Reforestation projects in the rural–urban fringe represent an opportunity for enhancing the environmental quality of peri-urban spaces and a means to contribute to cities carbon neutrality policies. Yet, relatively little information exists regarding the long term (10–25 years) survival and growth rate in urban and peri-urban plantations. This paper reports and discusses the results achieved by a reforestation in the peri-urban space of Rome (Italy), 25 years after its establishment. The plantation has been periodically surveyed between 6 and 24 years of age by means of continuous inventories, with the aim of monitoring growth dynamics. Permanent sample plots have been investigated and stratified by tree species composition (broadleaves vs. conifers, single vs. multispecies) for data analysis. On the whole, plantations show suitable results in terms of rate of growth, carbon storage and uptake, especially in coniferous and mixed stands. The average stand volume of the forest plantation, currently ranges from one-and-a third to one-and-a-half times the average values estimated for natural high forest stands of the same age and species groups at country level. The species groups exhibit differential growth patterns over the observed period, that are mainly due to differences in the ecological traits of the planted trees. Ten years after the establishment, the average annual value of carbon uptake in conifer and mixed species group exceeds 10 Mg CO2 equivalent ha?1 year?1, a figure corresponding to 4 times the value of deciduous broadleaves (oaks and other species) and 1.5 times the value of evergreen oaks. Twenty years after the establishment, the average annual carbon uptake peaks to 25 Mg CO2 equivalent ha?1 year?1 in the mixed species group, exceeds 15 Mg CO2 equivalent ha?1 year?1 in the conifers, and ranks between 6 and 12.5 Mg CO2 equivalent ha?1 year?1 in the groups dominated by broadleaved species. Overall with a surface area just under 300 ha, the carbon uptake level of the Castel di Guido reforestation allows to offset the 0.04% of CO2 emissions of the city of Rome. Although the spatial coexistence of even-aged plantation blocks characterized by a range of ecological traits, is expected to ensure a more continuous carbon sequestration, being less susceptible to damage of any kind, the current lack of silvicultural management may also lead to degradation processes, by triggering e.g. fuel accumulation and, by consequence, forest fires. In this line, recommendations are provided in order to improve the ecological and functional efficiency of the investigated reforestation. The field experiment demonstrates, ultimately, the capability of the continuous forest inventory to take the pulse over several decades of tree species performance and carbon uptake levels in urban and peri-urban reforestations.  相似文献   

19.
Forest ecosystems can modify the atmospheric CO2 through biomass accumulation mostly in tree stems with diameter at breast height (DBH) ≥ 10 cm. Aboveground biomass increment (ΔAGB), and changes in stand AGB, no. stems and basal area (BA) were calculated from mortality, recruitment, and growth data of tree stems in tropical evergreen broadleaved forest, Central Highland Vietnam. Data were derived from ten 1-ha permanent plots established in 2004, where all stems with DBH ≥ 10 cm were tagged, identified to species, and measured for DBH in 2004 and 2012. In an 8-year duration, the increment was 53 ± 10 stems ha–1, 7.8 ± 0.3 m2 ha–1 for BA and 86.0 ± 4.6 Mg ha–1 for AGB. The stem mortality rate was 0.9% year–1 and the stem recruitment rate was 2.2% year–1. Annual ΔAGB was 10.8 Mg ha–1 year–1, equaling to 5.4 Mg C ha–1 year–1. Of which, tree stems of 35–80 cm DBH classes accounted for 65%. The results indicated that the forest is in stage of carbon sequestration. Any disturbances causing death of 35–80 cm DBH tree stems will much reduce carbon sequestration capacity and it will take a long time for AGB to return to pre-disturbance stage.  相似文献   

20.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号