首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

2.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

3.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

4.
Most tropical forests outside protected areas have been or will be selectively logged because the timber industry is a main income-generating resource for many developing countries. Therefore, understanding the composition of commercial timber species and logging types is key for sustainable forest management in countries like Vietnam as they move toward fulfilling Reducing Emissions from Deforestation and Forest Degradation (REDD+) agreements. Seven 1-ha plots were surveyed in the Central Highland of Vietnam, and 18 commercial tree species from these plots, whose timber is widely used by local people for housing and furniture making and timber is easily sold at local markets for high prices, were analyzed. In total, 151 tree species with a diameter at breast height (DBH) of ≥?10 cm were recorded. The 18 commercially valuable species assessed in this study accounted for 33.2% of all stems (total of 524 stems ha?1 for all species), 47.1% of basal area (total of 34.35 m2 ha?1 for all species), and 50.8% of aboveground biomass/AGB (total of 262.68 Mg ha?1 for all species). Practicing diameter-limit harvesting of all commercially valuable species with DBH of ≥?40 cm, which is widely performed in Vietnam, will reduce the number of stems by 7%, basal area by 31.6%, and AGB by 38.2%. Because such harvesting practices cause severe ecological impacts on the remaining forest, logged forests may require >?40 years to recover the structure status of a pre-logged forest. In addition, the recovery of the 18 commercially valuable species may require a much longer time because they comprised 33.2% of stems. Permission for logging natural forests should be given in Vietnam to sustain lives of local communities, where logging has been prohibited. However, alternative harvesting systems, such as reduced-impact logging systems, should be considered. The systems selected must simultaneously generate economic returns for local people and respect the REDD+ agreements with regard to protecting biodiversity and reducing carbon emissions.  相似文献   

5.
《Southern Forests》2013,75(4):297-303
Temperate forests are globally important carbon stores that are, in the face of recent improvements in their conservation, likely to increase their storage capacity in the future. Despite this, these ecosystems are poorly understood, especially over longer time periods. To remedy this and to better understand these important ecosystems, we monitored marked stems >5 cm diameter at breast height (DBH) in a 0.52 ha forest plot on the Cape Peninsula over 26 years. Aboveground biomass (AGB), calculated from stem diameter, increased from 203 to 226 Mg ha?1 over this period. The AGB residence time was greater than a century. Stem mortality was relatively high (1.2% per annum [p.a.]) and exceeded recruitment (0.2% p.a.). The recruitment of a large number of smaller stems of species not presently represented in the forest canopy suggests that compositional changes will occur in the future. Overall, these results suggest that the forest is in a post-disturbance recovery phase, although favourable climatic conditions over the last three decades may also have had an influence on AGB accumulation.  相似文献   

6.
Grewia optiva Drummond is one of important agroforestry tree species grown by the farmers in the lower and mid-hills of western Himalaya. Different models viz., monomolicular, logistic, gompetz, allometric, rechards, chapman and linear were fitted to the relationship between total biomass and diameter at breast height (DBH) as independent variable. The adjusted R2 values were more than 0.924 for all the seven models implying that all models are apparently equally efficient. Out of the six non-linear models, allometric model (Y = a × DBH b ) fulfils the validation criterion to the best possible extent and is thus considered as best performing. Biomass in different tree components was fitted to allometric models using DBH as explanatory variable, the adjusted R2 for fitted functions varied from 0.872 to 0.965 for different biomass components. The t values for all the components were found non-significant (p > 0.05), thereby indicating that model is valid. Using the developed model, the estimated total biomass varied from 6.62 Mg ha?1 in 4 year to 46.64 Mg ha?1 in 23 year old plantation. MAI in biomass varied from 1.66–2.05 Mg ha?1 yr?1. The total biomass carbon stocks varied from 1.99 Mg ha?1 in 4 year to 15.27 Mg ha?1 in 23 year old plantation. Rate of carbon sequestration varied from 0.63–0.81 Mg ha?1 yr?1. Carbon storage in the soil up to 30 cm soil depth varied from 25.4 to 33.6 Mg ha?1.  相似文献   

7.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

8.
Quantitative assessment of tree species diversity from sample plots in seven forest ranges of Nayagarh Forest Division in Odisha state in the Eastern Ghats of India was made during the period April, 2011 to November, 2013. A total of 120 transects(1000 m × 5 m) were laid in Nayagarh, Odogaon, Pancharida, Khandapada, Dasapalla,Mahipur, and Gania forest ranges and tree stems of at least 30 cm GBH were measured. The regeneration potential of trees was assessed from 5 m × 5 m sample plots located within the main transect. A total of 177 tree species belonging to 120 genera and 44 families were recorded from the study area. Shorea robusta, Buchanania lanzan, Lannea coromandelica, Terminalia alata and Cleistanthus collinus were the predominant tree species. The stand density varied in the range of 355.33–740.53 stems h~a)-1) while basal area ranged from 7.77 to 31.62 m~2 ha~(-1). The tree density and species richness decreased with increasing girth class. The highest number of species and maximum density was recorded in the girth class of 30–60 cm. The Shannon–Weiner and Simpson Indices with respect to trees with C30 cm GBH varied in the range of 2.07–3.79 cm and 0.03–0.37 cm respectively and the values of diversity indices are within the reported range for tropical forests of Indian sub-continent. The families, Dipterocarpaceae,Anacardiaceae, Combretaceae and Euphorbiaceae contributed to maximum species richness, stand density, and basal area. Regeneration of many tree species was observed to be poor. The present study provides baseline data for further ecological studies, forest management, and formulation of site-specific strategies for conservation of biological diversity in moist deciduous forests of Eastern India.  相似文献   

9.
Urban expansion increases the need for, and pressure on, green areas. Reforestation projects in the rural–urban fringe represent an opportunity for enhancing the environmental quality of peri-urban spaces and a means to contribute to cities carbon neutrality policies. Yet, relatively little information exists regarding the long term (10–25 years) survival and growth rate in urban and peri-urban plantations. This paper reports and discusses the results achieved by a reforestation in the peri-urban space of Rome (Italy), 25 years after its establishment. The plantation has been periodically surveyed between 6 and 24 years of age by means of continuous inventories, with the aim of monitoring growth dynamics. Permanent sample plots have been investigated and stratified by tree species composition (broadleaves vs. conifers, single vs. multispecies) for data analysis. On the whole, plantations show suitable results in terms of rate of growth, carbon storage and uptake, especially in coniferous and mixed stands. The average stand volume of the forest plantation, currently ranges from one-and-a third to one-and-a-half times the average values estimated for natural high forest stands of the same age and species groups at country level. The species groups exhibit differential growth patterns over the observed period, that are mainly due to differences in the ecological traits of the planted trees. Ten years after the establishment, the average annual value of carbon uptake in conifer and mixed species group exceeds 10 Mg CO2 equivalent ha?1 year?1, a figure corresponding to 4 times the value of deciduous broadleaves (oaks and other species) and 1.5 times the value of evergreen oaks. Twenty years after the establishment, the average annual carbon uptake peaks to 25 Mg CO2 equivalent ha?1 year?1 in the mixed species group, exceeds 15 Mg CO2 equivalent ha?1 year?1 in the conifers, and ranks between 6 and 12.5 Mg CO2 equivalent ha?1 year?1 in the groups dominated by broadleaved species. Overall with a surface area just under 300 ha, the carbon uptake level of the Castel di Guido reforestation allows to offset the 0.04% of CO2 emissions of the city of Rome. Although the spatial coexistence of even-aged plantation blocks characterized by a range of ecological traits, is expected to ensure a more continuous carbon sequestration, being less susceptible to damage of any kind, the current lack of silvicultural management may also lead to degradation processes, by triggering e.g. fuel accumulation and, by consequence, forest fires. In this line, recommendations are provided in order to improve the ecological and functional efficiency of the investigated reforestation. The field experiment demonstrates, ultimately, the capability of the continuous forest inventory to take the pulse over several decades of tree species performance and carbon uptake levels in urban and peri-urban reforestations.  相似文献   

10.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

11.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

12.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

13.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

14.
Changes in above-ground biomass (AGB) of 17 1 ha logged plots of terra firme rain forest in the eastern Amazon (Brazil, Paragominas) were monitored for four years (2004–2008) after reduced-impact logging. Over the same time period, we also monitored two 0.5 ha plots in adjacent unlogged forest. While AGB in the control plots changed little over the observation period (increased on average 1.4 Mg ha−1), logging resulted in immediate reductions in ABG that averaged 94.5 Mg ha−1 (±42.0), which represented 23% of the 410 Mg ha−1 (±64.9) present just prior to harvesting. Felled trees (dbh > 55 cm) accounted for 73% (±15) of these immediate losses but only 18.9 Mg ha−1 (±8.1) of biomass was removed in the extracted logs. During the first year after logging, the annual AGB balance (annual AGB gain by recruitment and growth − annual AGB loss by mortality) remained negative (−31.1 Mg ha−1 year−1; ±16.7), mainly due to continued high mortality rates of damaged trees. During the following three years (2005–2008), average net AGB accumulation in the logged plots was 2.6 Mg ha−1 year−1 (±4.6). Post-logging biomass recovery was mostly through growth (4.3 ± 1.5 Mg ha−1 year1 for 2004–2005 and 6.8 ± 0.9 Mg ha−1 year1 for 2005–2008), particularly of large trees. In contrast, tree recruitment contributed little to the observed increases in AGB (1.1 ± 0.6 Mg ha−1 year−1 for 2004–2005 and 3.1 ± 1.3 Mg ha−1 year−1 for 2005–2008). Plots with the lowest residual basal area after logging generally continued to lose more large trees (dbh ≥70 cm), and consequently showed the greatest AGB losses and the slowest overall AGB gains. If 100% AGB recovery is desired and the 30-year minimum cutting cycle defined by Brazilian law is adhered to, current logging intensities (6 trees ha−1) need to be reduced by 40–50%. Such a reduction in logging intensity will reduce financial incomes to loggers, but might be compensated for by the payment of environmental services through the proposed REDD (reduced emissions from deforestation and forest degradation) mechanism of the United Nations Framework Convention on Climate Change.  相似文献   

15.
Nitrogen (N)-fixing tree and crop intercropping systems can be a sustainable agricultural practice in sub-Saharan Africa and can also contribute to resolving climate change through enhancing soil carbon (C) sequestration. A study conducted by Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) on the N-fixing tree gliricidia and maize intercropping system in southern Malawi provides a rare dataset of both sequestered soil C and C loss as soil carbon dioxide (CO2) emissions. However, no soil C gain and loss estimates were made so the study failed to show the net gain of soil C. Also absent from this study was potential benefit or negative impact related to the other greenhouse gas, nitrous oxide (N2O) and methane (CH4) emissions from the intercropping system. Using the data provided in Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) a C loss as soil CO2 emissions (51.2?±?0.4?Mg?C?ha?1) was estimated, amounting to 67.4% of the sequestered soil C (76?±?8.6?Mg?C?ha?1 in 0?C2?m soil depth) for the first 7?years in the intercropping system. An annual net gain of soil C of 3.5?Mg?C?ha?1?year?1 was estimated from soil C sequestered and lost. Inclusion of the potential for N2O mitigation [0.12?C1.97?kg?N2O?CN?ha?1?year?1, 0.036?C0.59?Mg CO2 equivalents (eq.) ha?1?year?1] within this intercropping system mitigation as CO2 eq. basis was estimated to be 3.5?C4.1?Mg CO2 eq.?ha?1?year?1. These results suggest that reducing N2O emission can significantly increase the overall mitigation benefit from the intercropping system. However, significant uncertainties are associated with estimating the effect of intercropping on soil N2O and CH4 emissions. These results stress the importance of including consideration of quantifying soil CO2, N2O and CH4 emissions when quantifying the C sequestration potential in intercropping system.  相似文献   

16.
Cacao agroforestry systems (cacao-AFS) produce abundant litter. After decomposing, litter releases nutrients into the soil. The aim of this research was to estimate litter production and its nutrient content in 35- and 55-year-old cacao-AFS. The research was conducted in three cacao-AFS of each age, in Cardenas, Tabasco, México. Four traps per cacao-AFS were used to collect litter. Litter was collected every 15 days for one year. It was then fractioned into cacao leaves, shade tree leaves, petioles, branches and stems, and cacao flowers and fruits. To determine nutrient content of litter, samples were composited by age of cacao-AFS and by season of the year. Then chemical analysis was done in triplicate. Data were subjected to analysis of variance, orthogonal contrasts, and Student t and Duncan tests. Cacao-AFS produce litter all year. Thirty-five-year-old cacao-AFS produced more litter than 55-year-old cacao-AFS (2042 vs 1570 kg DM ha?1 year?1). Except for the shade tree leaf fraction (559.5 vs 642 kg DM ha?1), 35-year-old cacao-AFS were superior to 55-year-old cacao-AFS in all the other litter fractions. Cacao leaf fraction was the main source of litter in cacao-AFS of both ages. Neither age of cacao-AFS nor the season of the year affected N, K, Zn or S content in litter. Orthogonal contrasts indicated statistical differences between ages of cacao-AFS for P, Ca, and Fe content in litter. Both N–P–K–Ca–Mg contents in litter of 35-year-old cacao-AFS (1.2–0.4–1.2–1.7–0.4%) and in litter of 55-year-old cacao-AFS (1.1–0.6–1.2–1.4–0.4%) are enough to recover the nutrients extracted by the cacao crop.  相似文献   

17.
The study was carried out in a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), stand over a span of three years from July 1992 to June 1995, primarily to predict litter production from exteral tree dimensions by combining open-top clothtrap and clipping methods. Litter production was virtually concentrated in October and November. Stem cross-sectional area at the crown base was proved to be the reliable predictor of litter production, and that single regression model was evolved irrespective of year. The regression model had proportional constants of 2.696 × 10−2 and 3.540 × 10−2 kg cm−2 year−1 for leaf litter and total litter production, respectively. Utilizing the model, leaf litter production of the stand was assessed to be 5.04, 5.12, and 4.99, and total litter production to be 6.48, 6.58, and 6.40 Mg ha−1 year−1 for the first, second and third year, respectively. Biomass increment was 6.67, 7.80, and 7.70, tree mortality was 0.15, 0.13, and 0.41, and insect grazing was 0.09, 0.05, and 0.002 Mg ha−1 year−1 for the first, second and third year, respectively. Above-groud net production was therefore 13.39, 14.55, and 14.51, Mg ha−1 year−1, and biomass accumulation ratio (biomass/net production) was 1.86, 2.21, and 2.76 year for the first, second and third year, respectively. Considering data from earlier studies and the results of this study, biomass accumulation ratio,BAR (year), of hinoki stands was best related to above-ground biomass,y (Mg ha−1), using the power function:BAR=0.112y 0.936. Excluding seedling stands, leaf efficiency (above-ground net production per unit leaf mass) of hinoki stands was 0.91±0.02 (SE) Mg Mg−1 year−1, irrespective of stand biomass or age.  相似文献   

18.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

19.
Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha?1) than in AFSP (99.1 ± 3.1 Mg C ha?1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha?1) than in AFSP (2.26 ± 0.06 Mg C ha?1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号