首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken embryo propagation of type I avian adenoviruses   总被引:2,自引:0,他引:2  
B S Cowen 《Avian diseases》1988,32(2):347-352
Forty-two clone-purified, cell-culture-propagated type I avian adenoviruses (AAV) representing 11 serotypes and two intermediate strains were evaluated for virus replication (evidenced by embryo death and lesions) resulting from the inoculation of specific-pathogen-free chicken embryos via the chorioallantoic sac or yolk sac. Commonly observed embryonic changes were death, stunting and curling, hepatitis, splenomegaly, congestion and hemorrhage of body parts, and urate formation in the kidneys. Basophilic or eosinophilic intranuclear inclusion bodies characteristic of fowl adenoviruses were observed in hepatocytes. The magnitude and relative uniformity of intra- and interserotypic embryo mortality, gross lesions, and virus titers was greater in embryos inoculated via the yolk sac. This work identifies the yolk sac as a practical and sensitive chicken embryo inoculation route for poultry diagnosticians to employ. It is suggested that the yolk sac may be a reliable alternative to cell culture for the successful isolation of all type I avian adenoviruses.  相似文献   

2.
Host range of avian influenza virus in free-living birds   总被引:17,自引:0,他引:17  
Isolation of avian influenza virus (AIV) has been reported from 12 orders and 88 species of free-living birds. Most isolations are reported from species in the orders Anseriformes and Charadriiformes and it is recognized that species in Anseriformes represent important reservoirs of AIV. Morbidity and mortality among free-living birds attributable to AIV infection are rare, but differences in prevalence of AIV occur within and between avian species. Seasonal variation has been reported from free-living and sentinel ducks with peak AIV infection occurring in late summer and early fall. Prevalence of AIV is age-related, with highest isolation rates reported from juvenile birds. Differences in susceptibility to AIV infection among species have been demonstrated under experimental conditions. The dynamics and epidemiology of species-related variation in populations of free-living birds require further study.  相似文献   

3.
H5亚型禽流感病毒间接免疫荧光快速诊断方法的建立   总被引:1,自引:0,他引:1  
本研究以当前严重威胁我国养禽业的高致病性禽流感H5亚型病毒为研究对象,病毒在犬肾细胞(MDCK)上培养增殖,经蔗糖梯度离心对病毒进行纯化,免疫清洁级的新西兰公兔,高免血清经辛酸-硫酸铵法和葡聚糖G50柱纯化,制得第一抗体。以FITC标记的山羊抗兔IgG为第二抗体,通过反应条件的优化,建立了间接免疫荧光快速诊断方法。本法的最佳检测组织为心肌和胰腺,检测时间只需3小时,本法可检出人工感染后36小时尚未表现出临床症状鸡只中的病毒,对禽流感H7亚型、H9亚型病、新城疫、传染性支气管炎和传染性喉气管炎禽出败等病料进行特异性检验结果均为阴性。运用本方法对69个禽场的临床病料进行了检测,检测结果与鸡胚分离法进行比对,9个阳性场(广东省2004年9个原疫点的病料)的9份病料中,检出8份阳性;而鸡胚分离法阴性样品,本法检测结果与之完全相符。本法用于禽流感H5亚型病毒的快速诊断具有快速、简便、敏感、特异、费用低廉和不存在交叉污染等优点,在当前流行的H5亚型高致病性禽流感快速诊断中具有良好的应用前景。  相似文献   

4.
Type A influenza viruses can infect a wide range of birds and mammals, but influenza in a particular species is usually considered to be species specific. However, infection of turkeys with swine H1N1 viruses has been documented on several occasions. This report documents the isolation of an H1N2 influenza virus from a turkey breeder flock with a sudden drop in egg production. Sequence analysis of the virus showed that it was a complex reassortant virus with a mix of swine-, human-, and avian-origin influenza genes. A swine influenza virus with a similar gene complement was recently reported from pigs in Indiana. Isolation and identification of the virus required the use of nonconventional diagnostic procedures. The virus was isolated in embryonated chicken eggs by the yolk sac route of inoculation rather than by the typical chorioallantoic sac route. Interpretation of hemagglutination-inhibition test results required the use of turkey rather than chicken red blood cells, and identification of the neuraminidase subtype required the use of alternative reference sera in the neuraminidase-inhibition test. This report provides additional evidence that influenza viruses can cross species and cause a disease outbreak, and diagnosticians must be aware that the variability of influenza viruses can complicate the isolation and characterization of new isolates.  相似文献   

5.
为研究鹅源H5N1亚型禽流感病毒(AIV)人工感染雏鸡免疫器官细胞凋亡的动态变化,本研究将50只1日龄SPF雏鸡随机分为两组。试验组雏鸡于7日龄,分别经鼻、眼、口同时感染105TCID50的鹅源H5N1亚型AIV,分别于感染后3d、4d、5d、7d和14d迫杀,采取胸腺、法氏囊和脾脏,应用TUNEL染色法和透射电镜技术观察其细胞凋亡的动态变化情况。结果显示,试验组雏鸡的胸腺和脾脏凋亡细胞数量在感染后3d~7d极显著高于对照组(p<0.01);法氏囊凋亡细胞数量在感染后3d~4d比对照组明显增加(p<0.05或p<0.01)。组织器官超微结构检测可见凋亡细胞核染色质固缩并凝结成块,聚集在核膜周围,呈新月状或环状;细胞质浓缩。表明鹅源H5N1AIV能够诱导感染雏鸡免疫器官发生细胞凋亡。  相似文献   

6.
Isolation of H13N2 influenza A virus from turkeys and surface water.   总被引:1,自引:0,他引:1  
This is the first report of the isolation of H13N2 avian influenza virus (AIV) subtype from domestic turkeys. This subtype was also isolated from nearby surface water. The observation of large numbers of gulls in close association with turkeys on range before the virus isolations suggests that this virus subtype was transmitted from gulls to range turkeys. Turkey flocks infected by this virus subtype did not show any clinical signs of the disease, although seroconversion did occur. The H13N2 isolates were found to be non-pathogenic in chickens.  相似文献   

7.
Lu H 《Avian diseases》2003,47(2):361-369
A monoclonal antibody (MAb)-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed that detected the epitopes specifically associated with avian influenza virus (AIV). The dot-ELISA detected the antigens of AIV directly from clinical and field specimens. Data obtained from experimentally AIV-infected specific-pathogen-free chickens and also the 2001/02 AIV outbreak of serotype H7N2 positive flocks in Pennsylvania indicated that the mean sensitivity (Se) of the dot-ELISA ranged between 45% and 68% and the mean specificity (Sp), between 85% and 90%. The values were derived from various clinical and field specimens when compared with virus isolation with embryonating chicken eggs. On routine AIV surveillance samples, the dot-ELISA achieved a 92%-100% Sp on the basis of resting over 1500 AIV surveillance samples that were confirmed negative by virus isolation. The dot-ELISA detected AIV antigens with a 5-microl allantoic fluid sample that contained a concentration of 0.4 hemagglutinating units. Furthermore, the dot-ELISA retained its specificity for AIV because no cross-reactions were obtained with various other avian viruses. The findings in this study indicated that the dot-ELISA was highly sensitive and specific and comparable with the commercial Directigen test in the detection of AIV obtained from clinical and field specimens.  相似文献   

8.
9.
The effect of avian influenza virus (AIV) infection on the ability of turkeys to eliminate Pasteurella multocida from the respiratory tract was evaluated. Four-week-old turkeys were experimentally infected with an apathogenic AIV subtype (H5N2) by the oculonasal route and subsequently superinfected with P multocida (Urbach strain) by the intranasal route three days after infection with AIV. Quantitative clearance of P multocida from the trachea and lung was determined using a pour plate technique on samples collected at intervals after infection. Samples from turkeys which had been infected with AIV were found to yield more P multocida than those from turkeys which had not been infected with AIV. The numbers of P multocida increased in infected birds to a greater extent than in birds which had not been infected with the virus. The present study suggests that AIV infection may contribute to the increased numbers and a decreased clearance of P multocida in turkeys.  相似文献   

10.
This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV), according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2)(Emu/HN/2004). The HA gene (1683bp) was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2) from Southern China.  相似文献   

11.
Zhang A  Jin M  Liu Ff  Guo X  Hu Q  Han L  Tan Y  Chen H 《Avian diseases》2006,50(3):325-330
Rapid detection of avian influenza virus (AIV) infection is critical for control of avian influenza (AI) and for reducing the risk of pandemic human influenza. A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for this purpose. The method employed a monoclonal antibody (MAb) as the capture antibody and rabbit polyclonal IgG labeled with horseradish peroxidase as the detector antibody, and both antibodies were against type-specific influenza A nucleoprotein (NP). The DAS-ELISA could detect minimally 2.5 ng of influenza viral protein in virus preparations treated with Triton X-100, which is equvilent to 2.5 x 10(2) EID50 virus particles. This DAS-ELISA could detect all 15n AIV subtypes (H1-H15) and did not cross react with other avian pathogens tested. The DAS-ELISA were directly compared with virus isolation (VI) in embryonated chicken eggs, the current standard of influenza virus detection, for 805 chicken samples. The DAS-ELISA results correlated with VI results for 98.6% of these samples, indicating a sensitivity of 97.4% and specificity of 100%. The method was further tested with H5N1 and H9N2 AIV experimentally infected chickens, ducks, and pigeons, as well as field samples obtained from central China in 2005. The DAS-ELISA method has demonstrated application potential as an AIV screening tool and as a supplement for virus isolation in Asia.  相似文献   

12.
13.
To better understand the transmission route of H9N2 avian influenza virus (AIV), two duplicate trials were conducted to observe the process of aerosol infection and direct contact in specific pathogen free chickens. Fifteen chickens (G1) were inoculated with H9N2 AIV and housed together with another 15 chickens (G2) in the same positive-negative-pressure isolator (A). Fifteen chickens (G3) were bred in another isolator (B) which was connected with A so that air could flow unidirectionally from A to B. Air, oropharyngeal and cloacal swabs, and blood samples were collected for the detection of aerosolized virus, virus shedding, and seroconversion. AIV aerosols were initially detected at day 2-3 post inoculation (dpi), reaching peak concentrations at 7 dpi. Virus shedding was detected in all chickens of G2, but only in a part in G3 (T1: 87%, T2: 80%). Antibodies were initially detected at 4-5 dpi, peaking at 14-21 dpi. The results showed that H9N2 AIV could be transmitted by both aerosol exposure and direct contact.  相似文献   

14.
研究了由南京地区分离的鸭源流感病毒A/duck/Nanjing/21/95(H9N2?)感染商品来航鸡后,各组织脏器中病毒分离情况和病毒抗原分布。结果表明,禽流感病毒(AIV)可以从肾脏、肺脏、脾脏和心脏中分离出来,接种后3d(PI3),病毒在组织中的分离率最高,且又以肾脏的分离率最高。病毒抗原主要分布在肾小管上皮细胞、呼吸系统单核细胞和少量上皮细胞的胞核内,PI3时病毒抗原的检出率最高。这些结果表明,肾脏是该毒株复制的主要部位,肾脏的病变是病毒直接损伤的结果,而且该株AIV具备在呼吸系统内复制的潜力。  相似文献   

15.
H5N1亚型禽流感病毒是目前发现的禽流感病毒中感染性最强、致死率最高、流行最广的一类病毒,该病毒已在世界上多个国家发生流行,给禽类养殖业带来了巨大的经济损失。当前针对该病尚无高效特异的治疗方法,进行疫苗的接种是目前最为有效的预防措施和关键环节。因此,研制安全、高效、廉价的新型疫苗成为当前禽流感防制工作的热点之一,且取得了大量的研究成果。作者从禽流感病毒灭活疫苗、减毒活疫苗、基因工程疫苗和RNAi技术应用等方面对H5N1亚型禽流感病毒疫苗的研究现状作一综述,归纳出该领域中存在的问题和不足,并对禽流感疫苗的应用前景作一展望,以期为深入进行禽流感的防制研究提供参考。  相似文献   

16.
为了明确金丝桃素蛋白络合物在动物体内H9N2亚型AIV的杀灭效果及临床上用于预防和治疗的剂量,将180只28日龄非免疫石歧杂黄鸡随机为6组,分别为金丝桃素蛋白络合物高、中、低剂量组,金刚烷胺药物对照组,感染不给药组及健康对照组。其中,金丝桃素蛋白络合物三个剂量组的实验鸡于感染H9N2亚型AIV12h后分别以不同的剂量灌服给药,而金刚烷胺药物组于攻毒12h后以10mg/l饮水。用棉拭子采集各实验组鸡的咽喉及泄殖腔黏液,进行微量血凝(HA)试验及RT-PCR检测,以确定各实验组鸡的排毒情况。结果表明,金丝桃素蛋白络合物对人工感染H9N2亚型AIV的实验鸡有较好的保护作用,与金刚烷胺药物对照及感染不给药组相比有显著差异。  相似文献   

17.
将未浓缩的新城疫抗原分别与未浓缩的、浓缩3倍、浓缩6倍的禽流感抗原混合,并制备成三组鸡新城疫、禽流感(H9N2 HP株)二联灭活疫苗(简称新-流二联灭活疫苗),分别免疫21日龄SPF鸡,每羽0.3 mL,同时设置未免疫的空白对照组,免疫组与对照组均在免疫前及免疫后7、14、21、28、35 d进行采血,检测新城疫和禽流感抗体。结果发现,各免疫组在免后不同日龄的新城疫抗体基本一致,禽流感病毒抗原浓缩倍数越高(即禽流感病毒含量越高)的新-流二联灭活疫苗,免后14、21 d的抗体也越高;从免后21 d开始,各免疫组的禽流感抗体水平差异逐渐减小,免疫后禽流感抗体水平的高低可以反映该疫苗的免疫效果。试验结果表明,该疫苗可以通过浓缩提高抗原病毒含量的方法来提高免后早期抗体水平,取得良好的早期免疫效果。  相似文献   

18.
19.
20.
Five antigen capture immunoassay test kits, Directigen Flu A (Becton Dickinson), QuickVue Influenza test kit (Quidel), FLU OIA (ThermoBiostar), Zstat Flu (ZymeTx, Inc.) and NOW FLU A Test (Binax) were used to detect avian influenza virus (AIV) in clinical specimens as per manufacturers' protocols. Each kit was shown to be specific for AIV propagated in embryonating chicken eggs (ECE); other respiratory viruses of poultry tested gave negative results. The Directigen Flu A kit proved to be 10-fold more sensitive than the other kits, capable of detecting 10(4.7) mean embryo lethal dose (ELD50)/ml in allantoic fluid; this is more sensitive than the hemagglutination test using chicken erythrocytes. None of the kits proved to be sufficiently sensitive to reliably detect AIV in oropharyngeal and cloacal swabs collected from chickens experimentally infected with AIV subtype H6N2. In two different experiments, individual swabs and pools of five or six swabs were tested. By virus isolation, 39 individual oropharyngeal swabs tested positive for AIV, but Directigen and Flu OIA only detected 2/39 and NOW FLU A 1/39. Zstat and QuickVue did not detect any. Five individual cloacal swabs positive by virus isolation were negative with all five kits. In a second experiment using pools of five swabs, 26 swab pools were positive by virus isolation and 5/26 were positive by Directigen, the only kit to provide any positive results. Five cloacal swab pools were also positive by virus isolation and 1/5 was positive by Directigen; all other test kits were negative. All of these experiments were performed using the H6N2 subtype of AIV. The results are disappointing, as the kits have proven to be insensitive for detecting AIV when compared with the gold standard, virus isolation. This limits their use in diagnostic field investigations. Individual or groups of chickens could be assumed to be positive for AIV if positive by any of the kits, but a negative result with any of the kits would not prove that birds were AIV free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号