首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenol–formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and board properties were analyzed. The relationships between the deterioration of board properties resulting from water soaking and those arising from outdoor exposure were also analyzed. At 100 °C, the modulus of rupture (MOR) and internal bond strength (IB) of the PF board decreased significantly within the first hour, and subsequently constant values were shown with increasing soaking time. This low constant value was defined as the lower limit. At 70 °C, both the MOR and IB decreased with increasing soaking time, and reached the lower limit. At 40 °C, however, neither decreased significantly with increasing soaking time and neither reached the lower limit. The MOR of the MDI board showed the same trend as the PF board. However, the IB of the MDI board showed a different trend to the PF board, that is, the lower limit of IB required extensive soaking, even at 100 °C. The MOR and IB of both the PF and MDI boards reached the lower limit when thickness change peaked. On the other hand, the MOR and IB for outdoor exposure were lower than those for water soaking, even at the same thickness change. The MOR and IB of water soaking decreased owing to the collapse of the bonding points caused by board swelling. On the other hand, the board properties of outdoor exposure decreased owing to the collapse of the bonding points, and biodegradation also added to the decrease.  相似文献   

2.
The balance of strength between the flange and web parts of veneer strand flanged I-beam was investigated by the following methods: (1) use of different web material types, such as plywood, oriented strand board (OSB), particleboard (PB), and medium density fiberboard (MDF), that have different strength properties; and (2) fabrication of I-beams with low-density flanges using low-density strands with PB web material. Replacing PB or MDF with plywood showed slight significant improvement in the modulus of rupture but not in the modulus of elasticity of the entire I-beam. However, PB and MDF showed competent performance in comparison with OSB, thus strengthening the promising future of the use of PB or MDF as web material to fabricate I-beams. Hot-pressing conditions used for I-beam production exerted slightly adverse effects on the bending properties of PB, but not on MDF, OSB, and plywood web materials. The flange density of 0.60 g/cm3 was considered to be the lower limit that provides I-beams with balanced mechanical properties and dimensional stability.  相似文献   

3.
Phenol-formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and nail joint properties were analyzed. The soaking time to reach the lower limit of nail-head pull-through (NHPT) of the PF board was 2 h at 100 °C, while it took 168 h at 70 °C. The soaking time to reach the lower limit of lateral nail resistance (LNR) of the PF board was 24 h at 100 °C, but it did not take 168 h at 70 °C to reach it. The lower limits of NHPT and LNR for the MDI board were higher than those for the PF board. For the PF board, there was a high correlation between modulus of rupture, internal bond strength and nail joint properties. Based on the results of water soaking and outdoor exposure, it was shown that thickness change has a significant effect on NHPT and LNR, and that the reduction in NHPT and LNR results from the collapse of bonding points owing to swelling of the board.  相似文献   

4.
The static strength, stiffness and fatigue life of MDF, OSB and chipboard have been measured in a 65%RH environment and a 85%RH environment. Chipboard is commonly utilised as a flooring material and OSB is also used in structural applications, for example floor decking and webs of I-beams. The mean static strengths of MDF, OSB and chipboard at 65%RH were 47.9 MPa, 27.9 MPa and 21.0Mpa, respectively, compared with 34.59 MPa, 21.70 MPa and 10.61 MPa at 85%RH. However, MDF has mostly been used in non-structural applications, such as furniture, so its resistance to fatigue loads as a structural panel is of considerable interest. In a 65%RH environment dynamic modulus values showed that whilst MDF and chipboard exhibit similar stiffness values (4 GPa), OSB is approximately 50% stiffer. However, at 85%RH MDF was the stiffest of the three materials, followed by OSB and chipboard. The fatigue life performance of all three panel products was markedly lower at 85%RH compared with 65%RH. Overall, the high RH environment had a noticeably detrimental effect on the MOE (modulus of elasticity), MOR (modulus of rupture) and fatigue lives of OSB and chipboard. This is attributed to these panels retaining more of the original characteristics of the original wood, i.e. larger particle sizes (flakes/chips) compared with the homogeneous fibrous composition of MDF. Received 5 November 1999  相似文献   

5.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

6.
The durability of wood-based panels was evaluated by comparing the bending properties of panels subjected to five accelerated aging treatments with the bending properties of panels that had experienced 5 years of outdoor exposure in Shizuoka City, Japan. In each accelerated aging treatment, methylene diphenyl diisocyanate-bonded panels showed higher bending retention than phenol formaldehyde (PF)-bonded panels. The bending retentions after six repeated cycles of the JIS-B, APA D-1, and ASTM treatments showed a correspondence of nearly one-to-one in the data for the three different treatments. The Shizuoka City 5-year outdoor exposure test data showed that the bending retentions of all panels decreased with time. In particular, the bending retentions of PF resin-bonded particleboard and oriented strandboard made from aspen were less than 30% and 10% of the original values, respectively, after the 5-year exposure period. The deterioration of the bending properties after the 5-year outdoor exposure in Shizuoka City was the same as that for six repetitions of the ASTM treatment.  相似文献   

7.
The deterioration of particleboards for construction use was investigated by outdoor exposure tests at eight sites in Japan over 7 years. Two types of particleboard with different water resistances were tested and the deterioration of mechanical properties such as modulus of rupture, internal bond strength and lateral nail resistance was investigated. In order to eliminate regional differences in the board deterioration and also to standardize a deterioration factor for the board exposed to varying climate conditions, we introduced the weathering intensity (WI) defined by monthly precipitation multiplied by monthly average temperature. The significance of this factor was investigated by correlation analysis. Three conventional climate indexes relevant to the durability of wood were also investigated to analyze their significance to WI for particleboard deterioration. It was found that our definition of weathering intensity was the most accurate and the exposure period that reduces initial bending strength by half was calculated by the use of regression analysis for several different sites worldwide.  相似文献   

8.
选用镀镍布和粗化铜箔,制备具有电磁屏蔽功能的复合人造板。根据接合面的特点,分别选用聚醋酸乙烯乳液和环氧树脂,将镀镍布和粗化铜箔胶贴于人造板表面。性能检测结果表明,所制得的复合人造板的力学性能比人造板基材增强,镀镍布复合板的电磁屏蔽效能约60dB,铜箔复合板大于70dB,可满足屏蔽室建造用材的要求。  相似文献   

9.
The deterioration of wood-based panels at eight sites in Japan over 7?years of outdoor exposure was investigated. In particular, the modulus of rupture (MOR) retention and internal bond strength (IB) retention after 7?years of exposure were compared among panels and sites. The deterioration of panels was greater in southern Japan than in northern Japan. The strength retentions in northern Japan decrease linearly, while those in southern Japan decreased exponentially. To quantify regional differences, deterioration rates were calculated based on three different weather conditions (precipitation, temperature, and sunlight hours), and the significance of each of these parameters on panel deterioration was determined. We found that the correlation coefficients between both IB and MOR retention and weathering intensity were the same whether we used 10-day, monthly, or daily weathering data.  相似文献   

10.
The search for new value-added uses for oilseed and animal proteins led us to develop protein-based wood adhesives. Low-fat soy and peanut flours and blood meal were hydrolyzed in an alkaline state, and PF-cross-linked protein resins were formulated by reacting the protein hydrolyzates with phenol-formaldehyde (PF) in solid-tosolid ratios ranging from 70% to 50% hydrolyzates and 30% to 50% PF. Physical properties of medium density fiberboard (MDF) bonded with protein-based phenolic resins were compared to those of boards bonded with ureaformaldehyde (UF) and PF resins, and flakeboard bonded with soy protein-based phenolic resin was compared to PF-bonded board. As MDF binders, adhesive properties of protein-based phenolic resins depended upon protein content of proteinacious materials. MDF board bonded with blood-based phenolic resin was comparable to PF-bonded board and met the requirements for exterior MDF. Boards bonded with soy-protein-based phenolic resin met requirements for interior MDF, while peanut-based phenolic failed to meet some of the requirements. Flakeboard bonded with soy-protein-based phenolic resins was inferior to PF-bonded board but outperformed PF-bonded board in accelerated aging tests. Although they exhibit a slow curing rate, the cost effectiveness and superior dimensional stability of protein-based phenolic resins may make them attractive for some uses.  相似文献   

11.
Wood-based panels used as floor decking can be exposed to fatigue as well as creep loading. The strength and fatigue performances of three wood-based panel products OSB, chipboard and MDF have been determined in four-point bending. The mean bending strengths were found to decrease in the following order MDF>OSB>chipboard. The bending strength variation within the OSB was considerably greater than that for chipboard and MDF. Normalised with respect to the static strengths, the fatigue performance of the chipboard was superior to that of the OSB, although the two materials have very similar performances at low stress levels. Normalised with respect to the static strengths, the fatigue performance of the MDF was inferior to both materials and at lower stress levels the fatigue performance deteriorated to a greater extent. However, in terms of absolute applied stress, the fatigue performance of the MDF was superior to that of the OSB, which was superior to that of the chipboard. However, as the stress was reduced the difference between the three materials reduced. At low stresses the performances of the three materials were quite similar. Received 5 August 1999  相似文献   

12.
The fatigue and creep performance of MDF, OSB and chipboard have been examined in two environments, namely 65%RH (standard environment) and 85%RH (high humidity). Parallel fatigue and creep tests have been performed in four-point bending on the three wood-based panel products in the two environments. The constant 65%RH environment is service class 1 and the constant 85% RH environment is indicative of a service class 2 environment as detailed in Eurocode 5. The non-interruptive technique of stress-strain hysteresis loop capture has been utilised to follow property changes of the fatigue samples during cyclic loading at a stress ratio of R equal to 0.1. Loop parameters such as loop area, dynamic modulus, and fatigue modulus have been used to characterise the response of these materials to fatigue loads in the two environments. Creep microstrains for the creep samples were recorded in parallel with the fatigue parameters. Fatigue and creep results at 85%RH were more variable than those reported at 65%RH for MDF, OSB and chipboard. In general, at R=0.1 and 85%RH, fatigue and creep microstrains were higher, dynamic stiffnesses were lower and hysteresis loop areas were higher than corresponding properties measured at 65%RH. MDF and chipboard were less moisture tolerant than OSB, this is reflected in the large changes in fatigue and creep parameters.  相似文献   

13.
China is one of the major production countries forwood-based panel products, and its production wasranked in the second place in the world in 2003. Onthe other hand, however, China is also a country withshortage of forest resources. As the main raw material,wood supply is becoming a serious problem with thefast growing of panel production. Fortunately, thereare plenty of agricultural residues in China, and thisgives the possibility to use agri-based fibers instead ofwood. Many wood-based pane…  相似文献   

14.
稻草纤维板吸水性能的研究   总被引:1,自引:0,他引:1  
研究不同石蜡乳液用量,不同的防水剂与脲醛树脂进行共混改性和共聚改性及不同胶黏剂等对稻草纤维板吸水性能的影响,并通过最终的经济分析,确定改善稻草中密度纤维板吸水性能的最有效可行的方法.结果表明,石蜡乳液不能作为改进稻草纤维板吸水性能的有效防水剂;各种防水剂与脲醛树脂共聚改性效果明显优于简单的共混改性,综合考虑认为5%三聚氰胺改性脲醛树脂为稻草纤维板最佳的防水型胶黏剂,每m3板材所耗胶的原料成本价为327元.  相似文献   

15.
In this study, the deterioration of wood-based panels at eight sites in Japan was investigated using outdoor exposure tests. In particular, the modulus of rupture (MOR) retention and internal bond strength (IB) retention after 5-year exposures were compared among panels and sites. The deterioration of panels located in southern Japan was higher than that of panels in northern Japan. To quantify the regional differences, the deterioration rates were calculated; the values showed clear regional differences. The deterioration rate for areas that receive much rain in the summer was higher than the rates for other sites. To eliminate regional differences, we carried out an analysis in terms of the “weathering intensity,” a factor which combines weather conditions (precipitation and temperature). Panels for which deterioration progressed extensively during exposure periods showed a strong correlation between strength retention and the weathering intensity. The significance of these parameters is discussed.  相似文献   

16.
Wood-based panels are viscoelastic so when a load (stress) is applied to them there is a time lag before a deflection (strain) is produced, which results in hysteresis (a loss of energy). The capture of stress versus strain hysteresis loops is a non-interruptive method of monitoring the damage produced during fatigue testing. Hysteresis loops were captured throughout the flexural fatigue testing of OSB, chipboard and MDF in four-point bending allowing the development of fatigue damage to be followed. The MDF tested had a greater mean bending strength than the OSB and chipboard. When stresses were applied to the materials as a percentage of their bending strengths, the stresses applied to the MDF samples were larger than those applied to the OSB and chipboard samples. As a result the microstrains were greater for MDF than for the chipboard and OSB. The OSB was stiffer than the chipboard and MDF, which were both of similar stiffness. The information gained from the hysteresis loops indicates that the OSB, chipboard and MDF all had fatigue limits just below 20% of their bending strengths. The fatigue limit for the MDF is likely to be slightly lower than for the chipboard and the OSB.  相似文献   

17.
应用变参数Maxwell模型拟合中密度纤维板蠕变   总被引:3,自引:0,他引:3  
邵卓平 《木材工业》2002,16(3):9-11,18
在研究木质材料的流变性质时,广泛采用多个弹簧和阻尼单元的各种组合形式的力学模型。但其多个常流变参数不易求解,本文提出一种变参数流变模型的概念,并以两单元的变参数Maxwell模型拟合了MDF的蠕变性质。结果表明,上述作法是可行的,采用变参数Maxwell模型不仅能以较少的弹,粘单元组合代替常参数的多个弹,粘单元组合模型。使流变参数便于求解,而且该模型还可方便地应用Boltzmann叠加原理拟合MDF在变荷下的蠕变变形。  相似文献   

18.
The objective of this paper is to investigate the relationship between the arrangement of wood strands at the surface of oriented strand board (OSB) and the modulus of rupture (MOR) determined by applying the technique of image analysis (IA). Fiber orientation was measured manually. In addition a CCD (charge coupled device) digital camera was used to automatically measure the fiber orientation at the surface of OSB. The total number of OSB samples evaluated was equal to 55, but variation in density was small and the coefficient of variation was only 4%. In contrast, the variation in MOR is wide and the coefficient of variation is 17%. Thus, the variation in density of OSB does not reflect variations in MOR. The relationship between the MOR and the average angle of fiber orientation resulted in a weak negative correlation (r=−0.44) as might be expected, as better axial orientation should improve MOR. The average strand area gave no correlation with MOR. Clearly, large strands which should enhance MOR may be heavily disoriented, whereas small strands which have less influence on the MOR might be well oriented. Hence no correlation between MOR and average strand area is observed. The prediction of MOR by using a multiple linear regression equation including density and fiber orientation factors is only moderately successful. Hence another factor must be identified to predict MOR accurately. The CCD camera measures fiber orientation at the OSB surface effectively. Received 29 March 1999  相似文献   

19.
Abstract

A new testing method measuring the specific fracture energy of wood-based panels in Mode I is proposed. Three types of wood-based panels, i.e. oriented strand board (OSB), particleboard (PB) and medium density fibreboard (MDF) are investigated, using fracture energy and the industrial European standard method of internal bond strength according to EN 319. Double cantilever beam specimens are notched in the middle layer to introduce an initial crack. To apply tensile load perpendicular to the surface of the panels to open the crack in Mode I specimens were adhesively bonded to steel braces. Besides the calculation of the total fracture energy an advanced analysis of the load–displacement curve was also performed. Results of the fracture energy method were compared to internal bond strength (IB). Specimen shape is optimized for industrial purposes using double cantilever beams, while the determination of the fracture energy is performed by simple integration of the load–displacement curve. While IB showed a large scattering of data, the fracture energy test yielded statistically significant differences between the board types.  相似文献   

20.
In this study, the durability of wood-based panels was evaluated by comparing the internal bond (IB) strength retention after five different laboratory-based accelerated aging tests with the IB retention after 5 years of outdoor exposure in Shizuoka City. In each accelerated aging test, the IB retention of MDI-bonded panels showed high retention compared to other panels. Outdoor exposure in Shizuoka City resulted in an IB retention value for particleboard (PF) and oriented strandboard (aspen) of less than 10% after the 5-year exposure period. Medium-density fiberboards maintained their initial IB strength over the same period. Calculation of the mean IB retention for all board types allowed comparison of the severity of aging between the accelerated test methods and outdoor exposure. The ASTM six-cycle test method was the most severe among the standard treatment cycles applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号