首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄土性土壤对磷的吸附与解吸   总被引:25,自引:1,他引:25       下载免费PDF全文
曹志洪  李庆逵 《土壤学报》1988,25(3):218-226
本文报道了黄土性土壤及作为对照的中性水稻土和酸性红壤对磷的吸附与解吸特性。实测吸附曲线与简单Langmuir等温吸附方程最为吻合,全部供试样本的相关系数均达到显著水平;而与Temkin方程和Freundlich方程只是部分吻合。与酸性红壤相比,黄土性土壤是一种弱吸磷能力的土壤,评价其吸磷能力的最适参数是根据简单Langmuir方程求出的最大吸磷量(qm),支配qm的土壤性质主要是游离氧的铁含量,其次是粘粒和CaCO3的含量。黄土性土壤对吸附磷的解吸能力很强,其等温解吸曲线也是可以分成三个区域,代表各种不同能级的吸附磷被解吸的过程。  相似文献   

2.
黄淮海地区潮土对磷的吸附和解吸特性   总被引:8,自引:1,他引:8       下载免费PDF全文
沈仁芳  蒋柏藩 《土壤》1993,25(2):68-70
对黄淮海地区潮土进行的磷吸附试验结果表明,土壤粘粒含量和CaCO3含量是影响潮土吸附磷能力的主要因素;潮土对磷的吸附随质地而异,其顺序是淤土 > 二合土 > 砂土。潮土的吸附特性与Langmuir等温吸附方程式相当吻合。潮土磷的解吸量与磷的吸附量有一定的关系。一般情况下,吸附的磷越多,解吸的磷也越多,但是解吸磷占吸附磷的百分率不一定越高。磷的解吸量的相对大小也是与土壤吸磷特性密切相关的。  相似文献   

3.
氧化还原条件对土壤磷素固定与释放的影响   总被引:35,自引:2,他引:35  
张桃林  高超  吴蔚东 《土壤学报》2002,39(4):542-549
为探讨水稻土由氧化环境转为还原条件时对土壤磷素固定与释放的影响,选择18种水稻土样品进行室内模拟实验,通过测定不同条件下磷的等温吸附曲线和采用氧化铁试纸测定法进行多次提取以对比淹水前后土壤磷的累计解吸量,发现大部分供试样品的固磷能力在淹水条件下有了显著的提高,全部样品在淹水后磷的释放量都有不同程度的减少。进一步的研究表明淹水条件下土壤对磷的固定与释放的变化主要与淹水后土壤Eh的降低和pH的升高而导致的大量无定形铁的形成有关。  相似文献   

4.
宁夏灌淤土对磷吸附的初步研究   总被引:8,自引:0,他引:8  
何文寿 《土壤学报》1992,29(2):142-149
本文报道了宁夏灌淤土12个代表性土样对磷的等温吸附与解吸特性。实测吸附曲线与Preundlich、Langmuir和Temkin三种等温吸附方程都很吻合。全部供试样品的相关系数变化在0.931-0.999之间,均达极显著水平(p<0.01)。其中Langmuir等温式与本实验资料最为吻合。供试土壤对磷的最大吸附量(Xm)变化在172-460μgP/g之间,平均为347±28μgP/g。影响其大小的因子主要是物理性粘粒和CaCO3,含量,均达极显著正相关。灌淤土不同土层的吸磷量大小依次为:剖面24>23>21>22,而解吸磷能力大小依次为:剖面23>22>21>24。磷的解吸量与吸附量之间呈极显著正相关。根据本试验数据,土壤对磷的等温吸附曲线可以用来预测土壤需磷量。  相似文献   

5.
本文研究了吸附性阳离子、电解质浓度和组成影响几种矿物和土壤吸附态磷的解吸的机理。结果表明,吸附性阳离子影响磷酸根解吸与离子桥有关。桥接静电场愈强,被束缚磷的释放就愈困难。电解质阳离子对磷酸根解吸的影响则取决于其对表面负电荷的屏蔽效应。阳离子电价高,屏蔽作用大,磷解吸就少。电解质浓度影响吸附态磷的解吸主要与表面电位的变化有关。当pH>PZC值时,提高电解质浓度降低表面负电位,从而减少磷的吸附;当pH<PZC时,提高电解质浓度则降低表面正电位,促进磷的解吸。磷酸根解吸盐效应零点(PPZSE)值一般都介于土壤或矿物样品吸附磷酸根前后测得的两个PZC值之间。不同浓度电解质溶液中磷解吸量之差与吸附层电位变化量(△ψx)呈正相关。  相似文献   

6.
赵美芝 《土壤学报》1988,25(2):156-163
用0.5NHOAc、0.5NNH4F和0.1NNaOH浸提的方法,研究了几种土壤和粘土矿物上磷的解吸与矿物组成和时间的关系,以及追加吸附及其解吸状况,结果表明,全部供试样品磷的解吸量都随吸磷量的增加而增加;解吸平衡的时间除红壤需要1天外,其余样品均在1小时内基本上达到平衡,同时可见缓慢解吸作用的存在;追加吸附中可见到从吸附正值到吸附负值的转变,以及0.1NNaOH解吸磷量的明显变化。  相似文献   

7.
干湿交替过程中水稻土铁形态和磷吸附解吸的变化   总被引:19,自引:2,他引:19  
采用室内培养试验 ,经过连续 3次淹水 落干处理 ,研究了干湿交替过程中土壤中氧化铁形态的变化以及对土壤磷吸附和解吸的影响。结果表明 ,淹水使土壤中结晶态氧化铁含量明显减少 ,无定形氧化铁和土壤对磷的吸附量急剧增加 ,磷解吸下降 ;落干则使之发生相反的变化。土壤中的无定形氧化铁含量与土壤对磷的吸附之间存在着密切的相关关系。因此 ,淹水 落干过程中无定形氧化铁的变化是影响水稻田磷有效性的一个主导因子。  相似文献   

8.
红壤氟保持容量的研究   总被引:4,自引:1,他引:4       下载免费PDF全文
刘忠翰 《土壤学报》1988,25(3):236-242
为了解土壤保持氟的能力和可溶性氟化物在土中的迁移、变化,选用三种母质(石灰岩、玄武岩、砂岩)上发育的红壤进行等温吸附-解吸实验和土柱淋溶实验。研究结果指出,文献报道的土壤保持氟的能力往往偏高,是因为用吸附量(或最大吸附量)作标准之故。衡量土壤氟保持容量用净吸附量为宜,它受土壤母质、质地和矿物组成等因素的影响。石灰岩、玄武岩、砂岩发育的红壤实测最大净吸附量分别为740,464和244μg F-/g土,表明这三种红壤保持氟的潜力不同,即使母质相同,而因土壤其它性质差异,从全氟量接近的污染土壤中测出的水溶性氟、交换性氟、1% C6H8O7·H2O和0.5N HCl提取的氟均不相同。证明土壤吸附氟的解吸特征极为重要,其能力大小影响土壤氟环境容量。无论从那个角度看,土壤对氟具有很大的保持能力,即使在比现代工业高得多的氟化物沉降条件下,一般也不会造成地下水的污染。  相似文献   

9.
三峡库区消落带土壤对磷的吸附和淹水下磷的形态变化   总被引:6,自引:0,他引:6  
朱强  安然  胡红青  万成炎  胡莲  王素梅 《土壤学报》2012,49(5):1128-1135
三峡水库建成后在库区周边形成落差30m的消落带,消落带土壤对磷的吸附固定和磷的去向直接影响到周围的水环境。通过批处理和模拟培养法研究了三峡库区小江流域沿岸消落带的黄壤、紫色土在淹水期间铁的形态变化,磷的吸附及形态转变,结果表明:(1)供试黄壤和紫色土在淹水后,晶形铁氧化物含量明显下降,非晶形铁含量有增加趋势,土壤对磷的吸附量增加;(2)淹水期间土壤Olsen-P含量呈下降趋势,而Fe-P和Al-P含量增加,模拟显示黄壤和紫色土在淹水15d后的磷吸附容量增加70.8%和9.5%;(3)用pH 5和pH 9的0.1mol L-1CaCl2、KCl、NH4Cl溶液培养的黄壤,其Olsen-P、Fe-P、Al-P含量均明显增加,意味着消落带土壤中若施加K、Ca或尿素时,土壤有效磷可能增加,这可导致CaCl2提取磷的增多并影响库区水的含磷量,从而影响库区水质。  相似文献   

10.
施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性   总被引:16,自引:0,他引:16  
为了给玉米磷高效利用提供理论依据, 在低磷土壤(Olsen-P 4.9 mg·kg-1)上, 通过田间试验, 研究了施磷0(T0)、50 kg(P2O5)·hm-2(T1)、100 kg(P2O5)·hm-2(T2)、200 kg(P2O5)·hm-2(T3)、1 000 kg(P2O5)·hm-2(T4)对两个玉米品种"鲁单9002" (LD9002)、"先玉335"(XY335)的产量、磷素吸收利用及根际磷动态变化的影响。结果表明: 两玉米品种根际土、非根际土速效磷含量在不同生育时期都表现为T12O5)·hm-2的T3处理非根际土转化为根际土土壤磷的量最大, 同时玉米生物量、产量、磷转移量也达到最高, 而施磷1 000 kg(P2O5)·hm-2处理玉米生物量、产量与中磷水平相比没有显著增加, 但植株吸磷量较高。XY335的花后磷转移量小于LD9002。相关分析表明, LD9002根际土、非根际土速效磷含量与茎、叶吸磷量之间显著相关, 以播种后79 d与茎、叶磷浓度、吸磷量、生物量、产量之间的相关系数最高; 而XY335根际土、非根际土速效磷含量与茎、叶磷浓度之间显著相关, 在播种后47 d期间与茎、叶磷浓度、吸磷量、生物量、产量之间的相关性最好。因此, 在低磷土壤上, LD9002和XY335分别在播种后79 d和47 d时是植株对磷的敏感期, 可以通过测试根际土、非根际土速效磷含量来反映土壤的供磷状况; LD9002在79 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为54.95 mg·kg-1、32.99 mg·kg-1, XY335品种在47 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为51.24 mg·kg-1、35.35 mg·kg-1; 施磷量1 000 kg(P2O5)·hm-2处理两品种玉米产量、生物量、磷积累量与施磷量100~200 kg(P2O5)·hm-2处理没有显著差异。  相似文献   

11.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

12.
Upon inundation, the soils in a hydroelectric reservoir are subjected to several years of physical, biological, and chemical changes as the transition from a terrestrial to an aquatic ecosystem is achieved. It is suspected that changes in soil Eh and pH alter the metal binding capacity of organic matter, reactive iron (Fe) oxides/oxyhydroxides, and clay minerals, and may cause the mercury associated with these phases to be remobilized. Four cores were collected along a transect from an unflooded forest soil to a pre-impoundment lake bottom sediment. They were subjected to a customized sequential extraction procedure to determine the distribution of Hg between three operationally-defined solid compartments: organic carbon, reactive Fe oxides/hydroxides, and the solid (clay and sulfide) residue. Results indicate that up to 80% of the Hg in the O-horizon of forest soils and flooded soils and up to 85% of the Hg in lake sediments is bound to the NaOH-extractable organic carbon fraction. Furthermore, it was observed that the highest Hg concentrations are associated with degraded organic matter. In the B-horizon of a podzol, 40–60% of the total Hg was found associated with reactive Fe minerals. In contrast, the flooded podzol contains almost no reactive Fe at any depth and associated Hg concentrations are low. We propose that upon inundation, Fe oxides are reduced and Hg released to the pore waters where it is rapidly bound to other available substrates. Analyses of the extractions residues suggest that there is an enrichment of Hg in this fraction immediately above the B-horizon in a flooded soil.  相似文献   

13.
As repeatedly reported, soil flooding improves the availability of P to rice. This is in contrast with an increased P sorption in paddy soils. The effects of soil flooding on the transformation of Fe oxides and the adsorption/desorption of P of two paddy soils of Zhejiang Province in Southeast‐China were studied in anaerobic incubation experiments (submerging with water in N2 atmosphere). Soil flooding significantly increased oxalate‐extractable Fe (Feox), mainly at the expense of dithionite‐soluble Fe (FeDCB), as well as oxalate‐extractable P (Pox), but decreased the ratio of Pox/Feox. Flooding largely increased both, P adsorption and the maximum P adsorption capacity. The majority of newly sorbed P in the soils was Pox, but also more newly retained P was found to be not extractable by oxalate. Flooding also changed the characteristics of P desorption in the soils. Due to a decrease of the saturation index of the P sorption capacity, P adsorbed by flooded soils was much less desorbable than that from non‐flooded soils. There are obviously significant differences in the nature of both, the Feox and Pox fractions under non‐flooded and flooded conditions. The degree of the changes in Feox, Pox, P adsorption and P desorption by flooding depended on the contents of amorphous and total Fe oxides in non‐flooded soils. Our results confirm that the adsorption and desorption behavior of P in paddy soils is largely controlled by the transformation of the Fe oxides. The reasons of the often‐reported improved P availability to rice induced by flooding, in spite of the unfavorable effect on P desorbability, are discussed.  相似文献   

14.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

15.
氧化土和老成土中自然产生的有机酸对磷的活化   总被引:4,自引:2,他引:4  
Citric and malic acids at concentrations of 0.1,1.0,10,and 100 mmol/L were added to three Ultisols and one Oxisol,The amount of P in solution increased with increasing organic acid concentrations,while the amount of Fe-and Al-bound P decreased.This result suggested that naturally occurring products of organicmatter decomposition could increase the P availability to plants in soils where there is a relatively large pool of Fe-and Al-bound P.The interactions between citric and malic acids at the above concentrations,and p added at rates of 10,20,40,and 80mg/kg were determined.At zero levels of organic acids,all added P became either labile or bound ,and greater proportions remained soluble as the concentration of orgaic acids increased,which suggested that organic acids reduced fixation of dissolved P in Fe-and AL-rich soils .Agricultural practices which increase organic matter input on P-deficient acid soild could decrease P deficiency,This would be important in many tropical and subtropical regions where these soils are common,and where the costs of fertilizers and lime are relatively high.  相似文献   

16.
Abstract

A laboratory incubation experiment was conducted to study the influence of organic matter and lime application on the recovery of added boron (B) by four different extractants (hot‐CaCl2, mannitol‐CaCl2, tartaric acid, and ammonium acetate) in two B‐deficient acid alluvial soils. Soils were brought to four relatively constant pHs and three organic matter levels before application of B. Recovery percentages of 23.9 to 60.9 of added B by the four extractants indicate a soil fixation of B. This is more so in fine‐than in coarse‐textured soils. Both liming (from pH 4.8 to 6.8) below neutrality and organic matter application increased such recovery of added B in all the extractable forms, the effect being more pronounced in fine‐than in coarse‐textured soils. A positive interaction between liming and organic matter particularly at the latter's higher level was observed. Complexation of added B and coating of the surfaces of Fe‐and Al‐oxides by soluble organic compounds are suggested as the possible reasons for such increased recovery of added B in soils.  相似文献   

17.
In the Mesopotamia region (Argentina), rice is cropped on a wide range of soil types, and the response of rice to fertilizer application has been inconsistent even in soils with very low levels of available phosphorus. Phosphorus transformations in flooded soils depend on soil characteristics that may affect phosphorus availability. This study was conducted to determine which soil characteristics were related to the changes in P fractions during soil flooding. Soils were chosen from ten sites within the Mesopotamia region that are included in five different soil orders: Oxisols, Ultisols, Alfisols, Mollisols, and Vertisols. Soil phosphorus (P) was fractionated by a modified Hedley method before and after a 45 d anaerobic‐incubation period. Changes in the inorganic P extracted with resin depended on soil pH and were related to the exchangeable‐Fe concentration of soils (extracted with EDTA). Inorganic P extracted with alkaline extractants (NaHCO3 and NaOH) increased due to soil flooding. This increase was related to the organic‐C (OC) percentage of soils (r2 = 0.62, p < 0.01), and ranged from 13 to 55 mg kg–1. Even though previous studies showed that P associated with poorly crystalline Fe played an important role in the P nutrition of flooded rice, in this study, there was no relationship between ammonium oxalate–extractable Fe and P changes in soils due to flooding. Our results suggest that in the Mesopotamia region, changes in P fractions due to soil flooding are related to soil OC, soil pH, and soluble and weakly adsorbed Fe.  相似文献   

18.
Methane and C02 production in flooded acid sulfate soils of Thailand were governed primarily by soil oxidation-reduction potential (Eh) and pH. The critical Eh and pH levels at which CH4 emission began was Eh-150 mV, and pH 6.1. Low soil pH limited soil reduction and subsequently CH4 production. Soil respiration (C02 production) was influenced by Eh-pH levels and organic matter content. Soils with higher C02 production rates produced greater amounts of CH4. Soil pH, however, was the dominant variable which influenced organic matter decomposition, low soil Eh conditions and subsequent CH4 and CO2 production. Curvilinear or log transformations of pH, Eh and organic matter content (OM) were used in explaining variables controlling CH4 and CO2 production; CH4 = ?2.359 ? 0.0001 Eh + 2.047 pH ? 3.019 (In pH)2 CO2 = ?5210 ? 1.6 Eh + 3144 (In pH) + 1011 (In OM).  相似文献   

19.
The secretion of O2 by rice roots results in aerobic conditions in the rhizoshere compared to the bulk flooded soil. The effect of this phenomenon on the adsorption/desorption behavior and on the availability of phosphorus (P) in a flooded soil was investigated in a model experiment. An experimental set‐up was developed that imitates both O2 release and P uptake by the rice root. The results showed that O2 secretion significantly reduced P adsorption/retention and increased P desorption/release in the “rhizosphere” soil, compared to the anaerobic bulk soil. The P uptake by an anion exchange resin from both unfertilized and P‐amended soil was significantly increased. The results confirm that the O2 secretion is an important mechanism to enhance P availability and P uptake of rice under flooded conditions, where the “physico‐chemical” availability of P in the anaerobic bulk soil is strongly reduced. The decrease of P availability in the P‐amended flooded bulk soil was mainly associated with the almost complete transformation of the precedingly enriched Al‐P fraction into Fe‐bound P with extremely low desorption/release characteristics during the subsequent flooding.  相似文献   

20.
The effects of lime (applied in the field) on the amounts of total and isotopically-exchange-able phosphate adsorbed from solutions were measured in five soils. The total amount of phosphate adsorbed without lime was in the range 200 to 1700 μg P per g of soil at 0.05 μg P cm−3 of solution. Lime diminished the amount of phosphate adsorbed at all concentrations of solution in an oxisol and a dystropept; in an ultisol and another dystropept, lime tended to increase sorption at small concentrations and diminish it at large concentrations; in a dystrandept that contained spheroidal allophane and a great deal of organic matter, lime increased adsorption at all concentrations up to 1 μg P cm−3. Lime increased the proportion of added phosphate that was isotopically exchangeable in the oxisol and one dystropept, had no effect in the other dystropept, and diminished the proportion in the ultisol and dystrandept.
Adsorbed phosphate was subsequently desorbed by suspending the soils in solutions without phosphate. After desorption the quantity of exchangeable phosphate in all soils was closely correlated with aluminium extracted by ammonium oxalate; buffer power was correlated in all except the dystrandept, in which it was larger per unit of aluminium than in the other soils; possibly the cause was aluminium associated with organic matter. In all soils lime diminished buffer power allowing a specific amount of exchangeable phosphate to maintain a larger concentration in solution. The beneficial effects of lime on exchangeable phosphate after desorption were consistent among soils, despite inconsistent results when the phosphate was adsorbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号