首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of temperature on the latent periods of rust, late leaf spot and early leaf spot diseases of groundnut caused by Puccinia arachidis, Phaeoisariopsis personata and Cercospora arachidicola , respectively, was studied. The latent periods (LP) of rust, late leaf spot and early leaf spot ranged from 12–49 days, 13–38 days and 13–39 days, respectively, between 12°C and 33°C An equation relating the rate of pathogen development (1/LP) to temperature was fitted using daily mean temperatures to provide three cardinal temperatures: the minimum (Tmln), optimum (Topl), and maximum (Tmax), Tmln was about 12°C for rust and about 10°C for the two leaf-spot diseases. Topt, for all three diseases was close to 25°C. Tmax was 31°C for early leaf spot, and extrapolated values for late leaf spot and rust were about 35 and 40°C, respectively.
For P. personata , a temperature response curve was fitted using data only from controlled environment experiments. This curve was used to simulate latent periods from both mean daily and mean hourly temperatures in the field. There was substantially better agreement between observed and simulated latent period with hourly temperatures, provided the developmental rate of the pathogen was determined at a constant temperature.  相似文献   

2.
Spring wheat seedlings containing Lr 20 and Sr 15 resistance alleles were raised at 30° C, prior to inoculation with leaf rust ( Puccinia recondita race 76–2,3) and stem rust ( Puccinia graminis f.sp, tritici race 343–1,2,3,5,6) pathogens, respectively. Infected plants were then grown at one of seven temperatures in the range 18–30 C and infection types were scored at 10 days post-inoculation. These results were compared with those obtained for plants raised at a pre-inoculation temperature of 18° C. In both 18° C and 30° C pre-grown plants, a progressive increase in infection type was observed on resistant lines as post-inoculation temperature increased. However, resistant lines raised at 30°C had significantly higher infection types than plants raised at 18° C at all post-inoculation temperatures for which some degree of resistance was still evident in the plants raised at 18°C, The maximum temperature for expression of resistance was significantly higher for Lr 20 than for Sr 15. irrespective of pre-inoculation temperature. A lowering of the resistance expression was also evident in Sr 15 -bearing lines raised at a very low pre-inoculation temperature (4°C). The effects of low pre-inoculation temperature on resistance were assessed in both winter and spring wheat lines. These results are discussed in the light of current ideas concerning the host membrane location of pathogen recognition events.  相似文献   

3.
Monocyclic components (development rate during the incubation period or latent period, lesion density, lesion size and disease severity) of rust ( Uromyces appendiculatus ) and of angular leaf spot ( Phaeoisariopsis griseola ) in two bean ( Phaseolus vulgaris ) cultivars (Rosinha G-2 and Carioca), pre-infected or not with bean line pattern mosaic virus (BLPMV), were determined. Trials were conducted at temperatures in the range from 9 to 27°C for rust and from 12 to 30°C for angular leaf spot. Regardless of viral pre-infection, the effect of temperature on the four monocyclic components followed an optimum curve and could be described by a generalized beta function. Generally, angular leaf spot was favoured by higher temperatures with an optimum for disease severity between 24.2 and 28.3°C compared with 15.9–18.5°C for rust. Pre-infection with BLPMV did not change the shape of the optimum curves for all components, but significantly reduced lesion density and disease severity on both cultivars. The development rates during incubation and latent periods for both fungal diseases were not affected by BLPMV. Pre-infection with virus did not alter the ranking of cultivars with respect to resistance to both fungal diseases.  相似文献   

4.
Field and glasshouse observations of Lolium spp. grasses indicated that the lower, abaxial, leaf surface was rarely infected by powdery mildew ( Erysiphe graminis ) even when the upper, adaxial, surface was densely colonized. Experiments showed that conidia of two strains of E. graminis , one from Lolium and one from Avena , germinated equally well on both surfaces of Lolium and Avena leaves, but that the subsequent growth and development of germlings was impaired on the lower surface of Lolium leaves, so that most formed only multiple short germ tubes or an abnormal long tube, and only c. 25% or fewer formed infection structures. This contributes to the apparent resistance of the lower Lolium leaf surface to powdery mildew and may help to explain why the disease is relatively unimportant in UK ryegrass crops, since infection structures develop at a high frequency on only 50% of the leaf area, i.e. the upper surface. Scanning electron microscopy showed that the epicuticular waxes on the lower Lolium leaf surface form amorphous sheets. This contrasts with the crystalline plate waxes seen on the upper surface of Lolium leaves and on both surfaces of oat leaves. However, when the lower Lolium leaf surface was washed with chloroform to remove epicuticular wax, normal germling and infection structure development was obtained on the wax-free surface. This suggests that the sheet waxes prevent the pathogen gaining access to features of the cuticular membrane which trigger normal germling development.  相似文献   

5.
Gilles T  Kennedy R 《Phytopathology》2003,93(4):413-420
ABSTRACT Controlled environment experiments were conducted to study the effects of inoculum density, temperature, and their interaction on germination of Puccinia allii urediniospores and infection of leek leaves. Percent germination of P. allii urediniospores and percent branching of germ tubes increased with 3 density of urediniospores and approached a plateau for densities above approximately 20 spores cm(-2) of leaf area. Percent germination was highest at 12 to 21 degrees C, a wide-range temperature optimum. Branching occurred at temperatures ranging from 5 to 25 degrees C, but there were few germ tubes branching at 25 degrees C. P. allii successfully infected leek leaves at temperatures ranging from 7 to 22 degrees C. The number of pustules produced increased with urediniospore density on leek leaves. At low spore densities, pustule production was little affected by temperature; at higher spore densities, pustule production was greatest between 9 to 11 degrees C, and numbers of pustules decreased greatly with temperature increasing above this optimum. Latent period was affected by temperature, with latent period being shortet between 19 and 22 degrees C, and latent period increasing when temperature decreased. Latent periods became approximately 1.8 days shorter for every 10-fold increase in spore density. The rate of pustule production increased with increasing spore density on leaves and was greatest between 11 to 14 degrees C. Computer simulation of leek rust progress based on the found relationships suggested that at optimal temperatures the development of leek rust epidemics may be little affected by initial spore density and density caused by each pustule, but that at sub- and supra-optimal temperatures the development is greatly affected by these variables.  相似文献   

6.
Light, scanning electron and fluorescent microscopy were used to observe the infection process of Botrytis elliptica on leaves of oriental lily (cv. Star Gazer). At 20 °C and 100% relative humidity, conidia germinated on both adaxial and abaxial foliar surfaces, but germ tubes failed to invade epidermal cells on the adaxial surface. On abaxial surfaces, short (< 20 m) swollen germ tube appressoria penetrated through stomatal openings (19%), through the epidermis near guard cells (52%), or directly through epidermal cells (29%). Esterase activity was detected on germ tubes and conidia after 6 h of incubation, and deformation of the cuticle on abaxial surfaces of lily was observed surrounding infection sites. By 3 h after inoculation, almost 70% of the conidia had germinated, but no penetration was observed. At 6 h after inoculation, almost one-third of germinated conidia had penetrated epidermal cells, and water-soaked lesions were associated with 20% of the penetrations. By 9 h after inoculation, approximately 60% of the germinated conidia had penetrated plant tissues, and water-soaked lesions were associated with 60% of the infections. Fluorescent microscopy with a specific fungal stain allowed assessment of successful infection and visualization of sub-epidermal hyphae. We conclude that penetration of abaxial foliar surfaces of oriental lilies by B. elliptica occurs via short swollen germ tube appressoria mostly near stomata.  相似文献   

7.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

8.
Cladosporium allii-cepae is a slow-growing pathogen of onion which, on malt extract agar, had a mean colony diameter of 2.7 cm after 28 days at 16°C. Growth and reproduction were greatest on malt onion leaf agar and were poor on synthetic media. The optimum and maximum temperatures for growth were 20 and 28°C, respectively. Sporulation was most abundant at 10–15°C. The fungus grew poorly in buffered Czapek Dox medium at pH 2.2–7.8 and most growth was recorded at pH 6.5. Sporulation was enhanced by exposure of colonies to near ultraviolet light.
A large proportion of spores germinated in distilled water and at 100% r.h. In distilled water germination was greatest at 15–20° and in air at 100% r.h. at 20°C. Of 10 fungicides tested, fentin hydroxide, fentin acetate/maneb and iprodione were the most effective in inhibiting spore germination, growth and reproduction of the fungus.  相似文献   

9.
During the period 1986–1988 field studies were conducted on the epidemiology of the tar spot disease complex (TDC) of maize ( Zea mays ) caused by Phyllachora maydis, Monographella maydis and Coniothyrium phyllachorae. Under field conditions we found that P. maydis symptoms always appeared first, followed by symptoms of either M. maydis or C. phyllachorae. M. maydis causes leaf necrosis and has the most devastating effect. The primary symptoms covered about 12% of the leaf area below the ear leaf, whereas the total necrotic leaf area amounted to 30–60%, here considered as a secondary effect. Maximum TDC severity occurred during the winter season of 1988, which was characterized by a temperature range of 17–22°C, a mean RH >75%, and > 7h of leaf wetness per night. The highest numbers of windborne ascospores of P. maydis were trapped at an RH > 85% and at temperatures of 17 to 23°C in the winter of 1987 and 1988, although large numbers were also caught at temperatures of >23°C and RH <70%. Spore release was strongly influenced by light conditions and followed a similar diurnal curve throughout three seasons, reaching a maximum at 17.00–21.00 hours. The spread off. maydis within the field was very homogeneous. The incubation period of P. maydis was 12 to 15 days, and most of the ascospores were released within 3 weeks after formation of the ascostromata. M. maydis inoculum in plant debris was reduced by 90% within 3 to 4 months.  相似文献   

10.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   

11.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

12.
Induction of susceptibility in oats to a normally avirulent pathotype of Puccinia graminis f.sp. avenae was studied in the presence of different pathotypes of P. coronata f.sp. avenae . Induction occurred on seedlings only in the presence of a virulent culture of P. coronata avenae and was not dependent on time or order of inoculation of either pathogen. This phenomenon was restricted to seedlings of lines possessing the Pg-a source of oat stem rust resistance. The specificity of induced susceptibility can be used as a valuable bioassay for screening and identifying Pg-a . Induced susceptibility occurred only at the seedling stage, and apparently provides no obstacle to the use of Pg-a as a source of stem rust resistance in oats.  相似文献   

13.
Infection of onion by Alternaria porri and Stemphylium vesicarium was investigated under a range of controlled temperatures (4–25°C) and leaf wetness periods (0–24 h). Conidia of A. porri and S. vesicarium germinated within 2 h when incubated at 4°C. Terminal and intercalary appressoria were produced at similar frequencies at or above 10°C. The maximum number of appressoria was produced after 24 h at 25°C. Penetration of leaves by both pathogens was via the epidermis and stomata, but the frequency of stomatal penetration exceeded that of epidermal penetration. There was a strong correlation ( R 2 > 90%) between appressorium formation and total penetrations at all temperatures. Infection of onion leaves occurred after 16 h of leaf wetness at 15°C and 8 h of leaf wetness at 10–25°C, and infection increased with increasing leaf wetness duration to 24 h at all temperatures. Interruption of a single or double leaf wetness period by a dry period of 4–24 h had little effect on lesion numbers. Conidia of A. porri and S. vesicarium separately or in mixtures caused similar numbers of lesions. Alternaria porri and S. vesicarium are both potentially important pathogens in winter-grown Allium crops and purple leaf blotch symptoms were considered to be a complex caused by both pathogens.  相似文献   

14.
Study of the stomata and leaf epidermis of eight Lycopersicon species has revealed a relationship between frequency of stomata, stomatal size and some morphological leaf characteristics, and resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vesicatoria. Significant correlations were found between the stomatal frequency in both adaxial and abaxial leaf epidermis and the number of bacterial lesions per leaf area ( r = 0.70 and 0.68, respectively) and the frequency of stomata in both adaxial and abaxial epidermis and disease incidence (percentage of diseased plants) ( r =0.87 and 0.80, respectively) for all the Lycopersicon species and one hybrid tested. A correlation was also found between disease incidence and number of bacterial lesions per leaf area ( r = 0.85). The length and width of stomata were correlated with frequency of stomata in adaxial and abaxial epidermis ( r = 0.85, 0.75, 0.89 and 0.90, respectively). The stomatal width was correlated with the number of bacterial lesions per cm2 ( r =0.82; P = 0.0065). Scanning electron microscopic studies of the leaf surface and stomata indicated that other morphological features such as the raised stomatal complex in L. hirsutum and persistent, hydrophobic waxy coating of the epidermis in L. peruvianum may also be relevant in disease response.  相似文献   

15.
Penicillium expansum is one of the main postharvest pathogens of apples in Israel. Heating apple fruit inoculated with P. expansum for 96 h at 38°C completely inhibited decay development. Fruit held for 24 h at 42°C or 12 h at 46°C had significantly reduced decay after an additional 14 days incubation at 20°C, compared with unheated inoculated control fruit. Mycelial growth and percentage spore germination in vitro were inversely proportional to length of time of exposure to various temperatures. The ET50 for spore germination was 42, 34 and 20 h at 38, 42 and 46°C, respectively, while the ET50 for mycelial growth was 48, 44 and 36 h at those temperatures. When Penicillium spores were incubated on crude extract prepared from the peel of apple fruits held 4 days at 38°C, germ tube elongation was significantly reduced, while the walls of the tubes were thicker, compared with germ tubes from spores incubated on crude extract prepared from peel of non-heated fruit. The evidence presented here supports the hypothesis that the effect of heating on the decay of apples caused by P. expansum is not only the result of direct inhibition of fungal germination and growth by high temperature, but is also partly due to the formation of an inhibitory substance in the heated peel.  相似文献   

16.
The effects of temperature on the development of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape were investigated in controlled-environment experiments. The proportion of conidia which germinated on leaves, the growth rate of germ tubes, the severity of light leaf spot and the production of conidia increased with increasing temperature from 5 to 15 C. The time to 50% germination of conidia and the incubation and latent periods of light leaf spot lesions decreased when temperature increased from 5 to 15°C. At 20°C, however, light leaf spot severity and production of conidia were less and the incubation and latent periods were longer than at 15 C. There were differences between P brassicae isolates and oilseed rape cultivars in the severity of light leaf spot, the production of conidia and the length of the incubation period but not in the length of the latent period. The responses to temperature for lesion severity and incubation and latent periods appeared to be approximately linear over the temperature range 5-15°C and could be quantified using linear regression analysis.  相似文献   

17.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

18.
The infection efficiency and severity of leaf blotch on spring barley inoculated with three pathotypes of Rhynchosporium secalis from central Norway were studied under different temperature and humidity regimes. Seedlings of the cultivar Arve were subjected to two constant temperatures, 13° or 18°C. Dry periods of 8 h or longer before or after a wet period of 4 h, carried out in the first 48 h postinoculation, reduced disease severity assessed 16 days after inoculation. The effect of dry periods of up to 24 h was nullified when plants were subjected to high humidity for 48 h after the dry treatment. The disease developed most rapidly when the wet period was 48 h and the temperature 18°C. At or near the optimum temperature for R. secalis (18°C), leaf wetness duration as short as 2 h resulted in considerable disease. Isolates reacted differently to temperature. The most aggressive isolate caused severe disease irrespective of temperature (56–70% of the leaf area infected); however, disease severity caused by the least aggressive isolate was significantly higher at the optimum temperature compared with a lower temperature (13°C). This information can facilitate evaluation of weather data in relation to predicting leaf blotch for advisory purposes.  相似文献   

19.
Cold tolerant isolates of Gaeumannomyces graminis var. graminis ( Ggg ) and Phialophora sp. (lobed hyphopodia), which produced at least comparable growth rates at 5°C to those of pathogenic G. graminis var. tritici ( Ggt ), were shown to control take-all disease in wheat effectively in 2 years of field experiments in New South Wales, Australia. The addition of oat inoculum of these fungi at the rate of 60 kg/ha to the seeding furrow significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 33–45% compared to the Ggt alone treatment. The use of 30 kg/ha of oat inoculum also significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 21–44%. These high levels of take-all control were obtained consistently from four field experiments on three different soil types with different pHs. A treatment inoculated with Ggg alone showed no disease symptoms and produced grain yields similar to that of untreated wheat. This fungus is, therefore, non-pathogenic to wheat. At high rates of inoculation of Ggg and Phialophora sp. (lobed hyphopodia), 65–80% of tillering wheat plants (GS 32) had root systems colonized by these fungi. In contrast, two Pseudomonas spp. and an isolate each of Ggg and Phialophora sp. (lobed hyphopodia), which did not grow at 5°C, were ineffective in controlling take-all. Take-all assessments during heading (GS 61-83) were highly correlated ( R 2=0.6047, P ≤0.0005) with the relative yield increase or decrease of inoculated treatments compared to the Ggt alone treatment. The use of a Ggg isolate (90/3B) and a Phialophora sp. (lobed hyphopodia) isolate (KY) for take-all control has been patented. These fungi are being developed for commercial use.  相似文献   

20.
为了保证果树精准施药,减少药剂流失,通过4种常用表面活性剂调节药液的表面张力,借助界面张力仪、微重力天平和植物冠层扫描仪等测定手段建立了药液表面张力与苹果叶片最大稳定持液量 (Rm) 之间的关系,并结合果树常用冠层参数,提出了一种预估果树施药液量的方法。结果表明:生长前期苹果叶片近轴面的Rm值明显高于生长后期;在同一生长期,苹果叶片远轴面的Rm值均高于近轴面,且Rm值随叶倾角的增大而减小;生长前期苹果叶片远轴面的Rm值受药液表面张力的影响大于近轴面,但随着叶倾角的增大,叶片近、远轴面的Rm受药液表面张力的影响减小。当药液中表面活性剂的浓度未达到其临界胶束浓度 (cmc) 时,药液的表面张力与苹果叶片的Rm值成正相关关系,由此可建立一元线性回归方程,结合果树平均叶片倾角、叶面积指数和冠层地面投影面积等植物冠层参数,可以估算果树的最大施药液用量。采用4种常用的农药制剂验证了所建方法的实用性。该研究结果可以为苹果园喷雾施药时预估药液用量、减少药剂流失提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号