首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

2.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   

3.
Asiatic citrus canker, caused by Xanthomonas smithii ssp. citri , formerly X. axonopodis pv. citri , is one of the most serious phytosanitary problems in Brazilian citrus crops. Experiments were conducted under controlled conditions to assess the influence of temperature and leaf wetness duration on infection and subsequent symptom development of citrus canker in sweet orange cvs Hamlin, Natal, Pera and Valencia. The quantified variables were incubation period, disease incidence, disease severity, mean lesion density and mean lesion size at temperatures of 12, 15, 20, 25, 30, 35, 40 and 42°C, and leaf wetness durations of 0, 4, 8, 12, 16, 20 and 24 h. Symptoms did not develop at 42°C. A generalized beta function showed a good fit to the temperature data, severity being highest in the range 30–35°C. The relationship between citrus canker severity and leaf wetness duration was explained by a monomolecular model, with the greatest severity occurring at 24 h of leaf wetness, with 4 h of wetness being the minimum duration sufficient to cause 100% incidence at optimal temperatures of 25–35°C. Mean lesion density behaved similarly to disease severity in relation to temperature variation and leaf wetness duration. A combined monomolecular-beta generalized model fitted disease severity, mean lesion density or lesion size as a function of both temperature and duration of leaf wetness. The estimated minimum and maximum temperatures for the occurrence of disease were 12°C and 40°C, respectively.  相似文献   

4.
Experiments were conducted to determine the effects of temperature, relative humidity (RH) and duration of wetness period on in vitro germination of conidia and infection of detached pear leaves by Venturia nashicola , the causal agent of pear scab. Conidia germinated only in near-saturation humidity (RH > 97%). The final percentage germination (24 h after inoculation) at 100% RH without free water was less than half that in free water. Conidia germinated over the range of temperatures tested (5–30°C); the optimum temperature for germination was ≈21°C. Changes in percentage germination of conidia over time were fitted by logistic models at each individual temperature. Polynomial models satisfactorily described the relationships between two (rate and time to 50% of maximum germination) of the three logistic model parameters and temperature. The minimum length of the wetness period for successful infection of detached pear leaves by conidia was observed at several temperatures. The shortest length of wetness period required for infection was 7 h at 22°C. Two polynomial models fitted well the relationship between the minimum wetness duration required for infection, and temperature.  相似文献   

5.
The influence of temperature and duration of wet periods on infection of oilseed rape by Alternaria brassicae was studied on detached leaves and pods, leaf disks and intact seedlings. Infections increased with age of leaf and the interaction between temperature and leaf age was highly significant. On older leaves infection was optimal at 25°C. There were many infections also at 15, 20 and 29 C but relatively few infections at 10°C. On pods most infections were observed at 20 C, the highest temperature studied. Infection at each temperature increased progressively with duration of surface wetness. The minimum wet periods for infection of leaves were 3 h at 20–25°C, 4 h at 15°C, 6–9 h at 10 C and 12–24 h at 5 C and for infection of pods, between 6 h and 9 h at 10°C and 6 h (or less) at 15°C and 20 C. On leaves, dry periods interrupting wet periods limited lesion development to that obtained with the initial wet period only; on pods some further infections developed when pods were re-wetted. Dry periods of 3 h and 6 h following the inoculation of pods reduced subsequent infection but there was no further reduction by longer periods of drying to 48 h.  相似文献   

6.
In controlled environment experiments, sporulation of Pyrenopeziza brassicae was observed on leaves of oilseed rape inoculated with ascospores or conidia at temperatures from 8 to 20°C at all leaf wetness durations from 6 to 72 h, except after 6 h leaf wetness duration at 8°C. The shortest times from inoculation to first observed sporulation ( l 0), for both ascospore and conidial inoculum, were 11–12 days at 16°C after 48 h wetness duration. For both ascospore and conidial inoculum (48 h wetness duration), the number of conidia produced per cm2 leaf area with sporulation was seven to eight times less at 20°C than at 8, 12 or 16°C. Values of Gompertz parameters c (maximum percentage leaf area with sporulation), r (maximum rate of increase in percentage leaf area with sporulation) and l 37 (days from inoculation to 37% of maximum sporulation), estimated by fitting the equation to the observed data, were linearly related to values predicted by inserting temperature and wetness duration treatment values into existing equations. The observed data were fitted better by logistic equations than by Gompertz equations (which overestimated at low temperatures). For both ascospore and conidial inoculum, the latent period derived from the logistic equation (days from inoculation to 50% of maximum sporulation, l 50) of P. brassicae was generally shortest at 16°C, and increased as temperature increased to 20°C or decreased to 8°C. Minimum numbers of spores needed to produce sporulation on leaves were ≈25 ascospores per leaf and ≈700 conidia per leaf, at 16°C after 48 h leaf wetness duration.  相似文献   

7.
A comparison of rates of germination and appressorium formation by an isolate of Colletotrichum gloeosporioides on mango leaves, fruit surfaces and cellophane membranes showed that behaviour was broadly similar on all three substrates. Frequency of appressorium formation was slightly higher on cellophane membranes, and both hyaline and melanized appressoria were formed. Only melanized appressoria were formed on mango surfaces. In vitro experiments on membranes showed comparative differences in physiological behaviour with temperature for two Philippine isolates of C. gloeosporioides . The most stimulatory temperature for production of appressoria differed in isolates I-2 and I-4 (25 and 20°C, respectively). At 30°C more appressoria became melanized than at lower temperatures, but the frequency of formation of penetration pegs was highest at 25°C. Conidia of C. gloeosporioides germinated on cellophane membranes at relative humidities as low as 95%, but the percentage of conidia germinating and forming appressoria increased as the RH approached 100%. Approximately 18% of conidia of C. gloeosporioides I-2 held at 62 and 86% RH for 4 weeks retained viability, and some were capable of forming appressoria when placed at 100% RH. These results have implications for epidemiological models for disease control.  相似文献   

8.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

9.
The infection efficiency and severity of leaf blotch on spring barley inoculated with three pathotypes of Rhynchosporium secalis from central Norway were studied under different temperature and humidity regimes. Seedlings of the cultivar Arve were subjected to two constant temperatures, 13° or 18°C. Dry periods of 8 h or longer before or after a wet period of 4 h, carried out in the first 48 h postinoculation, reduced disease severity assessed 16 days after inoculation. The effect of dry periods of up to 24 h was nullified when plants were subjected to high humidity for 48 h after the dry treatment. The disease developed most rapidly when the wet period was 48 h and the temperature 18°C. At or near the optimum temperature for R. secalis (18°C), leaf wetness duration as short as 2 h resulted in considerable disease. Isolates reacted differently to temperature. The most aggressive isolate caused severe disease irrespective of temperature (56–70% of the leaf area infected); however, disease severity caused by the least aggressive isolate was significantly higher at the optimum temperature compared with a lower temperature (13°C). This information can facilitate evaluation of weather data in relation to predicting leaf blotch for advisory purposes.  相似文献   

10.
MTB-951 is a potential mycoherbicide using a fungal plant pathogen ( Drechslera monoceras ) isolated from native Echinochloa species in Japan. Conidia of this pathogen were used as the active ingredient and its herbicidal performance was examined in a greenhouse. The efficacy of MTB-951 on Echinochloa crus-galli L. was higher in deep water (7–9 cm) than in relatively shallow water (3–5 cm). In a postemergence application, the efficacy decreased as the leaf stage of E. crus-galli proceeded between the 1 and 2.5 leaf stage. For example, the control ratio (%) of E. crus-galli was 95% when applied at the 1 leaf stage, and 72% at the 2.5 leaf stage in 5 cm water. Generally, mycoherbicidal efficacy was less when applied pre-emergence rather than postemergence. Efficacy was also influenced by the duration of submergence in deep water. For example, when water depth was kept at 5 cm for more than 7 days after application and then decreased down to 3 cm, the efficacy was high. However, when the water depth was kept at 5 cm for less than 7 days, the efficacy was low. Efficacy was lower under high temperatures (35°C/25°C, day/night) than under low temperatures (25°C/15°C, day/night). Water management, application timing and temperature are important factors on herbicidal efficacy of MTB-951 to control E. crus-galli .  相似文献   

11.
When the influence of host species, inoculum density, temperature, leaf wetness duration, and leaf position on the incidence of gentian brown leaf spot caused by Mycochaetophora gentianae, was examined, the fungus severely infected all seven Gentiana triflora cultivars, but failed to infect two cultivars of G. scabra and an interspecific hybrid cultivar. Inoculum density correlated closely with disease incidence, and a minimum of 102 conidia/mL was enough to cause infection. In an analysis of variance, temperature and leaf wetness duration had a significant effect upon disease incidence, which increased with higher temperature (15–25°C) and longer duration of leaf wetness (36–72 h). No disease developed at temperatures lower than 10°C or when leaf wetness lasted <24 h. At 48-h leaf wetness, disease incidence was 0, 28, 77, and 85% at 10, 15, 20, and 25°C, respectively. Middle and lower leaves on the plant were more susceptible than upper leaves. In microscopic observations of inoculated leaves, >50% of conidia germinated at temperatures >15°C after 24-h leaf wetness. More appressoria formed at higher temperatures (15–25°C) with extended duration of leaf wetness (24–72 h). At 48-h leaf wetness, appressorium formation was 0, 8, 26, and 73% at 10, 15, 20, and 25°C, respectively. These results suggest that temperature and leaf wetness duration were important factors for infection of gentian leaves.  相似文献   

12.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

13.
Northern corn leaf blight (NCLB) caused by Setosphaeria turcica is a major foliar disease of maize. The early-stage infection events of this pathogen on maize leaves are unclear. We investigated the optimum temperature for conidial germination and appressorium formation, and characterized penetration and growth of S. turcica in maize leaf sheath and onion epidermis cells, including use of histological staining to assess plant cell viability. The results showed that the optimum temperature for conidial germination and appressorium formation was 20°C. On the maize leaf sheath, the appressoria were formed by germinated conidia, and penetration on the epidermal cells occurred at 8 h postinoculation (hpi). Round vesicles developed beneath the appressoria. Between 16 and 24 hpi, the branched invasive hyphae invaded three to five adjacent cells at most infection sites. The invasive hyphae tended to move along the cell wall and crossed from one cell to another. In the onion epidermis cells, the appressoria formed at 8 hpi, and in most cases the epidermal cells were penetrated through the juncture of the cell walls. At 16–24 hpi, the primary hyphal terminus swelled to a vesicle. The maize leaf sheath cells died at 8 hpi, whereas the onion cells did not. Our findings documented in detail the penetration and invasive hyphal growth in maize leaf sheath and onion epidermis, as well as viability of plant cells, at the early stages of infection, and provide a foundation for elucidating the underlying mechanism of S. turcica–maize interactions.  相似文献   

14.
The effects of temperature (5–30°C) and the duration of moisture on the development of ascochyta blight ( Mycosphaerella pinodes ) on pea seedlings, grown under controlled conditions, were investigated. The optimum temperature for monocyclic processes was 20°C. At this temperature, pycnidiospores germinated after 2 h, appressoria formed after 6 h and the germ-tube penetrated the leaf cuticle after 8 h. Disease symptoms were evident after 1 day of incubation and the first pycnidia formed after 3 days. Longer wetting periods were required for disease development and pycnidial formation at non-optimal temperatures. Disease severity and the number of pycnidia formed on leaves increased with temperature from 5 to 20°C, then decreased between 20 and 30°C. Polynomial equations were fitted to predict the stages of infection, incubation, latency and disease development as functions of temperature and duration of moisture. These equations allow comparisons of pathogen spread with plant development and could be incorporated into disease development models used for crop management programmes.  相似文献   

15.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

16.
In controlled environment experiments, when oilseed rape pods or leaves were inoculated with spore suspensions of Alternaria brassicae, the maximum disease incidence (proportion of pods or leaves diseased) increased as wetness period after inoculation increased from 4 to 24 h and as temperature increased to 20°C. There was a clear relationship between disease incidence on pods and incidence on leaves with the same wetness/temperature conditions. Logistic equations described the effects of wetness period after inoculation on disease incidence (number of pods or leaves infected) or disease severity (number of lesions on pods or leaves) using temperature-dependent and tissue-dependent parameters. The time from inoculation to the appearance of the first lesions was shorter on pods than on leaves at temperatures ≤15°C and wetness periods ≤12 h. Two-dimensional response surface equations or simple interpolations from one-dimensional equations were used to develop contour maps of expected disease incidence and severity, respectively, on leaves or pods to estimate the effects of different combinations of wetness period during infection and temperature on disease development.  相似文献   

17.
The pre–penetration and post–penetration stages of infection by Cladosporium allii–cepae on onion foliage was examined on inoculated plants kept at 15° C and 80–90% r.h. The pathogen entered the leaf usually through stomata but occasionally by penetrating the cuticle. Invasion of the palisade and mesophyll tissues led to the formation of a leaf cavity after 7 days and after 30 days the pathogen sporulated on the leaf surface.  相似文献   

18.
No infection occurred at less than 95% relative humidity (r.h.) when chickpea plants were dried after inoculation with conidia of Didymella rabiei. Infection was significant when the dry leaves were exposed to 98% r.h. for 48 h. When inoculated plants were subjected to different leaf wetness periods, some infection occurred with 4 h wetness, and disease severity increased with wetness duration according to an exponential asymptote, with a maximum value after about 18 h. Germination of conidia and germ tube penetration increased linearly with increasing wetness periods when recorded 42 h after inoculation. With a 24-h wetness period, germination of conidia was first observed 12 h after inoculation and increased linearly with time up to 52 h (end of the experiment). Dry periods immediately after inoculation, followed by 24-h leaf wetness, reduced disease severity; as the dry period increased the severity decreased. Disease severity increased with increasing periods of darkness after inoculation. The number of pycnidia and the production of conidia on infected leaves increased only slightly with high r.h. (either in the light or in the dark), but large increases occurred over an 8-day period when the leaves were kept wet.  相似文献   

19.
Surveys between 1989 and 1993 in the major garlic production areas of Spain identified a new leaf spot disease, characterized by white and purple lesions followed by extensive necrosis. Isolation and pathogenicity tests with fungal isolates taken from these spots indicated that Stemphylium vesicarium was the causal agent. Pseudothecia of the teleomorph stage, Pleospora sp., were found on leaf debris from affected plants. Inoculation of garlic and onion plants with residues carrying mature pseudothecia, or with ascospore suspensions obtained from the pseudothecia, resulted in the development of white and purple leaf spots. Wetness periods longer than 24 h were required for symptom development under controlled conditions. Isolates of S. vesicarium from garlic, onion and asparagus caused disease in all three hosts. In garlic, cv. Blanco de Vallelado was most susceptible, while lines B4P17 and B6P1, and cvs Iberose and Golourose were less susceptible to the disease.  相似文献   

20.
Cladosporium allii-cepae is a slow-growing pathogen of onion which, on malt extract agar, had a mean colony diameter of 2.7 cm after 28 days at 16°C. Growth and reproduction were greatest on malt onion leaf agar and were poor on synthetic media. The optimum and maximum temperatures for growth were 20 and 28°C, respectively. Sporulation was most abundant at 10–15°C. The fungus grew poorly in buffered Czapek Dox medium at pH 2.2–7.8 and most growth was recorded at pH 6.5. Sporulation was enhanced by exposure of colonies to near ultraviolet light.
A large proportion of spores germinated in distilled water and at 100% r.h. In distilled water germination was greatest at 15–20° and in air at 100% r.h. at 20°C. Of 10 fungicides tested, fentin hydroxide, fentin acetate/maneb and iprodione were the most effective in inhibiting spore germination, growth and reproduction of the fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号