首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The relationship between the composition and the aroma of the wine can be established by using gas chromatography with olfactometric detection (sniffing or GCO), which combines the chromatographic response with the human nose response. To evaluate the contribution of the odor compounds in wine aroma, we designed a new approach of the aroma extract dilution analysis (AEDA) that lies in the GCO analysis of serially diluted wine samples using headspace solid-phase microextraction (HS-SPME) as the extraction technique. The fiber coating used was Flex divinyl-carboxen-polydimethylsiloxane. The method developed was applied to determine the aromatic composition of a red Grenache wine from Priorat (Spain). The method allows 38 important odorants to be determined in the AEDA study, 30 of them precisely identified. These results are similar to those reported by other studies related to this variety of wine. HS-SPME is a suitable technique to obtain representative extracts of wine aroma with several advantages such as simplicity, speediness, and little sample manipulation.  相似文献   

2.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

3.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

4.
Application of aroma extract dilution analysis (AEDA) on a flavor extract isolated from a freshly prepared, enzyme-inactivated peach juice using solvent extraction and high-vacuum distillation (extract I) revealed 24 odor-active regions in the gas chromatogram. Flavor dilution (FD) factors ranged from 4 to 512. The highest FD factors were determined for beta-damascenone (cooked-apple-like) and gamma-decalactone (peach-like). Cooking of peaches for 2 h in an apparatus equipped for simultaneous steam distillation/extraction (extract II) yielded an overall more intense aroma extract (extract II). By AEDA, 30 odorants were detected in the FD-factor region of 4-16384 and were subsequently identified. The results revealed that in extract II, besides the two above-mentioned aroma compounds, both had FD factors of 16 384; delta-decalactone, gamma-dodecalactone additionally, and 6-dodeceno-gamma-lactone contributed with very high FD factors (FD 8192) to the overall aroma. In general, the thermal treatment led to the formation of 15 new odorants which were not detected in I. Furthermore, the lactones and beta-damascenone were significantly increased in II, thereby indicating their generation from precursors in the fresh juice.  相似文献   

5.
6.
The aroma extract of Chickasaw blackberry (Rubus L.) was separated with silica gel normal phase chromatography into six fractions. Gas chromatography-olfactometry (GCO) was performed on each fraction to identify aroma active compounds. Aroma extraction dilution analysis (AEDA) was employed to characterize the aroma profile of Chickasaw blackberries from two growing regions of the United States: Oregon and Arkansas. Comparative AEDA analysis showed that the berries grown in the two regions had similar aroma compositions; however, those odorants had various aroma impacts in each region. The compounds with high flavor dilution factors in Oregon's Chickasaw were ethyl butanoate, linalool, methional, trans,cis-2,6-nonadienal, cis-1,5-octadien-3-one, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone, whereas in the Chickasaw grown in Arkansas, they were ethyl butanoate, linalool, methional, ethyl 2-methylbutanoate, beta-damascenone, and geraniol.  相似文献   

7.
Isolation of the volatile fraction from cocoa powder (50 g; 20% fat content) by a careful extraction/distillation process followed by application of an aroma extract dilution analysis revealed 35 odor-active constituents in the flavor dilution (FD) factor range of 8-4096. Among them, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 2- and 3-methylbutanoic acid (sweaty, rancid), dimethyl trisulfide (cooked cabbage), 2-ethyl-3,5-dimethylpyrazine (potato-chip-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Quantitation of 31 key odorants by means of stable isotope dilution assays, followed by a calculation of their odor activity values (OAVs) (ratio of concentration to odor threshold) revealed OAVs>100 for the five odorants acetic acid (sour), 3-methylbutanal (malty), 3-methylbutanoic acid, phenylacetaldehyde, and 2-methylbutanal (malty). In addition, another 19 aroma compounds showed OAVs>1. To establish their contribution to the overall aroma of the cocoa powder, these 24 compounds were added to a reconstructed cocoa matrix in exactly the same concentrations as they occurred in the cocoa powder. The matrix was prepared from deodorized cocoa powder, which was adjusted to 20% fat content using deodorized cocoa butter. The overall sensory evaluation of this aroma recombinate versus the cocoa powder clearly indicated that the 24 compounds represented the typical sweet, cocoa-like odor of the real sample.  相似文献   

8.
To identify the character impact odorant of high-heat skim milk powder (HHSMP), a comparative study using ultrahigh-temperature (UHT) milk was performed. Aroma concentrate was prepared by column adsorption combined with simultaneous distillation-extraction. Aroma extract dilution analysis (AEDA) revealed 58 aroma peaks with flavor dilution (FD) factors ranging from 10 to 3000; from these, 41 compounds were identified and 7 compounds were tentatively identified (FD factor > or = 300). Among these HHSMP and UHT milk components, methyl 2-methyl-3-furyl disulfide and bis(2-methyl-3-furyl) disulfide, which appeared to be generated during the processing of each product, were identified. When the results of the AEDA of both samples were compared, it was considered that the characteristic aroma of HHSMP was not explained by a single compound but instead formed from a mixture of several types of compounds contained in common with the UHT milk. The contribution of these compounds to the aroma of HHSMP was confirmed by an aroma simulation experiment.  相似文献   

9.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

10.
不同酶和酵母对干红葡萄酒香气影响的差异分析   总被引:2,自引:2,他引:0  
为提高甘肃河西产区蛇龙珠干红葡萄酒的香气品质,优化酿酒工艺,该文采用顶空固相微萃取和气相色谱-质谱联用技术,分析比较了添加不同浸渍酶和酵母发酵的蛇龙珠干红葡萄酒的香气构成。结果显示:蛇龙珠干红葡萄酒中初步定性香气化合物75种,主要为酯、醇、酸、萜烯和酚类物质。比较酯类、萜烯类等香气成分质量浓度和香气物质释放总量,EX-V酒样明显高于EX和HC酒样,D254酒样明显高于BDX酒样。各组酒样主要香气成分构成相似,但微量香气成分差异显著。果香是香气强度最高的香气系列,植物香、脂肪香、花香次之,其香气强度EX-V酒样高于EX和HC酒样,D254酒样高于BDX酒样。浸渍酶和酵母对甘肃河西产区蛇龙珠干红葡萄酒香气品质的影响评价显示,浸渍酶EX-V优于EX和HC,酵母D254优于BDX。研究结果可为甘肃河西产区蛇龙珠干红葡萄酒香气品质的提高及酿造工艺研究提供科学数据参考。  相似文献   

11.
The ability of epicatechin (EC) to inhibit the thermal development of aroma compounds (i.e., Maillard reaction products) formed during ultrahigh-temperature (UHT) processing of bovine milk was evaluated. Volatile extracts were prepared for two UHT-processed milk samples made from (1) raw milk and (2) raw milk containing 0.1% EC by solvent-assisted flavor evaporation (SAFE) and subsequently analyzed by aroma extract dilution analysis (AEDA). Sensory evaluation was also conducted by a trained panel on the intensity of cooked flavor and bitterness in four UHT-processed milk samples (0.00, 0.01, 0.10, and 0.20% EC added prior to processing), as well as a commercial pasteurized milk sample for comparison. AEDA indicated that addition of EC to raw fluid milk prior to UHT processing reduced the overall thermal formation of key aroma-active compounds in comparison to the traditional UHT milk sample. The largest changes in FD values were reported for methional, furfural, 2-isopropyl-3-methoxypyrazine, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline (Maillard-type aroma compounds) with 32-, 8-, 8-, 4-, and 4-fold reductions in formation, respectively. Sensory evaluation also revealed that all EC-containing UHT milk samples had statistically (P < 0.05) lower cooked flavor intensity in comparison to the control, whereas the 0.2% EC sample was statistically similar to a pasteurized milk sample. Furthermore, addition of EC at or below 0.1% in UHT fluid milk did not significantly increase the bitterness intensity.  相似文献   

12.
To identify the compounds evoking the characteristic cereal-like, sweet aroma of oat flakes, an aroma extract dilution analysis (AEDA) was applied to a distillate prepared by solvent extraction/vacuum distillation from commercial oat flakes. Among the nine aroma-active compounds detected by gas chromatography-olfactometry and AEDA in the flavor dilution (FD) factor range of 4-1024, eight odorants, for example, (E)-beta-damascenone, (Z)-3-hexenal, and butanoic acid, showed only low FD factors. However, one odorant eliciting the typical cereal, sweet aroma of the flakes was detected with the highest FD factor of 1024. By mass spectrometry and nuclear magnetic resonance measurements followed by a synthesis, (E,E,Z)-2,4,6-nonatrienal, exhibiting an intense oat flake-like odor at the extremely low odor threshold of 0.0002 ng/L in air, was identified as the key odorant of the flakes. By means of a newly developed stable isotope dilution analysis using synthesized, carbon-13-labeled nonatrienal as the internal standard, a concentration of 13 mug of (E,E,Z)-2,4,6-nonatrienal per kilogram of the flakes was measured. Model studies suggested linolenic acid as the precursor of nonatrienal in oats.  相似文献   

13.
The aroma of a Grenache rosé wine from Calatayud (Zaragoza, Spain) has been elucidated following a strategy consisting of an aroma extract dilution analysis (AEDA), followed by the quantitative analysis of the main odorants and the determination of odor activities values (OAVs) and, finally, by a series of reconstitution and omission tests with synthetic aroma models. Thirty-eight aroma compounds were found in the AEDA study, 35 of which were identified. Twenty-one compounds were at concentrations higher than their corresponding odor thresholds. An aroma model prepared by mixing the 24 compounds with OAV > 0.5 in a synthetic wine showed a high qualitative similarity with the aroma of the rosé wine. The addition of compounds with OAV < 0.5 did not improve the model, whereas the aroma of a model containing only odorants with OAV > 10 was very different from that of the wine. Omission tests revealed that the most important odorant of this Grenache rosé wine was 3-mercapto-1-hexanol, with a deep impact on the wine fruity and citric notes. The synergic action of Furaneol and homofuraneol also had an important impact on wine aroma, particularly in its fruity and caramel notes. The omission of beta-damascenone, which had the second highest OAV, caused only a slight decrease on the intensity of the aroma model. Still weaker was the sensory effect caused by the omission of 10 other compounds, such as fatty acids and their ethyl esters, isoamyl acetate, and higher alcohols.  相似文献   

14.
The unique flavor of Oscypek, a Polish ewe's milk smoked cheese, is described as slightly sour, piquant, salted, and smoked. In this paper with the application of gas chromatography-olfactometry (GC-O) and combination of aroma extract dilution analysis (AEDA) 20 potent odorants of this cheese have been identified within the flavor dilution factor (FD) range of 4-2048. Among them, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-methylphenol, and butanoic acid showed the highest FD factors. Quantification results based on labeled standard addition followed by calculation of odor activity values (OAV) of 13 compounds with the highest FD factors revealed that 11 compounds were present at concentrations above their odor threshold values and therefore mostly contribute to the overall aroma of smoked ewe's milk cheese. Six of those compounds were represented by phenolic derivatives, with the highest OAV for 2-methoxyphenol (1280). Analysis of key odorants of an unsmoked cheese sample showed that the smoking process had a fundamental influence on Oscypek aroma formation.  相似文献   

15.
An aroma extract dilution analysis applied on an aroma distillate prepared from fresh apricots revealed (R)-gamma-decalactone, (E)-beta-damascenone, delta-decalactone, and (R/S)-linalool with the highest flavor dilution (FD) factors among the 26 odor-active compounds identified. On the basis of quantitative measurements performed by application of stable isotope dilution assays, followed by a calculation of odor activity values (OAVs), beta-ionone, (Z)-1,5-octadien-3-one, gamma-decalactone, (E,Z)-2,6-nonadienal, linalool, and acetaldehyde appeared with OAVs >100, whereas in particular certain lactones, often associated with an apricot aroma note, such as gamma-undecalactone, gamma-nonalactone, and delta-decalactone, showed very low OAVs (<5). An aroma recombinate prepared by mixing the 18 most important odorants in concentrations as they occurred in the fresh fruits showed an overall aroma very similar to that of apricots. Omission experiments indicated that previously unknown constituents of apricots, such as (E,Z)-2,6-nonadienal or (Z)-1,5-octadien-3-one, are key contributors to the apricot aroma.  相似文献   

16.
By application of the aroma extract dilution analysis on an extract prepared from fresh grapefruit juice, 37 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-256 and subsequently identified. Among them the highest odor activities (FD factors) were determined for ethyl butanoate, p-1-menthene-8-thiol, (Z)-3-hexenal, 4,5-epoxy-(E)-2-decenal, 4-mercapto-4-methylpentane-2-one, 1-heptene-3-one, and wine lactone. Besides the 5 last mentioned compounds, a total of 13 further odorants were identified for the first time as flavor constituents of grapefruit. The data confirmed results of the literature on the significant contribution of 1-p-menthene-8-thiol in grapefruit aroma but clearly showed that a certain number of further odorants are necessary to elicit the typical grapefruit flavor.  相似文献   

17.
Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.  相似文献   

18.
The aroma compounds present in cooked brown rice of the three varieties Improved Malagkit Sungsong (IMS), Basmati 370 (B 370), and Khaskhani (KK), and of the variety Indica (German supermarket sample), were identified on the basis of aroma extract dilution analyses (AEDA). A total of 41 odor-active compounds were identified, of which eleven are reported for the first time as rice constituents. 2-Amino acetophenone (medicinal, phenolic), which was up to now unknown in rice aroma, exhibited the highest flavor dilution (FD) factor among the 30 to 39 odor-active compounds detected in all four varieties. 2-Acetyl-1-pyrroline, exhibiting an intense popcorn-like aroma-note, was confirmed as a further key aroma constituent in IMS, B 370, and KK, but was not important in Indica. Differences in the FD factors between the varieties were found for the previously unknown rice aroma compound 3-hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolon; seasoning-like), which was higher in B 370 than in IMS and KK. In IMS, a yet unknown, spicy smelling component with a very high FD factor could be detected, which contributed with lower FD factors to the overall aromas of B 370 and KK, and was not present in Indica. The latter variety, which was available on the German market, differed most in its overall aroma from the three Asian brown rices.  相似文献   

19.
Laboratory-prepared muesli-type breakfast cereal (mixture of oat flakes, wheat flakes, corn flakes, hazelnuts, raisins, sunflower seeds, and flax seeds) was subjected to accelerated storage test at 60 degrees C with or without the addition of red raspberry seed extract. The oxidative changes in muesli resulting in the formation of secondary oxidation products were evaluated using solid phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE) to isolate volatiles and GC-MS and chromatography-olfactometry to quantify them and determine the key odorants. During 14 days of storage the total amount of volatile compounds changed from 1.0 mg/kg, in freshly prepared muesli, to 32 mg/kg after storage. The predominant compound was hexanal; its content during storage increased 20-fold, reaching 17 mg/kg. Red raspberry seed extract addition limited the rate of lipid oxidation, and the total amount of volatiles was estimated at 11 mg/kg and that of hexanal at almost 5 mg/kg. An elevated temperature of the storage test also influenced the crucial flavor compounds determined using aroma extract dilution analysis (AEDA). The flavor dilution factor (FD) values for volatile lipid oxidation products were lower in samples with red raspberry seed extract added.  相似文献   

20.
Potent odorants of two Chardonnay wines were characterized according to their specific overall aroma profiles and their intraoral release patterns after wine consumption. Therefore, aroma compounds were isolated and analyzed by means of high resolution gas chromatography-olfactometry (HRGC/O), leading to the detection of 36 odor-active compounds in both wines. All compounds were identified. Of the most potent odorants, 25 were quantified in both wines by means of stable isotope dilution assays. For the intraoral investigation of odor compounds at defined times after Chardonnay wine consumption, the recently developed buccal odor screening system was used. Significant differences in the oral persistence of characteristic odor notes were observed for both wines with mainly the characteristic barrique-notes being highly persistent, while fruity notes quickly disappeared from the oral cavity. The obtained analytical data were related to time-resolved retronasal aroma evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号