首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The aim of this research was to determine the vinasse irrigation effects on the arbuscular mycorrhizal fungi (AMF) population (total spore abundance (TSA), richness, relative abundance, and diversity indices) and soil parameters and nutrients at high doses. The irrigation of soil with vinasses derived from sugarcane, beet, or alcohol production is a common practice around the world. Little is known about how this affects the AMF community and soil nutrients.

Materials and methods

The spider plant (Chlorophytum comosum, (Thunb.) Jacques), a mycorrhizable plant, was used to investigate the effect of 4 months of frequent vinasse irrigation (0, 25, 50, 75, and 100% vinasse concentration) on AMF and soil characteristics, e.g., electrical conductivity (EC), pH, mineral N, available P, Na+, K+, Ca2+, and Mg2+.

Results and discussion

The vinasse irrigation decreased the TSA, AMF richness and diversity after 4 months, regardless of vinasse concentration. The vinasse irrigation did not acidify the soil, but the EC, mineral N and available P increased. The biomass of C. comosum decreased (77–81%) after vinasse irrigation for 4 months.

Conclusions

Frequent irrigation with vinasse at concentrations ≥50% increases EC, K+, Na+, Mg2+, Ca2+ and available P in the soil, and decreases the amount of AMF spores, richness and diversity, which is not desirable in agricultural soils.
  相似文献   

2.

Purpose

The concept of irrigating crops with saline irrigation water is not new, but impacts of this practice on soil properties remain debatable, particularly the use of highly saline water. In this work, key soil chemical properties were assessed to a depth of 300 cm following 2.5 years of application of highly saline irrigation to a sodic texture-contrast soil (Brown Sodosol) in south-eastern Tasmania, Australia.

Materials and methods

Control plots (rainfall only) were compared to irrigation treatments of low (0.8 dS/m) and high salinity (16 dS/m) waters at application rates of both 200 and 800 mm/year.

Results and discussion

Whilst significant increases in both electrical conductivity and chloride concentration occurred throughout the soil profile in the high salinity treatment, these values were well below those of the irrigation water, indicating effective deep leaching. In the upper soil profile, 0–50 cm, of the high salinity treatments both the exchangeable Na+ and its ratio to total base cations (ESP) were significantly increased whilst the lower soil profile between 50 and 200 cm, was improved via both reduced alkalinity and sodicity. Leaching of the exchangeable base cations Ca2+, Mg2+ and K+ was significant in the upper soil profile (0–50 cm). As expected, the low salinity treatment (0.8 dS/m) had minimal impacts on soil chemical properties. The upper topsoil (0–10 cm) total organic carbon was significantly reduced in the high salinity plots and was negatively correlated with Cl? concentration.

Conclusions

The data confirms the general concerns about application of saline irrigation, namely increased whole profile salinisation and upper soil profile (0–50 cm) sodicity, but they also show unexpected and desirable reductions in the lower soil profile (>?50 cm) alkalinity and sodicity. It appears the Na+ ions present in the saline waters led to differential leaching of base cations from the rooting zone, especially Ca2+ which then ameliorate the alkalinity and sodicity deeper in the soil profile (>?50 cm). Thus, surface application of gypsum may help sustain the application of highly saline waters; alternatively, subsurface irrigation above the sodic clayey subsoils could be trailed.
  相似文献   

3.

Purpose

We evaluated the ameliorative effects of crop straw biochars either alone or in combination with nitrate fertilizer on soil acidity and maize growth.

Materials and methods

Low energy-consuming biochars were prepared from canola and peanut straws at 400 °C for 2 h. Incubation experiment was conducted to determine application rate of biochars. Afterward, maize crop was grown in pots for 85 days to investigate the effects of 1 % biochars combined with nitrate fertilizer on soil pH, exchangeable acidity, and maize growth in an Ultisol collected from Guangdong Province, China.

Results and discussion

Application of 0.5, 1.0, and 1.5 % either canola straw biochar (CSB) or peanut straw biochar (PSB) increased soil pH by 0.15, 0.27, 0.34, and 0.30, 0.58, 0.83 U, respectively, after 65-day incubation. Soil pH was increased by 0.49, 0.72, 0.78, and 0.88 U when 1 % CSB or PSB was applied in combination with 100 and 200 mg N/kg of nitrate, respectively, after maize harvest in greenhouse pot experiment. These low-cost biochars when applied alone or in combination with nitrate not only reduced soil exchangeable acidity, but also increased Ca2+, Mg2+, K+, Na+, and base saturation degree of the soil. A total of 49.91 and 80.58 % decreases in exchangeable acidity were observed when 1 % CSB and PSB were incubated with the soil for 65 days, compared to pot experiment where 71.35, 78.64, 80.2, and 81.77 % reductions of exchangeable acidity were observed when 1 % CSB and PSB were applied in combination with 100 and 200 mg N/kg of nitrate, respectively. The higher contents of base cations (Ca2+, Mg2+, K+, Na+) in biochars also influenced the plant growth. The higher biomass in CSB-treated pots was attributed to the higher K content compared to PSB. The higher percent reduction in exchangeable Al3+ by applying 1 % CSB combined with 200 mg N/kg of nitrate consistently produced maximum biomass (129.65 g/pot) compared to 100 mg N/kg of nitrate and 1 % PSB combined with 100 and 200 mg N/kg of nitrate. The exchangeable Al3+ mainly responsible for exchangeable acidity was decreased with the application of biochars and nitrate fertilizer. A highly significant negative relationship was observed between soil exchangeable Al3+ and plant biomass (r 2?=?0.88, P?<?0.05).

Conclusions

The biochars in combination with nitrate fertilizer are cost-effective options to effectively reduce soil acidity and improve crop growth on sustainable basis.
  相似文献   

4.

Purpose

The Al forms on maize and soybean roots were investigated to determine the main factors affecting the distribution of Al forms and its relationship with Al plant toxicity.

Materials and methods

Solution culture experiments were conducted to obtain the fresh roots of maize and soybean. KNO3, citric acid, and HCl were used to extract the exchangeable, complexed, and precipitated forms of Al on the roots.

Results and discussion

The complexed Al was higher than the exchangeable and precipitated Al. Root CECs of soybean and maize were 77 and 55 cmol kg?1, and functional groups on the soybean roots (262.4 cmol kg?1) were greater than on maize roots (210.8 cmol kg?1), which resulted in more exchangeable and complexed Al on soybean roots than on maize roots, and was one of the reasons for the increased Al toxicity to soybean. The total and exchangeable Al were the highest on the plant root tips and decreased gradually with increasing distance from the tips. Ca2+, Mg2+, and NH4 + cations reduced the exchangeable Al on the roots. Oxalate and malate also reduced the adsorption and absorption of Al by roots, and the effect of oxalate was greater than malate.

Conclusions

Higher exchangeable and complexed Al on plant roots led to increased Al plant toxicity. Ca2+, Mg2+, and NH4 + and oxalate and malate can effectively alleviate Al plant toxicity.
  相似文献   

5.

Purpose

The increasing reuse of wastewater for irrigation introduces surfactants and antibiotics into the environment. How these two kinds of compounds interact with regard to their sorption processes in soil is not clear.

Materials and methods

We performed batch experiments to investigate the sorption of linear alkylbenzene sulfonates (LAS) and its effect on sorption of sulfamethoxazole and ciprofloxacin in irrigated and non-irrigated soils with different organic matter (OM) contents.

Results and discussion

LAS sorption was non-linear in the presence of the antibiotics, and as general trend, it increased with rising OM content of soils. Free LAS was also removed from solution by complexation with Ca2+. Dissolved organic compounds released from soils with OM contents ≥18.4 g kg?1 further reduced LAS sorption. Sorption of sulfamethoxazole was reduced by LAS sorption only in one soil with a small OM content of 9.5 g kg?1.

Conclusions

The strong sorption of ciprofloxacin is not affected by LAS. Sulfamethoxazole sorption only competes with LAS sorption in organic matter-poor soils. Accumulation of organic matter in soils, for example due to long-term wastewater irrigation, provides extra sorption capacity for LAS and sulfamethoxazole so that competition for sorption sites is reduced.
  相似文献   

6.

Purpose

The purpose of the present study is to examine the effect of phosphate on the aggregation kinetics of hematite and goethite nanoparticles.

Materials and methods

The dynamic light scattering method was used to study the aggregation kinetics of hematite and goethite nanoparticles.

Results and discussion

Specific adsorption of phosphates could promote aggregation through charge neutralization at low P concentrations, stabilize the nanoparticle suspensions at medium P concentrations, and induce aggregation through charge screening by accompanying cations at high P concentrations. Two critical coagulation concentration (CCC) values were obtained in each system. In NaH2PO4, the goethite CCC at low phosphate concentrations was smaller than hematite and vice versa at high phosphate concentrations. Stronger phosphate adsorption by goethite rapidly changed the zeta potential from positive to negative at low phosphate concentrations, and the zeta potential became more negative at high phosphate concentrations. The clusters of hematite nanoparticles induced by phosphate adsorption had an open and looser structure. Solution pH and the phosphate adsorption mechanisms in NaH2PO4, KH2PO4, and Na3PO4 solutions affected zeta potential values and controlled the stability of hematite suspensions during aggregation. High pH and preference for non-protonated inner-sphere complexes in Na3PO4 solution decreased the zeta potential of positively charged hematite and promoted aggregation. Activation energies followed the order NaH2PO4 > KH2PO4 > Na3PO4 at low P concentrations. K+ was more effective than Na+ in promoting hematite aggregation due to the non-classical polarization of cations.

Conclusions

Phosphate can enhance or inhibit the aggregation of hematite and goethite nanoparticles in suspensions by changing surface charge due to specific adsorption onto the particles. The phosphate-induced aggregation of the nanoparticles mainly depended on the initial concentration of phosphate.
  相似文献   

7.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

8.

Purpose

Bioremediation of co-contaminated environments is difficult because of the mixed nature of the contaminants and the fact that the two components often must be treated differently. This study investigated the use of inorganic treatment additives, namely calcium carbonate (CaCO3), gypsum (CaSO4·2H2O), and disodium phosphate (Na2HPO4) to improve remediation of soil co-contaminated with 1,2-dichloroethane (1,2-DCA) and arsenic or cadmium.

Materials and methods

The soil samples were collected from a specific site in the Westville area in Durban, KwaZulu-Natal, South Africa. Microcosms were set up by artificially co-contaminating the soil sample (100 g mixed with 75 ml of synthetic groundwater in sterile screw-capped 250-ml serum bottles) with 1,2-DCA + risk elements; As3+ (150 mg/kg); or Cd2+ (170 mg/kg). Thereafter, each microcosm was amended with either 5 g CaCO3, 2 g CaSO4·2H2O, or 1.12 g Na2HPO4 + 0.046 g NaCl, separately. The samples were analyzed for the degradation of 1,2-DCA using GC–MS, while total 1,2-DCA degrading bacterial populations were determined at different sampling times using a standard spread plate technique. Soil dehydrogenase and urease activities were also monitored during the experimental period using standard enzyme assays.

Results and discussion

Addition of CaCO3 resulted in an approximately 2-fold increase in 1,2-DCA degradation in both the As3+ and the Cd2+ co-contaminated soil as compared to the co-contaminated soil without CaCO3. All the treatment additives were more effective in the As3+ co-contaminated soil resulting in 11.19, 9.25, and 5.63% increase in 1,2-DCA degradation in the presence of CaCO3, Na2HPO4 + NaCl, and CaSO4·2H2O, respectively, compared to the Cd2+ co-contaminated soil. The total 1,2-DCA degrading bacterial population increased in treated soils over time. Overall, soil dehydrogenase and urease activities were lower in the heavy metal co-contaminated samples compared to the treated soil. The inhibitory effect of heavy metal was less in As3+ co-contaminated soil for both CaCO3- and Na2HPO4 + NaCl-treated soil, with up to 7.92% increase in dehydrogenase activity obtained compared to soil co-contaminated with Cd2+.

Conclusions

Results from this study indicate that treatment additives can be used to reduce bioavailable fractions of risk elements in the soil matrices, thereby limiting the toxicity of these risk elements to 1,2-DCA degrading microorganisms. Thus, this approach can be applied to enhance organic compound degradation in co-contaminated soil environments.
  相似文献   

9.

Purpose

The purpose of this study is to examine the effects of combined application of biomass ash (BA), bone meal (BM), and alkaline slag (AS) on soil acidity, nutrient contents, uptake of the nutrients by wheat, and wheat growth.

Materials and methods

A pot experiment with an Ultisol collected from Anhui province, China, was conducted to compare the effects of BA, BM, and AS applied alone and combined on soil acidity; soil nutrient contents; uptake of N, P, K, Ca, and Mg by wheat, and wheat growth.

Results and discussion

Application of BA, BM, and AS alone and combined increased soil pH and decreased soil exchangeable Al3+. BA + BM + AS showed the greatest ameliorating effect on soil acidity, and soil pH of the treatment increased by 1.24 units compared with control. Application of BA + BM + AS reduced soil exchangeable Al3+ and increased soil exchangeable calcium and magnesium to a greater extent than BA + BM and single application of the amendments. The BM-containing amendments substantially increased soil available phosphorous by 66–93% compared with control. Application of the amendments alone and combined enhanced the uptake of N, P, K, Ca, and Mg by wheat and thus promoted wheat growth and increased yield of wheat grains. Application of BA + BM + AS and BA + BM showed greater effects on nutrient uptake and wheat growth than single application of the amendments. Wheat straw weights of the two treatments were 11.1 and 10.1 times greater than that of control. The data were 2.7, 4.8, and 5.6 times for the treatments of BA, AS, and BM. The contents of Cd, Cr, Zn, and Cu in wheat grains were lower than standard limits, except for the single BA treatment.

Conclusions

BA + BM + AS is the best choice for amelioration of acid soils and promotion of crop production.
  相似文献   

10.

Purpose

Land use change and soil management are frequently associated to land degradation and soil organic matter (SOM) losses in tropical regions. In Brazil, in order to avoid this process, different management strategies have been applied, such as no-tillage and agricultural disposal of swine manure (SM). This study was carried out to evaluate the quantity and quality of SOM, as well as the occurrence of nutrient accumulation in soils of areas under contrasting management systems that have received consecutive applications of SM over the last decades in Brazil.

Materials and methods

Five land uses were sampled: native vegetation (NV), pasture with SM application (PA + SM), no-tillage with SM application (NT + SM), no-tillage (NT), and conventional tillage with SM application (CT + SM). Soil organic carbon (SOC), N, labile C, C management index (CMI), P, Ca2+, Mg2+, K+, Al3+, Fe, Zn, Mn, Cu, and H + Al were quantified.

Results and discussion

Except for PA + SM, the agricultural land uses caused decreases in SOC contents comparing to NV. PA + SM showed the highest C stocks, 138.9?±?3.4 Mg ha?1 down to 0.4 m. The application of SM can be associated to the greater C stocks in PA + SM, NT + SM, and CT + SM and to the higher N contents in all land uses under this practice. Land uses which receive higher rates of swine manure application (PA + SM and CT + SM) have shown CMI greater than 100. However, this practice is associated to the accumulation of P, Cu, Na, and Zn in these soils.

Conclusions

The SM application is associated to improvement on C stocks and SOM quality in area under pasture, no-tillage, and conventional tillage in Paraná State, Brazil. However, this practice is the main driver of nutrient accumulation in these areas.
  相似文献   

11.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   

12.

Purpose

The paper describes rhizospheric (Rs) and non-rhizospheric (nRs) soil to demonstrate the zone of the plant root impact on physical and chemical properties of the soil. The effects of the process accompanying the transformations of organic matter into humic substances in the rhizosphere of “common dandelion” Taraxacum officinale have been determined, and the properties of humic acids (HAs) were described. The importance of iron and clay minerals for the formation of a stable and water-resistant soil structure has been emphasized.

Materials and methods

The laboratory analysis involved determination of basic physical and chemical soil properties: texture, pH, cation exchange capacity (CEC), electrical conductivity, and content of total organic carbon (TOC) and dissolved organic carbon (DOC) and quality of humic substances: optical properties of HAs and its separation into hydrophilic (HIL) and hydrophobic (HOB) fractions, speciation of iron, glomalin operationally described as an easily extractable glomalin-related soil protein (EE-GRSP), and soil aggregate stability (SAS) of six size classes of soil aggregates.

Results and discussion

The Rs was reported with a higher TOC and DOC content (measured in the CaCl2 extracts), however not significantly. The HAs isolated from Rs revealed a significantly higher content of humic substances at its initial decomposition stage, as compared with nRs. A significantly higher concentration of EE-GRSP was noted in the aggregates of the rhizospheric zone (mean 1.14 g kg?1) than in the aggregates collected from root-free soil (mean 0.94 g kg?1). There was noted the highest mean share of 1–3 mm soil aggregates in Rs as well as in nRs, respectively 44.4 and 38.3%. The soil material both in Rs and in nRs contained high amounts of exchangeable Ca2+, and smectite is the predominant clay mineral. It was favorable for the accumulation of organic carbon and for the formation of good soil physical condition (tilth). Higher but insignificant SAS values were observed for Rs (mean SAS?=?95.6%) than for nRs (mean SAS?=?93.9%).

Conclusions

The studies confirm the role of common dandelion roots in the process of organic carbon accumulation in rhizospheric zone and a favorable effect on the mechanism of the formation of water-resistant aggregates. Higher values of SAS for the Rs were affected by the content of TOC, DOC, exchangeable Ca2+ and the concentration of EE-GRSP, and, less considerably, the content of Fe and clay minerals.
  相似文献   

13.

Purpose

The size of soil particles strongly affects the accumulation and adsorption of heavy metals which partly controls the co-transport of heavy metals by soil colloids. However, the effect of the size of soil particles on the accumulation and adsorption of heavy metals in the colloidal dimension has seldom been studied. In this study, variable charge soils were selected and separated into five size fractions to elucidate the effect of the size of soil particles on Cd accumulation and adsorption.

Materials and methods

Five soil particle size fractions (>10, 10–1, 1–0.45, 0.45–0.2 and <0.2 μm) were obtained from Cd-contaminated soil by natural sedimentation and fractional centrifugation. The concentrations and species of Cd were measured in various sized soil particles. Batch adsorption experiments of Cd on the obtained soil particles were conducted under different pH values and concentrations of NaCl.

Results and discussion

Generally, the concentration of Cd increased with decreasing soil particle sizes, and the Cd proportion of exchangeable and carbonate fraction decreased from 43.84 to 17.75% with decreasing particle size. The soil particles with a size of 10–1 and <0.2 μm possessed a stronger adsorption ability than the other fractions in most cases. Moreover, the Cd adsorption capacities of the soil particles increased with increasing pH values and decreasing concentrations of NaCl, especially for soil particles containing more organic matter (OM) and variable charge minerals.

Conclusions

Smaller soil particles are more capable of accumulating Cd and make Cd more stable. The adsorption capability of Cd is negatively related to the particle size and NaCl concentration and is positively related to the pH. The effects of the size of variable charge soil particles on Cd accumulation and adsorption are attributed to the differences in the physicochemical properties among various soil particle size fractions. This study contributes to the understanding of the co-transport of heavy metals in soil by soil colloids.
  相似文献   

14.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

15.

Purpose

Vertical transfer of solid matter in soils (bioturbation and translocation) is responsible for changes in soil properties over time through the redistribution of most of the soil constituents with depth. Such transfers are, however, still poorly quantified.

Materials and methods

In this study, we examine matter transfer in four eutric Luvisols through an isotopic approach based on 137Cs, 210Pb(xs), and meteoric 10Be. These isotopes differ with respect to chemical behavior, input histories, and half-lives, which allows us to explore a large time range. Their vertical distributions were modeled by a diffusion-advection equation with depth-dependent parameters. We estimated a set of advection and diffusion coefficients able to simulate all isotope depth distributions and validated the resulting model by comparing the depth distribution of organic carbon (including 12/13C and 14C isotopes) and of the 0–2-μm particles with the data.

Results and discussion

We showed that (i) the model satisfactorily reproduces the organic carbon, 13C, and 14C depth distributions, indicating that organic carbon content and age can be explained by transport without invoking depth-dependent decay rates; (ii) translocation partly explains the 0–2-μm particle accumulation in the Bt horizon; and (iii) estimates of diffusion coefficients that quantify the soil mixing rate by bioturbation are significantly higher for the studied plots than those obtained by ecological studies.

Conclusions

This study presents a model capable of satisfactorily reproducing the isotopic profiles of several tracers and simulating the distribution of organic carbon and the translocation of 0–2-μm particles.
  相似文献   

16.

Purpose

Antimony (Sb) contamination in the environment is a worldwide concern. To address such contamination issues, we studied the adsorption of Sb in four different types of soils. We investigated the main chemical and physical factors that influenced the adsorption of Sb, and distinguished between the different adsorption abilities of naturally occurring crystalline and amorphous iron (Fe) compounds in these soils.

Materials and methods

Adsorption of Sb in ferrosol, primosol, isohumosol, and sandy soil was studied using batch experiments. Transmission electron microscopy and X-ray photoelectron spectroscopy were used to examine the character and location of Sb adsorbed on individual particles in these soils without affecting its geochemical environment. In addition, the crystalline and amorphous Fe compounds in these soils were separated and analyzed using X-ray diffraction. The relationship between these Fe compounds and Sb adsorption was also explored.

Results and discussion

The sorption capacities of the four soils increased on addition of Sb in solution, reaching values of 10.8, 4.33, 5.45, and 1.19 g kg?1 for ferrosol, primosol, isohumosol, and sandy soil, respectively. The adsorption of Sb in ferrosol was much higher than for other soils because of its higher Fe oxide content. In fact, the Sb content adsorbed on ferrosol showed a good exponential relationship with its Fe content. The X-ray photoelectron spectroscopy results indicated that the Fe2p and O1s binding energies decreased after the adsorption of Sb in the ferrosol. This suggests that an electron transfer occurred between Sb and Fe through an oxidation-reduction reaction, after Sb adsorption in the ferrosol.

Conclusions

The adsorption abilities of Sb in the four soils were in the order of ferrosol > isohumosol > primosol > sandy soil. The amounts of Sb adsorbed by these soils were significantly positively correlated with their Fe contents (Sb?=??3.78?+?2.88?×?Fe, P?<?0.01), but were negatively correlated with their sand contents (Sb?=?12.30???0.12?×?Sand, P?<?0.01). The X-ray diffraction analysis results showed that crystalline Fe compounds have a higher capacity for Sb adsorption than amorphous Fe compounds.
  相似文献   

17.

Purpose

An analytical database containing XRF chemical analyses and real density measurements of unconsolidated sediments of the Padania Plain (Northern Italy) has been used to understand the relationship that exists between the soil particle density (ρs) and their bulk chemical composition.

Materials and methods

Using a linear regression, we built an equation able to link the particle density with the soil elemental composition.

Results and discussion

Positive correlations were found between ρs and SiO2, MgO, CaO and Na2O and negative correlations with K2O, TiO2, Al2O3, Fe2O3 and LOI, reflecting the presence in the soils of quartz and feldspars/mineral clays respectively.

Conclusions

Our equation is very useful because it helps to know the density properties of a soil when it is not possible to measure ρs with a pycnometer. On the other hand, by knowing the ρs, it is possible to have a quite precise knowledge about the chemistry of the studied soils.
  相似文献   

18.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

19.

Purpose

Technosol management is one of the greatest challenges for the future, more specifically as regards supporting and/or restoring ecosystems. The understanding of natural soil organic matter (SOM) dynamic from Technosol may give important information about soil functioning and Technosol evolution.

Materials and methods

According to this, SOM from three French old mine Technosols, (an old tin mine, a lead and zinc, and a gold one which is arsenic-rich), were studied and characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (GC-MS) with tetramethyl ammonium hydroxide (TMAH) as reagent and FTIR. The characterization and quantification of some specific biomacromolecules, used as biomarkers, indicate the specific level of incorporation relative to various subgroups. Global parameters of soils (pH, total organic matter, cation exchange capacity…) were also evaluated.

Results and discussion

Results on bulk samples show that lipids are the most reactive group and therefore play the most important role in young soil pedogenesis. All of the results show that the behavior of SOM of the Technosol is similar to homolog non-anthropized soil and depends on vegetation type.

Conclusions

A slight inhibition of bacterial activity is observed which underlines a protective effect of Technosols on SOM degradation due to the low pH, the high clay content, and the presence of Al3+ and metal(loid)s. In fine, lipid fraction of SOM may act as a well-done fingerprint of pedogenesis processes in Technosols.
  相似文献   

20.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号