首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Denmark has no free-range wild-boar population. However, Danish wildlife organizations have suggested that wild boar should be reintroduced into the wild to broaden national biodiversity. Danish pig farmers fear that this would lead to a higher risk of introduction of classical swine fever virus (CSFV), which could have enormous consequences in terms of loss of pork exports. We conducted a risk assessment to address the additional risk of introducing and spreading CSFV due to the reintroduction of wild boar. In this paper, we present the part of the risk assessment that deals with the spread of CSFV between the hypothetical wild-boar population and the domestic population. Furthermore, the economic impact is assessed taking the perspective of the Danish national budget and the Danish pig industry. We used InterSpreadPlus to model the differential classical swine fever (CSF) risk due to wild boar. Nine scenarios were run to elucidate the effect of: (a) presence of wild boar (yes/no), (b) locations for the index case (domestic pig herd/wild-boar group), (c) type of control strategy for wild boar (hunting/vaccination) and (d) presence of free-range domestic pigs. The presence of free-range wild boar was simulated in two large forests using data from wildlife studies and Danish habitat data. For each scenario, we estimated (1) the control costs borne by the veterinary authorities, (2) the control-related costs to farmers and (3) the loss of exports associated with an epidemic. Our simulations predict that CSFV will be transmitted from the domestic pig population to wild boar if the infected domestic pig herd is located close to an area with wild boar (<5 km). If an outbreak begins in the wild-boar population, the epidemic will last longer and will occasionally lead to several epidemics because of periodic transfer of virus from groups of infected wild boar to domestic pig herds. The size and duration of the epidemic will be reduced if there are no free-range domestic pig herds in the area with CSF-infected wild boar. The economic calculations showed that the total national costs for Denmark (i.e. the direct costs to the national budget and the costs to the pig industry) related to an outbreak of CSF in Denmark will be highly driven by the reactions of the export markets and in particular of the non-EU markets. Unfortunately, there is a substantial amount of uncertainty surrounding this issue. If hunting is used as a control measure, the average expenses related to a CSF outbreak will be 40% higher if wild boar are present compared with not present. However, a vaccination strategy for wild boar will double the total costs compared with a hunting strategy.  相似文献   

2.
Biosecurity measures are important for the herd's protection against diseases and also to provide nationwide protection against the introduction of exotic diseases. In this paper, we describe the farmers’ choices and routines regarding biosecurity in Danish fattening herds.

Overall, 116 Danish swine fattening herds in three areas of different pig density were interviewed.

Of these herds, 78% purchased weaners from one sow herd only, whereas 10% purchased from >5 sow herds during 1 year. Large herds (>500 finishers) purchased weaners more often than smaller herds (≤500 finishers). Only two swine producers purchased weaners from a market. Almost all herds (95%) received weaners from one sow herd at one time, and only one herd received from >5 sow herds in one batch. Twenty-one percent did not use an effective barrier between the loading area and the stables when delivering pigs for slaughter. Entry rooms (in which clothing and boots are changed) were common at the farm, and the numbers of visitors were generally low (<10 visitors a year).

Factor analysis was performed to find underlying structures of the biosecurity measures in the herd; four factors were chosen (eigenvalue > 3.10). A site scoring high on factor 1 was a large SPF herd, which received weaners from a single source, had biosecurity requirements for the transport vehicles, and had a high level of biosecurity for visitors. A site scoring high on factor 2 was a multi-site farm, which had personnel working on more than one of the sites, only received weaners from one sow herd, had delivering herds placed close to the participating site, and transported animals themselves. A site scoring high on factor 3 was a site which hired commercial transport for slaughter, was situated far from the abattoir and had a high level of biosecurity when loading pigs. A production site scoring high on factor 4 was a large site, which used all-in/all-out management, washed and disinfected between each group, and purchased many weaners.  相似文献   


3.
Data of the 1997–1998 epidemic of classical swine fever (CSF) in The Netherlands were analysed in survival analysis to identify risk factors that were associated with the rate of neighbourhood infections. The study population consisted of herds within 1000 m of exclusively one previously infected herd. Dates of virus introduction into herds were drawn randomly from estimated probability distributions per herd of possible weeks of virus introduction. (To confirm the insensitivity of the results for this random data-selection procedure, the procedure was repeated 9 times (resulting in 10 different datasets).) The dataset had 906 non-infected and 59 infected neighbour herds, which were distributed over 215 different neighbourhoods. Neighbour herds that never became infected were right-censored at the last date of the infectious period of the infected source herd. Neighbour herds that became empty within the infectious period or within the following 21 days due to preventive depopulation or due to the implemented buying-out programme were right-censored 21 days before the moment of becoming empty. This was done as a correction for the time a herd could be infected without being noticed as such.

The median time to identified infection of neighbour herds was 2 weeks, whereas the median time to right censoring of non-infected neighbour herds was 3 weeks. The risk factors, radial distance ≤500 m, cattle present on source herd and increasing herd size of the neighbour herd were associated multivariably with the hazard for neighbour herds to become infected. We did not find an association between time down wind and infection risk for neighbour herds. Radial dispersion of CSFV seemed more important in neighbourhood infections than dispersion along the road on which the infected source herd is situated. The results of this study support the strategy of preventive depopulation in the neighbourhood of an infected herd. Recommendations are presented to adapt the applied control strategy for neighbourhood infections.  相似文献   


4.
In this study, we describe a method to quantify the transmission of Classical Swine Fever Virus (CSFV) between herds from data collected during the 1997–1998 epidemic in the Netherlands. From the contacts between infected herds and the serological findings shortly before depopulation, we estimated the week of virus introduction and the length of the period over which the herd emitted virus for each CSFV-infected herd. From these data, we estimated the infection-rate parameter β (the average number of herds infected by one infectious herd during one week) and the herd reproduction ratio, Rh (the average total number of secondary outbreaks caused by one infectious herd, i.e. in its entire infectious period), using a SIR-model for different sets of CSF control measures. When Rh > 1, an epidemic continues to grow. On the other hand, when Rh < 1 an epidemic will fade out.

During the phase before the first outbreak was diagnosed and no specific measures had been implemented, β was estimated at 1.09 and Rh at 6.8. In the subsequent phase infected herds were depopulated, movement restrictions were implemented, infected herds were traced forward and backward and the herds in the protection and surveillance zones were clinically inspected by the veterinary authorities (regional screening). This set of measures significantly reduced β to 0.38. However, Rh was 1.3 and thus still >1. Consequently, the number of outbreaks continued to grow. After a number of additional measures were implemented, the value of Rh was reduced to 0.5 and the epidemic came to an end. These measures included pre-emptive slaughter of herds that had been in contact with infected herds or were located near an infected herd, increased hygienic procedures, replacement of transports of pigs for welfare reasons by killing of young piglets and a breeding ban, and regional screening for CSF-infected herds by local veterinary practitioners.  相似文献   


5.
OBJECTIVE: To develop a spatial epidemic model to simulate intraherd and interherd transmission of foot-and-mouth disease (FMD) virus. SAMPLE POPULATION: 2,238 herds, representing beef, dairy, swine, goats, and sheep, and 5 sale yards located in Fresno, Kings, and Tulare counties of California. PROCEDURE: Using Monte-Carlo simulations, a spatial stochastic epidemic simulation model was developed to identify new herds that would acquire FMD following random selection of an index herd and to assess progression of an epidemic after implementation of mandatory control strategies. RESULTS: The model included species-specific transition periods for FMD infection, locations of herds, rates of direct and indirect contacts among herds, and probability distributions derived from expert opinions on probabilities of transmission by direct and indirect contact, as well as reduction in contact following implementation of restrictions on movements in designated infected areas and surveillance zones. Models of supplemental control programs included slaughter of all animals within a specified distance of infected herds, slaughter of only high-risk animals identified by use of a model simulation, and vaccination of all animals within a 5- to 50-km radius of infected herds. CONCLUSIONS AND CLINICAL RELEVANCE: The FMD model represents a tool for use in planning biosecurity and emergency-response programs and in comparing potential benefits of various strategies for control and eradication of FMD appropriate for specific populations.  相似文献   

6.
The 1997-1998 epidemic of classical swine fever in the Netherlands   总被引:9,自引:0,他引:9  
In 1997, the pig husbandry in the Netherlands was struck by a severe epidemic of classical swine fever (CSF). During this epidemic 429 CSF-infected herds were depopulated and approximately 1300 herds were slaughtered pre-emptively. In addition millions of pigs of herds not CSF-infected were killed for welfare reasons (over crowding or overweight). In this paper, we describe the course of the epidemic and the measures that were taken to control it.The first outbreak was detected on 4 February 1997 in the pig dense south-eastern part of the Netherlands. We estimate that CSF virus (CSFV) had already been present in the country by that time for 5-7 weeks and that the virus had been introduced into approximately 39 herds before the eradication campaign started. This campaign consisted of stamping-out infected herds, movement restrictions and efforts to diagnose infected herds as soon as possible. However, despite these measures the rate at which new outbreaks were detected continued to rise. The epidemic faded out only upon the implementation of additional measures such as rapid pre-emptive slaughter of herds in contact with or located near infected herds, increased hygienic measures, biweekly screening of all herds by veterinary practitioners, and reduction of the transportation movements for welfare reasons. The last infected herd was depopulated on 6 March 1998.  相似文献   

7.
In this paper, we describe the transmission of Classical Swine Fever virus (CSF virus) within herds during the 1997–1998 epidemic in the Netherlands. In seven herds where the infection started among individually housed breeding stock, all breeding pigs had been tested for antibodies to CSF virus shortly before depopulation. Based upon these data, the transmission of CSF virus between pigs was described as exponential growth in time with a parameter r, that was estimated at 0.108 (95% confidence interval (95% CI) 0.060–0.156). The accompanying per-generation transmission (expressed as the basic reproduction ratio, R0) was estimated at 2.9. Based upon this characterisation, a calculation method was derived with which serological findings at depopulation can be used to calculate the period in which the virus was with a certain probability introduced into that breeding stock. This model was used to estimate the period when the virus had been introduced into 34 herds where the infection started in the breeding section. Of these herds, only a single contact with a herd previously infected had been traced. However, in contrast with the seven previously mentioned herds, only a sample of the breeding pigs had been tested before depopulation (as was the common procedure during the epidemic). The observed number of days between the single contact with an infected herd and the day of sampling of these 34 herds fitted well in the model. Thus, we concluded that the model and transmission parameter was in agreement with the transmission between breeding pigs in these herds.

Because of the limited sample size and because it was usually unknown in which specific pen the infection started, we were unable to estimate transmission parameters for weaned piglets and finishing pigs from the data collected during the epidemic. However, from the results of controlled experiments in which R0 was estimated as 81 between weaned piglets and 14 between heavy finishing pigs (Laevens et al., 1998a. Vet. Quart. 20, 41–45; Laevens et al., 1999. Ph.D. Thesis), we constructed a simple model to describe the transmission of CSF virus in compartments (rooms) housing finishing pigs and weaned piglets. From the number of pens per compartment, the number of pigs per pen, the numbers of pigs tested for antibodies to CSF virus and the distribution of the seropositive pigs in the compartment, this model gives again a period in which the virus most probably entered the herd. Using the findings in 41 herds where the infection started in the section of the finishers or weaned piglets of the age of 8 weeks or older, and of which only a single contact with a herd previously infected was known, there was no reason to reject the model. Thus, we concluded that the transmission between weaned piglets and finishing pigs during the epidemic was not significantly different from the transmission observed in the experiments.  相似文献   


8.
Salmonella surveillance-and-control programs in pigs are highly resource demanding, so alternative cost-effective approaches are desirable. The aim of this study was to develop and evaluate a tool for predicting the Salmonella test status in pig herds based on herd information collected from 108 industrial farrow-to-finish pig herds in Portugal. A questionnaire including known risk factors for Salmonella was used. A factor analysis model was developed to identify relevant factors that were then tested for association with Salmonella status. Three factors were identified and labelled: general biosecurity (factor 1), herd size (factor 2) and sanitary gap implementation (factor 3). Based on the loadings in factor 1 and factor 3, herds were classified according to their biosecurity practices. In total, 59% of the herds had a good level of biosecurity (interpreted as a loading below zero in factor 1) and 37% of the farms had good biosecurity and implemented sanitary gap (loading below zero in factor 1 and loading above zero in factor 3). This implied that they, among other things, implemented preventive measures for visitors and workers entering the herd, controlled biological vectors, had hygiene procedures in place, water quality assessment, and sanitary gap in the fattening and growing sections. In total, 50 herds were tested for Salmonella. Logistic regression analysis showed that factor 1 was significantly associated with Salmonella test status (P = 0.04). Herds with poor biosecurity had a higher probability of testing Salmonella positive compared with herds with good biosecurity. This study shows the potential for using herd information to classify herds according to their Salmonella status in the absence of good testing options. The method might be used as a potentially cost-effective tool for future development of risk-based approaches to surveillance, targeting interventions to high-risk herds or differentiating sampling strategies in herds with different levels of infection.  相似文献   

9.
In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV-US) was used in replacement boars for Danish artificial insemination (AI) centres and from July 1996, the vaccine was used in PRRSV-EU infected herds for prevention of disease. Soon after vaccine introduction, PRRSV non-infected herds experienced outbreaks of disease due to infection with PRRSV-US. In this study, we investigated the risk factors (biosecurity level, animals, exposure from PRRSV-US-infected neighbour herds, semen, herd size, pig density and herd density) for infection with PRRSV-US in a cohort of 1071 sow herds; we used a nested case-control study. The retrospective observation period lasted from June 1996 (when they all were non-infected) to October 1997. Seventy-three non-vaccinated, closed sow herds became infected with the vaccine strain during this period. Each case herd was matched with two control herds from the cohort (controls had not been infected at the time of infection in the case herds). The data were analysed using a Cox-regression model. The hazard of infection increased significantly with exposure from PRRSV-US-infected neighbouring herds, purchase of animals from herds incubating PRRSV-US infection, increasing herd size and purchase of semen from boars at PRRSV-US-infected AI centres. The results are consistent with the modified-live vaccine strain spread to other herds by trade with animals and semen and by neighbour (area) transmission. We suggest that virus spread by aerosols was a frequent mode of transmission.  相似文献   

10.
OBJECTIVE: To assess estimated effectiveness of control and eradication procedures for foot-and-mouth disease (FMD) in a region of California. SAMPLE POPULATION: 2,238 herds and 5 sale yards in Fresno, Kings, andTulare counties of California. PROCEDURE: A spatial stochastic model was used to simulate hypothetical epidemics of FMD for specified control scenarios that included a baseline eradication strategy mandated by USDA and supplemental control strategies of slaughter or vaccination of all animals within a specified distance of infected herds, slaughter of only high-risk animals identified by use of a model simulation, and expansion of infected and surveillance zones. RESULTS: Median number of herds affected varied from 1 to 385 (17% of all herds), depending on type of index herd and delay in diagnosis of FMD. Percentage of herds infected decreased from that of the baseline eradication strategy by expanding the designated infected area from 10 to 20 km (48%), vaccinating within a 50-km radius of an infected herd (41%), slaughtering the 10 highest-risk herds for each infected herd (39%), and slaughtering all animals within 5 km of an infected herd (24%). CONCLUSIONS AND CLINICAL RELEVANCE: Results for the model provided a means of assessing the relative merits of potential strategies for control and eradication of FMD should it enter the US livestock population. For the study region, preemptive slaughter of highest-risk herds and vaccination of all animals within a specified distance of an infected herd consistently decreased size and duration of an epidemic, compared with the baseline eradication strategy.  相似文献   

11.
A matched case-control study of 135 infected and 99 uninfected pig herds from the central area of the 1997 to 1998 epidemic of classical swine fever (CSF) in The Netherlands was undertaken to identify factors associated with the introduction of the virus. The herds were matched on the basis of herd type and the shortest geographical distance between pairs of herds. Data on management, hygienic measures, experiences during the depopulation of an infected nearest neighbour, and the frequency of contact with professionals and other agencies were collected by means of a questionnaire taken by personal interview. There were no significant differences between the infected and uninfected herds in the median total number of contacts per year with professionals and other agencies either with or without contact with the pigs. On the basis of a multivariable analysis, five variables were found to be significantly associated with an increased risk of infection: (1) the presence of commercial poultry on the premises; (2) visitors entering the pig units without wearing an overcoat or overalls and boots supplied by the farm; (3) the driver of the lorry transporting pigs for the Pig Welfare Disposal Scheme (PWDS) using his own boots instead of boots supplied by the farm; (4) herds of moderate size (500 to 1,000 animals) and very large herds (>7,000 animals) were at greater risk than small herds (<500 animals); and (5) an aerosol, produced during high-pressure cleaning of the electrocution equipment used to kill the pigs on a neighbouring infected herd less than 250 m away was carried by the wind on to the premises. Two variables were significantly associated with a decreased risk of CSFV-infection: (1) more than 30 years of experience in pig farming; and (2) additional cleaning of the lorries used to transport pigs for the PWDS before they were allowed on to the premises. In the opinion of the cooperating farmers, airborne transmission of the virus and its transmission during the depopulation of an infected neighbour were among the most important routes of infection.  相似文献   

12.
The aim of this analysis was to characterise the temporal pattern of infection during the 1997/98 classical swine fever (CSF) epidemic in The Netherlands and hence identify and quantify risk factors for infection in different enterprise types and areas. Survival analysis and Cox proportional hazards regression were used to describe the epidemic. Substantial differences in temporal survival patterns (herd breakdown rate) were found between areas where different control policies operated. Factors with a significant influence on the infection hazard of individual herds included: sow numbers as a percentage of total sows and fatteners (HR = 3.38 for mixed herds (0.1–60% sows) vs. fattening herds (0% sows) and HR = 2.74 for breeding herds (60–100% sows) vs. fattening herds), the number of ‘transport contacts per month’ (>0.3 vs. <0.3; HR = 4.11), pig density (pigs/km2) in the area (HR1000 pigs 1.48) and herd size (HR100 pigs = 1.01).

Pre-emptive slaughter in an area appeared to be associated with lower subsequent disease levels. Higher frequency of transport contacts for welfare slaughter during the epidemic, however, well regulated and controlled, was associated with a substantially higher risk of becoming infected. The positive association of a higher pig density with CSF indicates the potential importance of local spread as a factor in disease transmission and emphasizes that dilution of the pig population can contribute to reduction in CSF occurrence. This analysis suggests however, that if pre-emptive slaughter can promptly be applied effectively in an area after initial diagnosis, pig density is then not a significant factor. Mixed and breeding herds had a higher probability of becoming infected than fattening herds, possibly due to different types and frequencies of inter-herd contacts. These contacts continue to some extent during the epidemic, despite the standstill of animal movements.  相似文献   


13.
We surveyed Belgian pig herds to describe their biosecurity status and management practices. Our written questionnaire was sent to a stratified random sample of 609 pig farms. We achieved a 71.6% response, and 421/609 farmers (69.1%) returned questionnaires suitable for analysis. We used multiple-correspondence analysis followed by a two-step clustering procedure. Herd size, herd type and occupation (commercial or hobby herd) were used to describe different groups. We differentiated four biosecurity groups, which we interpreted as indicating low- to high-biosecurity status. Although we felt that most farms had acceptable biosecurity, few used measures such as showering (2.1%) and quarantine periods for people entering the premises (7.1%). We also found three management-practices clusters, although their interpretation was not straightforward. Despite the industrialised character of pig production in Belgium, 9.4% of pig herds were small, hobby herds that reported different biosecurity and management characteristics (such as the equipping pigs on pasture and feeding kitchen waste).  相似文献   

14.
The herd sensitivity (HSe) and herd specificity (Hsp) of clinical diagnosis of an infection with classical swine fever (CSF) virus during veterinary inspection of breeding sows in a herd was evaluated. Data gathered from visits to herds during the CSF outbreak in 1997-1998 in The Netherlands were used for the analysis. Herds were visited one or more times by the same or by different veterinarians. On the basis of the veterinarians' reports, each visit was coded as 0 (negative clinical diagnosis) or 1 (positive clinical diagnosis). The HSe for clinical diagnosis of CSF was modelled as a function of days elapsed since introduction of the virus. The moment of introduction of the CSF virus in the CSF-positive herds was unknown, so for each herd, a probability distribution for the unknown number of days since introduction was derived from serum samples collected at depopulation. The information from the reports of the veterinarians and from the test results of the serum samples at depopulation was combined in a Bayesian analysis. Data from CSF-negative herds were analysed to estimate HSp of clinical diagnosis of CSF. The HSe of clinical diagnosis was 0.5 at 37 days after virus introduction (95% CI: 31, 45) and reached 0.9 at 47 days after virus introduction (95% CI: 41, 54). The estimated herd specificity was 0.72 (95% CI: 0.64, 0.79). Dependence of HSe and HSp on characteristics of the veterinarians and the herds also was studied. Specialisation of the veterinarian significantly, although not markedly, affected the HSe.  相似文献   

15.
The clinical syndrome Postweaning Multisystemic Wasting Syndrome (PMWS) in pigs has emerged globally during the last decade. In October 2001, the first pig herd diagnosed with PMWS was reported in Denmark, and since then the number of herds diagnosed with PMWS has increased markedly. The etiology of PMWS is not well understood, but increased knowledge of the causal factors is prerequisite for applying preventive interventions. In this study we described the temporal (time of diagnosis), spatial (location of herds) and spatio-temporal pattern of Danish pig herds diagnosed with PMWS during the first two years after the first herd was diagnosed, and we tested for spatial and spatio-temporal clustering using scan statistics. The study population consisted of pig herds that during the study period (October 2001-September 2003) performed diagnostic submissions to the two major veterinary diagnostic laboratories in Denmark (6724 herds). Of these, 277 herds were diagnosed with PMWS. Two statistically significant spatial clusters of herds diagnosed with PMWS were identified. These clusters included 11% and 8% of the study herds, respectively. Within these two clusters the relative risk for a herd to be diagnosed with PMWS was twice as high as expected. One statistically significant spatio-temporal cluster was identified between February and May 2002. We discuss different hypotheses that could explain why pig herds diagnosed with PMWS were clustered both spatially and spatio-temporally, and conclude that the results support the hypothesis that PMWS is caused by introduction of a new, unidentified, pathogen into the Danish pig production.  相似文献   

16.
A stochastic model was designed to calculate the cost-effectiveness of biosecurity strategies for bovine viral diarrhea virus (BVDV) in cow-calf herds. Possible sources of BVDV introduction considered were imported animals, including the calves of pregnant imports, and fenceline contact with infected herds, including stocker cattle raised in adjacent pastures. Spread of BVDV through the herd was modeled with a stochastic SIR model. Financial consequences of BVDV, including lost income, treatment costs, and the cost of biosecurity strategies, were calculated for 10 years, based on the risks of a herd with a user-defined import profile. Results indicate that importing pregnant animals and stockers increased the financial risk of BVDV. Strategic testing in combination with vaccination most decreased the risk of high-cost outbreaks in most herds. The choice of a biosecurity strategy was specific to the risks of a particular herd.  相似文献   

17.
Antimicrobial usage (AMU) has been described to be high in pig production. Although farmers are aware of the high usage, little is known about intervention to improve the situation. This study evaluated the extent to which AMU could be reduced in pig production by the optimization of herd management, biosecurity status, vaccination strategy, anthelmintic therapy and advice on prudent AMU. Furthermore, the effects of these interventions on the herd production results were explored. This intervention study was conducted on 61 Flemish pig herds and included three visits per herd. During the initial visit, information was gathered on herd management, biosecurity status (quantified by means of the Biocheck.UGent? risk‐based scoring system), vaccination strategy, anthelmintic therapy and AMU. This info was then translated into a herd‐specific action plan which was discussed with the farmer and herd veterinarian/other advisors during the second visit. In the final herd visit (±8 months later), comparable data were obtained to evaluate the progress. Overall, a significant improvement of 2.4 points external and 7 points internal biosecurity on the herds was obtained, combined with additional vaccination, anthelmintic therapy and prudent AMU. This was accompanied by a significant reduction in the AMU with a decrease of 52% for the pigs from birth till slaughter and 32% for breeding animals, based on treatment incidences (TIs) and included an important reduction in the use of critically important antimicrobials. More importantly, the increased biosecurity levels and decreased AMU were combined with significantly improved technical results such as the number of weaned piglets per sow per year (+1.1), daily weight gain (+5.9 g/day) and mortality in the finisher period (?0.6%). Guided interventions as a team effort of farmer and herd veterinarian/other advisors have shown to be a promising method in the reduction of AMU in pig production.  相似文献   

18.
The Danish surveillance-and-control program for Salmonella in slaughter pigs was introduced in 1995. The key element of the program is a quick and correct identification of herds with high seroprevalence. After 5 years, the classification scheme was evaluated--and a revision was made. Data from two Salmonella screenings including a total of 1902 slaughter pig herds were used. For each herd, information was available on Salmonella status based on both microbiology and serology. Based on analyses of these data, suitable changes in the scheme were identified and their effect estimated by use of data from the Danish Salmonella Database including all herds in 2000. The classification scheme has been adjusted on the following points. (1) The sampling has been simplified into 60, 75, or 100 samples per herd per year depending on herd size. This means more-precise estimates for the seroprevalence among smaller herds. (2) Herds with an annual kill or=index 40, and the limit between Levels 2 and 3 to >or=index 70. If the Danish swine producers are interested, a Level 0 may be introduced (consisting of seronegative herds as an indication of a negligible Salmonella prevalence). The classification scheme was introduced in August 2001.  相似文献   

19.
Chile eradicated classical swine fever (CSF) in April 1998, following a 17-year eradication programme. The authors describe biosecurity levels of pig farms in Chile after the eradication of CSF. A formal survey was administered to 50 large integrated pig farms, which represented almost 60% of the swine population. The main topics on the questionnaire were production, health management, biosecurity, insurance and information about CSF outbreaks in the past. Biosecurity practices were analysed according to the criteria stated by Barcelo and Marco in 1998. A scoring system to measure biosecurity was designed and pig farms were classified according to this score. An adjusted specific measure is discussed as a potential indicator of risk for disease infections. The authors explore associations between biosecurity herd size and insurance policy against CSF.  相似文献   

20.
The problems addressed are: (1) comparison of prevalences of Salmonella spp. in different herd types in the Danish pig population after implementation of the Danish Salmonella Control Program (DSCP), and (2) to make a reference to a study from 1993/1994 (pre-implementation) with a discussion of possible biases when diagnostic methods differ slightly. The objectives were to present the prevalences of Salmonella spp., Salmonella Typhimurium, and multiresistant S. Typhimurium DT104 in Danish pig herds in 1998. Further, to discuss how herd prevalences may be compared to a previous study.A bacteriological study in 1998 comprised: (a) a random sample of slaughter pig producing herds (N=1962); (b) a random sample of farrow-to-grower (sow) herds (N=305); and (c) all breeding and multiplying (genetic) herds (N=366). A previous bacteriological study on Salmonella presence in 1993/1994 served as a model for the present study. The results of the study were that multiresistant S. Typhimurium DT104 was detected in one herd producing slaughter pigs. The herd apparent prevalences (HAPs) of Salmonella spp. were 11.7, 16.7 and 11.4% in genetic, sow, and slaughter pig herds, respectively. The conclusion of the study was that prevalence of multiresistant S. Typhimurium DT104 was low in the examined slaughter pig herds. The herd true prevalence (HTP) of Salmonella spp. in pigs had declined from before the start of the DSCP in 1993/1994 to 4 years later (1998).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号