首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV-US) was used in replacement boars for Danish artificial insemination (AI) centres and from July 1996, the vaccine was used in PRRSV-EU infected herds for prevention of disease. Soon after vaccine introduction, PRRSV non-infected herds experienced outbreaks of disease due to infection with PRRSV-US. In this study, we investigated the risk factors (biosecurity level, animals, exposure from PRRSV-US-infected neighbour herds, semen, herd size, pig density and herd density) for infection with PRRSV-US in a cohort of 1071 sow herds; we used a nested case-control study. The retrospective observation period lasted from June 1996 (when they all were non-infected) to October 1997. Seventy-three non-vaccinated, closed sow herds became infected with the vaccine strain during this period. Each case herd was matched with two control herds from the cohort (controls had not been infected at the time of infection in the case herds). The data were analysed using a Cox-regression model. The hazard of infection increased significantly with exposure from PRRSV-US-infected neighbouring herds, purchase of animals from herds incubating PRRSV-US infection, increasing herd size and purchase of semen from boars at PRRSV-US-infected AI centres. The results are consistent with the modified-live vaccine strain spread to other herds by trade with animals and semen and by neighbour (area) transmission. We suggest that virus spread by aerosols was a frequent mode of transmission.  相似文献   

2.
In this study, we describe a method to quantify the transmission of Classical Swine Fever Virus (CSFV) between herds from data collected during the 1997–1998 epidemic in the Netherlands. From the contacts between infected herds and the serological findings shortly before depopulation, we estimated the week of virus introduction and the length of the period over which the herd emitted virus for each CSFV-infected herd. From these data, we estimated the infection-rate parameter β (the average number of herds infected by one infectious herd during one week) and the herd reproduction ratio, Rh (the average total number of secondary outbreaks caused by one infectious herd, i.e. in its entire infectious period), using a SIR-model for different sets of CSF control measures. When Rh > 1, an epidemic continues to grow. On the other hand, when Rh < 1 an epidemic will fade out.

During the phase before the first outbreak was diagnosed and no specific measures had been implemented, β was estimated at 1.09 and Rh at 6.8. In the subsequent phase infected herds were depopulated, movement restrictions were implemented, infected herds were traced forward and backward and the herds in the protection and surveillance zones were clinically inspected by the veterinary authorities (regional screening). This set of measures significantly reduced β to 0.38. However, Rh was 1.3 and thus still >1. Consequently, the number of outbreaks continued to grow. After a number of additional measures were implemented, the value of Rh was reduced to 0.5 and the epidemic came to an end. These measures included pre-emptive slaughter of herds that had been in contact with infected herds or were located near an infected herd, increased hygienic procedures, replacement of transports of pigs for welfare reasons by killing of young piglets and a breeding ban, and regional screening for CSF-infected herds by local veterinary practitioners.  相似文献   


3.
A matched case-control study of 135 infected and 99 uninfected pig herds from the central area of the 1997 to 1998 epidemic of classical swine fever (CSF) in The Netherlands was undertaken to identify factors associated with the introduction of the virus. The herds were matched on the basis of herd type and the shortest geographical distance between pairs of herds. Data on management, hygienic measures, experiences during the depopulation of an infected nearest neighbour, and the frequency of contact with professionals and other agencies were collected by means of a questionnaire taken by personal interview. There were no significant differences between the infected and uninfected herds in the median total number of contacts per year with professionals and other agencies either with or without contact with the pigs. On the basis of a multivariable analysis, five variables were found to be significantly associated with an increased risk of infection: (1) the presence of commercial poultry on the premises; (2) visitors entering the pig units without wearing an overcoat or overalls and boots supplied by the farm; (3) the driver of the lorry transporting pigs for the Pig Welfare Disposal Scheme (PWDS) using his own boots instead of boots supplied by the farm; (4) herds of moderate size (500 to 1,000 animals) and very large herds (>7,000 animals) were at greater risk than small herds (<500 animals); and (5) an aerosol, produced during high-pressure cleaning of the electrocution equipment used to kill the pigs on a neighbouring infected herd less than 250 m away was carried by the wind on to the premises. Two variables were significantly associated with a decreased risk of CSFV-infection: (1) more than 30 years of experience in pig farming; and (2) additional cleaning of the lorries used to transport pigs for the PWDS before they were allowed on to the premises. In the opinion of the cooperating farmers, airborne transmission of the virus and its transmission during the depopulation of an infected neighbour were among the most important routes of infection.  相似文献   

4.
In this paper, we describe the transmission of Classical Swine Fever virus (CSF virus) within herds during the 1997–1998 epidemic in the Netherlands. In seven herds where the infection started among individually housed breeding stock, all breeding pigs had been tested for antibodies to CSF virus shortly before depopulation. Based upon these data, the transmission of CSF virus between pigs was described as exponential growth in time with a parameter r, that was estimated at 0.108 (95% confidence interval (95% CI) 0.060–0.156). The accompanying per-generation transmission (expressed as the basic reproduction ratio, R0) was estimated at 2.9. Based upon this characterisation, a calculation method was derived with which serological findings at depopulation can be used to calculate the period in which the virus was with a certain probability introduced into that breeding stock. This model was used to estimate the period when the virus had been introduced into 34 herds where the infection started in the breeding section. Of these herds, only a single contact with a herd previously infected had been traced. However, in contrast with the seven previously mentioned herds, only a sample of the breeding pigs had been tested before depopulation (as was the common procedure during the epidemic). The observed number of days between the single contact with an infected herd and the day of sampling of these 34 herds fitted well in the model. Thus, we concluded that the model and transmission parameter was in agreement with the transmission between breeding pigs in these herds.

Because of the limited sample size and because it was usually unknown in which specific pen the infection started, we were unable to estimate transmission parameters for weaned piglets and finishing pigs from the data collected during the epidemic. However, from the results of controlled experiments in which R0 was estimated as 81 between weaned piglets and 14 between heavy finishing pigs (Laevens et al., 1998a. Vet. Quart. 20, 41–45; Laevens et al., 1999. Ph.D. Thesis), we constructed a simple model to describe the transmission of CSF virus in compartments (rooms) housing finishing pigs and weaned piglets. From the number of pens per compartment, the number of pigs per pen, the numbers of pigs tested for antibodies to CSF virus and the distribution of the seropositive pigs in the compartment, this model gives again a period in which the virus most probably entered the herd. Using the findings in 41 herds where the infection started in the section of the finishers or weaned piglets of the age of 8 weeks or older, and of which only a single contact with a herd previously infected was known, there was no reason to reject the model. Thus, we concluded that the transmission between weaned piglets and finishing pigs during the epidemic was not significantly different from the transmission observed in the experiments.  相似文献   


5.
6.
Risk factors associated with the occurrence of "neighbourhood infections" [Epidemiology of classical swine fever. In: Truszczynski, M. (Ed.), Proceedings of the Workshop on Diagnostic Procedures and Measures to Control Classical Swine Fever in Domestic Pigs and the European Wild Boar. Pulaway, Poland, pp. 119-130] during classical swine fever (CSF) outbreaks were examined based on information collected during a CSF-epidemic, which occurred in the East Flanders Province of Belgium in 1994. The only risk factor that was associated with the occurrence of "neighbourhood infections" was a kernel estimation of the intensity of neighbouring herds (P=0.055) [Interactive spatial data analysis. Pearson Education Limited, Harlow, Essex], i.e. the higher the kernel estimation, the higher the risk for the occurrence of neighbourhood infections. In a second part of the study, the likelihood for the occurrence of neighbourhood infections within an area with a 1 km radius was predicted for every Belgian pig herd, assuming that the herd was infected with CSF-virus. For the prediction of these likelihoods, the model resulting from the risk assessment was used. Finally, the predicted likelihoods were transformed into a raster map after applying a smoothing technique. As a result, different areas in Belgium of higher or lower risk for CSF-virus spread through "neighbourhood infections" could be identified on the map. The areas in Belgium where CSF-outbreaks including "neighbourhood infections" occurred in the past decades were all predicted by the model to be of high risk.  相似文献   

7.
This study evaluated the impact of the Irish herd bovine tuberculosis (bTB) depopulation policy (depopulation, disinfection, contiguous testing and local badger removal where implicated) on the recurrence of bTB infection, by comparing the future risk in restocked herds following depopulation for either bTB or bovine spongiform encephalopathy (BSE) during 2003 to 2005. Each herd was assigned a 'previous bTB risk', based on bTB history during the five years before depopulation. Future bTB risk was estimated, using a multivariable Cox proportional hazard model for time-to-breakdown for each study herd, to identify risk factors associated with bTB. Future bTB risk varied significantly by reason for depopulation and previous bTB risk. Herds depopulated for bTB (by definition, at high bTB risk) were not significantly different from BSE herds with no or a low previous bTB risk. BSE herds with a high previous bTB risk were found to be at significantly greater future bTB risk. Herd bTB depopulation measures, as currently applied in Ireland, are shown to be effective in enabling herds to attain and retain bTB freedom following restocking. Based on the data presented, and consistent with current knowledge of the bTB epidemiology, local badger removal contributes to efforts to limit recurrence of bTB in Ireland.  相似文献   

8.
In herds with known prevalence (P) use of environmental sampling (ES) to detect Mycobacterium avium ssp. paratuberculosis (MAP) infected cattle herds was proofed in relation to P. In 31 MAP-infected free stall dairy herds and 15 non-infected herds P was defined by annually repeated whole herd testing by fecal culture (34 877 individual samples). Eight infected herds had a very low (> 0-2%), 14 a low (> 2-5%), four a medium (> 5-10%), and five a high P (> 10%). A mean number of nine environmental samples per herd were collected from the floor of lactating cows, milking, calving and sick cow areas and the crossover to the calf area. After twelve weeks cultivation on HEYM-medium with and without mycobactin positive samples were further characterized by PCR. All non-infected herds (100%) showed negative and 22 (71%) of the infected herds positive results in ES. Nine infected herds with negative ES results had a low P (0.04-4,04%). Proportion of positive ES depended on P and on sampling areas with 53.3% positive results in lactating cow areas and 45.2% in milking areas. For P > 5%, ES in these two areas caused a positive herd status; herds with P < 5% required sampling in the other areas too. The ES method has a herd sensitivity of 87% for dairy herds with P > 2% and provides an efficient tool to determine MAP infection status or herd prevalence.  相似文献   

9.
This paper reports on a retrospective study of the antibody responses to structural and non-structural proteins of FMD virus O Taiwan 97 in six pig herds in Taiwan in the year after the 1997 Taiwanese FMD outbreak. All herds were vaccinated against FMD after the outbreak as part of the countrywide control program. Three of the herds had confirmed FMD infections (herds N, O and P) and three herds remained non-infected (herds K, L and M). The serum neutralizing antibody titers and the non-structural protein ELISA (NSP) antibody responses in sows and 1-month-old pigs in the infected herds were higher than in the non-infected herds, but over time a number of positive NSP reactors were detected. From the serological studies and the herd monitoring and investigations it was considered that the FMD NSP positive reactors may not have constituted a true reservoir of FMD virus infection especially in herds where susceptible pigs were no longer present post-exposure or post-vaccination. Pigs vaccinated with an unpurified FMD type O vaccines being used at that time also showed false positive responses for NSP antibodies.  相似文献   

10.
In the demand for a decision support tool to guide farmers wanting to control Salmonella Dublin (S. Dublin) in Danish dairy herds, we developed an age-structured stochastic, mechanistic and dynamic simulation model of S. Dublin in dairy herds, which incorporated six age groups (neonatal, preweaned calves, weaned calves, growing heifers, breeding heifers and cows) and five infection states (susceptible, acutely infected, carrier, super shedder and resistant). The model simulated population and infection dynamics over a period of 10 years in weekly time steps as: 1) population sizes of each of the six age-groups; 2) S. Dublin incidence and number of animals in each infection state; and 3) S. Dublin related morbidity and mortality in the acutely infected animals. The effects of introducing one infectious heifer on the risk of spread of S. Dublin within the herd and on the duration of infection were estimated through 1000 simulation iterations for 48 scenarios. The scenarios covered all combinations of three herd sizes (70, 200 and 400 cows), four hygiene levels indicating infectious contact parameters, and four herd susceptibility levels indicating different susceptibility parameters for the individual animals in each of the six age groups in the herd. The hygiene level was highly influential on the probability that the infection spread within the herd, duration of infection and epidemic size. The herd susceptibility level was also influential, but not likely to provide sufficient prevention and control of infection on its own. Herd size did not affect the probability of infection spread upon exposure, but the larger the herd the more important were management and housing practices that improve hygiene and reduce susceptibility to shorten durations of infection in the herd and to increase the probability of extinction. In general, disease and mortality patterns followed epidemic waves in the herds. However, an interesting pattern was seen for acute infections and abortions in adult cattle after the first 2 years of infection in herds with poor hygiene and high susceptibility. Repeated infections in young stock lead to a high proportion of resistant adult cattle, which lead to a dampening effect on acute infections in adults and associated abortions. Sensitivity analyses of 24 alternative scenarios showed that a super shedder state was not essential to mimic the infection dynamics and persistence patterns known from field studies, but a persistent carrier state was required in the model to mimic real life S. Dublin infections.  相似文献   

11.
An extensive questionnaire was developed and used to collect data from 33 herds that were on the New York State Paratuberculosis Control Program, to study farm factors associated with the presence of Mycobacterium paratuberculosis infection in dairy herds. The results of the last whole herd paratuberculosis fecal culture were used to indicate presence of infection in a herd, with herds having one or more animals positive classified as ‘infected’. The average prevalence within herds was 5.2%. Fourteen herds were uninfected and 19 herds had prevalences ranging from 0.7%–28.2%. Data on 31 continuous and 67 categorical risk factors were collected by questionnaire. Ten factors were significantly associated with prevalence risk of infection in the univariable logistic regression. These factors were: the type of farm operation (commercial/registered or both); earlier diagnosis of the disease before entering the control program; number of clinical cases in the previous year; whether clinical cases were raised or purchased animals; typical signs in clinical cases; exposure of calves 0–6 weeks of age to feces of adult cows; contact of young stock with adult animal feces from using the same equipment to clean the housing for both groups of animals; spreading feces on fields from which forage is later harvested and fed to animals of any age group; what is done with animals that are suspected of having paratuberculosis or test positive on culture; and frequency of cleaning the cow barn. Stepwise logistic regression was used to determine the significance of each risk factor while controlling simultaneously for the effect of other factors. The significant factors were the type of farm operation, clinical signs, and exposure of calves to feces of adult cows. Commercial herds, presence of clinical signs typical of paratuberculosis in animals, and exposure of calves 0–6 weeks old to feces of adult cows all indicate a higher likelihood that a herd is infected with M. paratuberculosis.  相似文献   

12.
Simple mathematical models based on experimental and observational data were applied to evaluate the feasibility of eradicating pseudorabies virus (PRV) regionally by vaccination and to determine which factors can jeopardise eradication. As much as possible, the models were uncomplicated and our conclusions were based on mathematical analysis. For complicated situations, Monte-Carlo simulation was used to support the conclusions. For eradication, it is sufficient that the reproduction ratio R (the number of units infected by one infectious unit) is < 1. However, R can be determined at different scales: at one end the region with the herds as units and at the other end compartments with the pigs as units. Results from modelling within herds showed that contacts between groups within a herd is important whenever R between individuals (Rind) is 1 in one or more groups. This is the case within finishing herds. In addition, if the Rind is more than 1 within a herd, the size of the herd determines whether PRV can persist in the herd and determines the duration of persistence. Moreover, when reactivation of PRV in well-vaccinated sows is taken into account, Rind in sow herds is still less than 1. In sow herds with group-housing systems, it is possible that in those groups Rind is 1. Results from modelling between herds showed that whether or not Rherd is < 1 in a particular region is determined by two factors: (1) the transmission of infection between nucleus herds and rearing herds through transfer of animals and (2) contacts among finishing herds and among rearing herds. The transmission between herds can be reduced by reduction of the contact rate between herds, reduction of the herd size, and reduction of the transmission within herds.  相似文献   

13.
Data from 42,224 cattle from 694 herds collected during the brucellosis eradication campaign were used to examine the effects of calfhood strain 19 vaccination. The prevalence of infection in vaccinated herds was 1.8% compared with 9.1% in non-vaccinated herds (p< 0.005). The mean titre in the former group was lower (p< 0.001). Vaccinated herds required 3.3 herd tests to achieve a provisionally free status compared with 4.8 in non-vaccinated herds (0.001 < p < 0.005). Vaccination did not significantly reduce the number of herd tests in herds with less than 100 breeding females. In tests after the initial herd test only 0.5% reactors were found in vaccinated herds compared with 6.9% in non-vaccinated herds (p< 0.005). There were 0.9% false positive to the Rose Bengal plate test in non-vaccinated and 2.1% in vaccinated animals (p< 0.005) in non-infected herds. In infected herds this percentage was 3.0% and 4.2% respectively by (p< 0.05). In the non-infected herds there were 0.04% false positives to the complement fixation test out of 10,506 non-vaccinated cattle tested and 0.2% out of 24,734 vaccinated cattle.  相似文献   

14.
We used a Bayesian classification approach to predict the bovine viral-diarrhoea-virus infection status of a herd when the prevalence of persistently infected animals in such herds is very small (e.g. <1%). An example of the approach is presented using data on beef herds in Wyoming, USA. The approach uses past covariate information (serum-neutralization titres collected on animals in 16 herds) within a predictive model for classification of a future observable herd. Simulations to estimate misclassification probabilities for different misclassification costs and prevalences of infected herds can be used as a guide to the sample size needed for classification of a future herd.  相似文献   

15.
In each of 42 Danish dairy herds, ten young stock aged 8–18 months were tested for antibodies against bovine virus diarrhoea virus (BVDV). At the same time a bulk milk sample from each herd was examined for antibodies against BVDV.

The herds could be divided into two distinct groups: (1) Group A (24 herds) had three or less antibody carriers among the ten young stock sampled from each herd and were considered ‘slightly infected’; (2) Group B (18 herds) had eight or more antibody carriers in the ‘spot’ sample and were therefore considered ‘heavily infected’. Persistently infected animals were not found in two Group A herds studied by a subsequent total herd blood test but were detected in five Group B herds in which all animals in the herds were subsequently tested.

Bulk milk titers were generally higher in Group B than in Group A herds. However, there was considerable variation, and in most cases it was not possible to distinguish the two herd categories from one another by means of bulk milk titers.  相似文献   


16.
Microorganisms of the genus Mycobacterium cause tuberculosis in many animal species including humans. Generally, Mycobacterium bovis (M. bovis) infects cattle and cervids, but it has the potential to infect virtually all species of mammals. This study examined and analysed the data from the nine outbreaks of tuberculosis in Canadian cattle and cervids from 1985 to 1994. For the purposes of this study, a positive herd was one with at least one culture-positive animal. A reactor herd had at least one animal which was positive or suspicious on a mid-cervical, comparative cervical, or gross or histopathologic test for tuberculosis. Herd classification was either reactor/positive or negative. Data for the study were collected from the outbreak records in the Regional or District offices of Agriculture and Agri-Food Canada. Logistic regression was used to study spread of tuberculosis between herds. Two risk factors were identified: increasing herd size; and, the reason why a herd was investigated as part of the outbreak. This latter factor was interpreted as a surrogate measure for the nature of contact between the study herd and other potentially infected herds in the outbreak. Increasing herd size was associated with an increased risk of being positive for tuberculosis with herds of 16-35, 36-80, and >80 animals having odds ratios of 2.9, 5.8, and 9.3, respectively, when compared to a herd size of <16 animals (p < 0.001). When compared to perimeter testing (i.e. testing herds within a specified radius of an infected herd), all other reasons for investigation had higher odds ratios (p < 0.001). These odds ratios were 57.8 for traceout herds (i.e. herds which had purchased animal(s) from a reactor/positive herd), 31.8 for herds with pasture or fence-line contact with a reactor/positive herd, and 14.9 for traceback herds (i.e. herds which had been a source of animals for reactor/positive herd(s)).  相似文献   

17.
Patterns of Mycoplasma hyopneumoniae (Mh) infections were investigated in five clinically infected herds and in five herds subclinically infected with Mh. In the clinically infected herds, housing and management conditions were good whereas these conditions were poor in the subclinically infected herds. In each herd, serum antibodies against Mh were detected in pigs of different ages and nasal swabs were taken for Mh detection using nested PCR (nPCR). The percentage of seropositive pigs in the clinically infected herds increased from 8% in pigs of 9 weeks to 52% in pigs of 18 weeks and seroconversion was most shown between 12 and 15 weeks. In the subclinically infected herds, the percentages increased from 2 to 24% and most of the pigs became seropositive between 15 and 18 weeks. The percentage of nPCR positive pigs at 6 weeks was 16 and 0% in the clinically and subclinically infected herds, respectively. The results demonstrate that the seroprevalences were higher in the clinically infected herds and that most of the pigs became infected with Mh at a younger age. It can be concluded that additional factors different from housing and management, like differences among Mh strains, may determine the infection pattern of Mh and the clinical course of the infection.  相似文献   

18.
The objective of this paper is to describe the severe epidemic of classical swine fever (CSF) in The Netherlands in 1997–1998 under a policy of non-vaccination, intensive surveillance, pre-emptive slaughter and stamping out in an area which has one of the highest pig and herd densities in Europe.

The primary outbreak was detected on 4 February 1997 on a mixed sow and finishing pig herd. A total of 429 outbreaks was observed during the epidemic, and approximately 700 000 pigs from these herds were slaughtered. Among these outbreaks were two artificial insemination centres, which resulted in a CSF-suspect declaration of 1680 pig herds (mainly located in the southern part of The Netherlands). The time between introduction of CSF virus (CSFV) into the country and diagnosis of CSF in the primary outbreak was estimated to be approximately 6 weeks. It is presumed that CSFV was spread from The Netherlands to Italy and Spain via shipment of infected piglets in the beginning of February 1997, before the establishment of a total stand-still of transportation. In June 1997, CSFV is presumed to be introduced into Belgium from The Netherlands.

Pre-emptive slaughter of herds that had been in contact with infected herds or were located in close vicinity of infected herds, was carried out around the first two outbreaks. However, this policy was not further exercised till mid-April 1997, when pre-emptive slaughter became a standard operational procedure for the rest of the epidemic. In total, 1286 pig herds were pre-emptively slaughtered. (approximately 1.1 million pigs). A total of 44 outbreaks (10%) was detected via pre-emptive slaughter.

When there were clinical signs, the observed symptoms in infected herds were mainly atypical: fever, apathy, ataxia or a combination of these signs. In 322 out of 429 outbreaks (75%), detection was bases on clinical signs observed: 32% was detected by the farmer, 25% by the veterinary practitioner, 10% of the outbreaks by tracing teams and 8% by screening teams of the veterinary authorities. In 76% of the outbreaks detected by clinical signs, the farmer reported to have seen clinical symptoms for less than 1 week before diagnosis, in 22% for 1–4 weeks before diagnosis, and in 4 herds (1%) the farmer reported to have seen clinical symptoms for more than 4 weeks before diagnosis.

Transportation lorries played a major role in the transmission of CSFV before the primary outbreak was diagnosed. It is estimated that approximately 39 herds were already infected before the first measures of the eradication campaign came into force.

After the first measures to stop the spread of CSFV had been implemented, the distribution of the most likely routes of transmission markedly changed. In most outbreaks, a neighbourhood infection was indicated.

Basically, there were two reasons for this catastrophe. Firstly, there was the extent of the period between introduction of the virus in the region and detection of the first outbreak. As a result, CSFV had opportunities to spread from one herd to another during this period. Secondly, the measures initially taken did not prove sufficient in the swine- and herd-dense region involved.  相似文献   


19.

Background

The aim of the present study was to investigate risk factors for herd seropositivity to Leptospira Hardjo in Irish suckler herds. Herds were considered eligible for the study if they were unvaccinated and contained ≥ 9 breeding animals of beef breed which were ≥ 12 months of age. The country was divided into six regions using county boundaries. Herd and individual animal prevalence data were available from the results of a concurrent seroprevalence study. Herds were classified as either "Free from Infection" or "Infected" based on a minimum expected 40% within-herd prevalence.Questionnaires were posted to 320 farmers chosen randomly from 6 regions, encompassing 25 counties, of the Republic of Ireland. The questionnaire was designed to obtain information about vaccination; reproductive disease; breeding herd details; the presence of recognized risk factors from previous studies; and husbandry on each farm. Data collected from 128 eligible herds were subjected to statistical analysis.

Results

Following the use of Pearson''s Chi-Square Test, those variables associated with a herd being "infected" with a significance level of P < 0.2 were considered as candidates for multivariable logistic regression modelling. Breeding herd size was found to be a statistically significant risk factor after multivariable logistic regression. The odds of a herd being positive for leptospiral infection were 5.47 times higher (P = 0.032) in herds with 14 to 23 breeding animals compared with herds with ≤ 13 breeding animals, adjusting for Region, and 7.08 times higher (P = 0.033) in herds with 32.6 to 142 breeding animals.

Conclusions

Breeding herd size was identified as a significant risk factor for leptospiral infection in Irish suckler herds, which was similar to findings of previous studies of leptospirosis in dairy herds.  相似文献   

20.
Pre-movement testing for bovine tuberculosis (BTB) was compulsory in Ireland until 1996. We determined the proportion of herd restrictions (losing BTB-free status) attributable to the recent introduction of an infected bovid; described events between restoration of BTB-free status (de-restriction) and the next herd-level test for BTB; estimated the proportion of undetected infected cattle present at de-restriction; identified high-risk movements between herds (movements most likely to involve infected cattle); and determined the potential yield of infected cattle discovered (or herds that would not lose their BTB-free status) by pre-movement testing, relative to the numbers of cattle and herds tested. We used national data for all 6252 herds with a new BTB restriction in the 12 months from 1 April 2003 and 3947 herds declared BTB-free in the 12 months from 1 October 2001. We identified higher-risk animals from our logistic generalized estimating-equation models. We attributed 6-7% of current herd restrictions to the recent introduction of an infected animal. There were considerable changes to herd structure between de-restriction and the next full-herd test, and infection was detected in 10% of herds at the first assessment (full-herd test or abattoir surveillance) following de-restriction. Following movement from a de-restricted herd, the odds of an animal being positive at the next test increased with increasing time in the source herd prior to movement, increasing time between de-restriction and the next full-herd test and increasing severity of the source herd restriction. The odds decreased with increasing size of the source herd. We estimated that 15.9 destination-herd restrictions per year could be prevented for every 10,000 cattle tested pre-movement and that 3.3 destination-herd restrictions per year could be prevented for every 100 source herds tested pre-movement. The yield per pre-movement test can be increased by focusing on high-risk movements; however, this would result in a substantial decrease in the total number of potential restrictions identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号