首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。  相似文献   

2.
基于注意力机制和多尺度残差网络的农作物病害识别   总被引:3,自引:0,他引:3  
针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其多尺度卷积核结构对不同尺度的病害特征进行提取,提高了特征的丰富度。在残差结构的基础上加入注意力机制SE-Net(Squeeze-and-excitation networks),增强了有用特征的权重,减弱了噪声等无用特征的影响,进一步提高特征提取能力并且增强了模型的鲁棒性。实验结果表明,改进后的多尺度注意力残差网络模型(Multi-Scale-SE-ResNet18)在复杂田间环境收集的8种农作物病害数据集上的平均识别准确率达到95.62%,相较于原ResNet18模型准确率提高10.92个百分点,模型占用内存容量仅为44.2MB。改进后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下农作物病害识别提供参考。  相似文献   

3.
基于优化Faster R-CNN的棉花苗期杂草识别与定位   总被引:2,自引:0,他引:2  
为解决棉花苗期杂草种类多、分布状态复杂,且与棉花幼苗伴生的杂草识别率低、鲁棒性差等问题,以自然条件下新疆棉田棉花幼苗期的7种常见杂草为研究对象,提出了一种基于优化Faster R-CNN和数据增强的杂草识别与定位方法。采集不同生长背景和天气条件下的杂草图像4694幅,对目标进行标注后,再对其进行数据增强;针对Faster R-CNN模型设计合适的锚尺度,对比VGG16、VGG19、ResNet50和ResNet101这4种特征提取网络的分类效果,选定VGG16作为最优特征提取网络,训练后得到可识别不同天气条件下的棉花幼苗与多种杂草的Faster R-CNN网络模型。试验表明,该模型可对杂草与棉花幼苗伴生、杂草分布稀疏或分布紧密且目标多等情况下的杂草进行有效识别与定位,优化后的模型对单幅图像平均识别时间为0.261s,平均识别精确率为94.21%。在相同训练样本、特征提取网络以及环境设置条件下,将本文方法与主流目标检测算法——YOLO算法和SSD算法进行对比,优化后的Faster R-CNN模型具有明显优势。将训练好的模型置于田间实际环境进行验证试验,识别过程对采集到的150幅有效图像进行了验证,平均识别精确率为88.67%,平均每幅图像耗时0.385s,说明本文方法具有一定的适用性和可推广性。  相似文献   

4.
互联网是一个巨大的资源库,也是一个丰富的知识库。针对农作物小样本引起的过拟合问题,本研究引入了知识迁移和深度学习的方法,采用互联网公开的ImageNet图像大数据集和PlantVillage植物病害公共数据集,以实验室的黄瓜和水稻病害数据集AES-IMAGE为对象开展相关的研究与试验。首先将批归一化算法应用于卷积神经网络CNN中的AlexNet和VGG模型,改善网络的过拟合问题;再利用PlantVillage植物病害数据集得到预训练模型,在改进的网络模型AlexNet和VGG模型上用AES-IMAGE对预训练模型参数调整后进行病害识别。最后,使用瓶颈层特征提取的迁移学习方法,利用ImageNet大数据集训练出的网络参数,将Inception-v3和Mobilenet模型作为特征提取器,进行黄瓜和水稻病害特征提取。本研究结合试验结果探讨了适用于农作物病害识别问题的最佳网络和对应的迁移策略,表明使用VGG网络参数微调的策略可获得的最高准确率为98.33%,使用Mobilenet瓶颈层特征提取的策略可获得96.8%的验证准确率。证明CNN结合迁移学习可以利用充分网络资源来克服大样本难以获取的问题,提高农作物病害识别效率。  相似文献   

5.
果实识别是视觉检测技术重要的环节,其识别精度易受复杂的生长环境及果实状态的影响。以大棚环境下单个、一簇、光照、阴影、遮挡、重叠6种复杂生长状态下的番茄果实为对象,提出一种基于改进YOLOv4网络模型与迁移学习相结合的番茄果实识别方法。首先利用ImageNet数据集与VGG网络模型前端16卷积层进行模型参数预训练,将训练的模型参数初始化改进模型的权值以代替原始的初始化操作,然后使用番茄数据集在VGG19的卷积层与YOLOV4的主干网络相结合的新模型中进行训练,获得最优权重实现对复杂环境下的番茄果实进行检测。最后,将改进模型与Faster RCNN、YOLOv4-Tiny、YOLOv4网络模型进行比较。研究结果表明,改进模型在6种复杂环境下番茄果实平均检测精度值mAP达到89.07%、92.82%、92.48%、93.39%、93.20%、93.11%,在成熟、半成熟、未成熟3种不同成熟度下的F1分数值为84%、77%、85%,其识别精度优于比较模型。本文方法实现了在6种复杂环境下有效地番茄果实检测识别,为番茄果实的智能采摘提供理论基础。  相似文献   

6.
植物病害是造成农作物减产的主要原因之一。针对传统的人工诊断方法存在成本高、效率低等问题,构建了一个自然复杂环境下的葡萄病害数据集,该数据集中的图像由农民在实际农业生产中拍摄,同时提出了一个新的网络模型MANet,该模型可以准确地识别复杂环境下的葡萄病害。在MANet中嵌入倒残差模块来构建网络,这极大降低了模型参数量和计算成本。同时,将注意力机制SENet模块添加到MANet中,提高了模型对病害特征的表示能力,使模型更加注意关键特征,抑制不必要的特征,从而减少图像中复杂背景的影响。此外,设计了一个多尺度特征融合模块(Multi-scale convolution)用来提取和融合病害图像的多尺度特征,这进一步提高了模型对不同病害的识别精度。实验结果表明,与其他先进模型相比,本文模型表现出了优越的性能,该模型在自建复杂背景病害数据集上的平均识别准确率为87.93%,优于其他模型,模型参数量为2.20×106。同时,为了进一步验证该模型的鲁棒性,还在公开农作物病害数据集上进行了测试,该模型依然表现出较好的识别效果,平均识别准确率为99.65%,高于其他模型。因此,本文模型...  相似文献   

7.
基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别   总被引:2,自引:0,他引:2  
为了提高猕猴桃采摘机器人的工作效率和对猕猴桃复杂生长环境的适应性,识别广域复杂环境下相互遮挡的猕猴桃目标,采用Im-AlexNet为特征提取层的Faster R-CNN目标检测算法,通过迁移学习微调AlexNet网络,修改全连接层L6、L7的节点数为768和256,以解决晴天(白天逆光、侧逆光)、阴天及夜间补光条件下的广域复杂环境中猕猴桃因枝叶遮挡或部分果实重叠遮挡所导致的识别精度较低等问题。采集广域复杂环境中晴天逆光、晴天侧逆光、阴天和夜间补光条件下存在遮挡情况的4类样本图像共1 823幅,建立试验样本数据库进行训练并测试。试验结果表明:该方法对晴天逆光、晴天侧逆光、阴天和夜间补光条件下存在遮挡情况的图像识别精度为96. 00%,单幅图像识别时间约为1 s。在相同数据集下,Im-AlexNet网络识别精度比LeNet、AlexNet和VGG16 3种网络识别精度的平均值高出5. 74个百分点。说明该算法能够降低猕猴桃果实漏识别率和误识别率,提高了识别精度。该算法能够应用于猕猴桃采摘机器人对广域复杂环境下枝叶遮挡或部分果实重叠遮挡的准确识别。  相似文献   

8.
为在仅有少量训练样本条件下获得较高的植物病害分类精度,采用小样本学习模型作为病害分类器,在匹配网络、原型网络和关系网络3种典型小样本学习算法框架下分别采用Conv4、Conv6、ResNet10、ResNet18和ResNet34 5种浅层网络作为特征提取网络,在PlantVillage植物病害数据集上对病害识别性能进行对比试验。在1shot条件下,匹配网络、原型网络和关系网络对植物叶片病害识别的平均准确率分别为72.29%、72.43%和69.45%;其中原型网络+ResNet34为表现最好的组合,病害识别准确率达到了77.60%。在5shot条件下,匹配网络、原型网络和关系网络平均准确率分别为87.11%、87.50%和82.92%,各种网络病害识别准确率比1shot条件均有明显提升;原型网络+ResNet34依旧是表现最佳的组合方式,识别准确率达到89.66%。上述试验结果表明,通过优选小样本学习框架和特征提取网络的组合方式,对于少量样本的病害也能取得较好的识别效果。  相似文献   

9.
针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂草图像5 370张.为确保样本质量以及多样性,利用颜色迁移和数据增强来提高图像的颜色特征与扩大样本量,以PASCAL VOC格式数据集进行网络模型训练.通过综合对比VGG16,VGG19,ResNet50和ResNet101这4种网络的识别时间与精度,选择VGG16网络训练Faster R-CNN模型.在此基础上设计了纵横比为1∶1的最佳锚尺度,在该模型下对新疆棉花幼苗与杂草进行识别,实现91.49%的平均识别精度,平均识别时间262 ms.为农业智能精确除草装备的研发提供了参考.  相似文献   

10.
基于迁移学习的农作物病虫害检测方法研究与应用   总被引:3,自引:0,他引:3  
为了提高农作物病虫害严重程度(健康、一般、严重)的分类效果,采用迁移学习方式并结合深度学习提出了一种基于残差网络(ResNet 50)的CDCNNv2算法。通过对10类作物的3万多幅病虫害图像进行训练,获得了病虫害严重程度分类模型,其识别准确率可达91.51%。为了验证CDCNNv2模型的鲁棒性,分别与使用迁移学习的ResNet 50、Xception、VGG16、VGG19、DenseNet 121模型进行对比试验,结果表明,CDCNNv2模型比其他模型的平均精度提升了2.78~10.93个百分点,具有更高的分类精度,病虫害严重程度识别的鲁棒性增强。基于该算法所训练的模型,结合Android技术开发了一款实时在线农作物病虫害等级识别APP,通过拍摄农作物叶片病虫害区域图像,能够在0.1~0.5s之内获取识别结果(物种-病害种类-严重程度)及防治建议。  相似文献   

11.
传统深度学习模型在用于蔬菜病害图像识别时,存在由于网络梯度退化导致的识别性能下降问题。为此,本文研究了一种基于深度残差网络模型的番茄叶片病害识别方法。该方法首先利用贝叶斯优化算法自主学习网络中难以确定的超参数,降低了深度学习网络的训练难度。在此基础上,通过在传统深度神经网络中添加残差单元,解决了由于梯度爆炸/消失造成的过深层次病害识别网络模型性能下降的问题,能够实现番茄叶片图像的高维特征提取,根据该特征可进行有效病害鉴定。试验结果表明,本研究中基于超参数自学习构建的深度残差网络模型在番茄病害公开数据集上取得了良好的识别性能,对白粉病、早疫病、晚疫病和叶霉病等4种番茄叶片常见病害的识别准确率达到95%以上。本研究可为快速准确识别番茄叶片病害提供参考。  相似文献   

12.
基于Faster R-CNN的田间西兰花幼苗图像检测方法   总被引:4,自引:0,他引:4  
为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性,并通过数据增强手段扩大样本量,制作PASCAL VOC格式数据集。针对此数据集训练Faster R-CNN模型,通过设计ResNet101、ResNet50与VGG16网络的对比试验,确定ResNet101网络为最优特征提取网络,其平均精度为90. 89%,平均检测时间249 ms。在此基础上优化网络超参数,确定Dropout值为0. 6时,模型识别效果最佳,其平均精度达到91. 73%。结果表明,本文方法能够对自然环境下的西兰花幼苗进行有效检测,可为农业智能除草作业中的作物识别提供借鉴。  相似文献   

13.
针对复杂环境下番茄叶部图像因其背景复杂导致病害识别较为困难,以温室大棚内采集的番茄叶部图像作为研究对象,对番茄白粉病、早疫病和斑潜蝇三种常见病虫害,提出一种结合颜色纹理特征的基于支持向量机(SVM)的CCL-SVM的复杂环境番茄叶部图像病害识别方法。CCL-SVM方法为实现小样本及复杂背景环境下的快速识别,首先采用滑动窗口将原始番茄叶部病害图像切割成小区域图像,选取不包含背景的小区域图像样本作为试验样本,从而实现样本数量和样本多样性的增加,并降低样本复杂背景的影响。通过对样本数据抽取颜色纹理特征(CCL),采用SVM模型对番茄早疫病、白粉病、斑潜蝇和健康叶片分类识别。试验结果表明,提出的CCL-SVM方法比Gray-SVM对番茄叶片病害种类的识别性能得到大幅提升,识别率从60.63%提升到97.5%;CCL-SVM方法识别精度高于对比的深度学习网络VGG16和Alexnet方法,且每个小区域图像的平均测试时间远低于深度学习网络。本文设计的CCL-SVM方法具有减小复杂背景影响,计算量小及系统要求低的优点,为复杂环境下番茄病害快速识别提供一种新的思路。  相似文献   

14.
针对现阶段特征提取网络当测试样本出现歪斜、模糊、缺损等变化时识别效果不够理想,利用训练样本扩充、变换、缩放等方式改善网络性能并不能动态地满足实际的复杂病害图像识别任务的问题,在ResNet50中引入双层注意力机制与通道特征提取机制,设计基于全局特征提取的深度学习网络(Global feature deep learning network,GFDL-Net),该网络包括通道特征提取子网络(Squeeze and excitation net,SE-Net)和双注意力特征提取子网络(Double feature extraction net,DFE-Net),分别从通道空间特征提取与平面关键点特征提取两方面改善了网络的全局特征提取能力。为了验证GFDL-Net的有效性,对辣椒、马铃薯、番茄等15种病害图像加入不同角度的旋转、色彩变换等测试,发现在样本加入旋转后与ResNet50、BoTNet、EfficientNet相比,平均识别准确率分别高出20.05、18.62、21.97个百分点;加入明暗度、饱和度、对比度变换后与ResNet50、BoTNet、 EfficientNet相比,平均识别准确率分别高出3.57、0.53、3.98个百分点,而识别速度分别为ResNet50、BoTNet、EfficientNet的4.4、4.9、2.0倍。试验证明GFDL-Net在图像全局特征提取能力方面的改进能有效提升网络的泛化能力与鲁棒性,可将其应用于解决变化样本的农作物病害识别任务中。  相似文献   

15.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

16.
作物病害的初期快速准确识别是减小作物经济损失的重要保障。针对实际生产环境中,作物叶片黄化曲叶病毒病(Yellow leaf curl virus,YLCV)患病初期无法应用传统图像处理算法通过颜色或纹理特征进行准确和快速识别,并且YOLO v5s通用模型在复杂环境下识别效果差和效率低的问题,本文提出一种集成改进的叶片病害检测识别方法。该方法通过对Plant Village公开数据集中单一患病叶片图像以及实际生产中手机拍摄获取的患病作物冠层图像两种来源制作数据集,并对图像中的患病叶片进行手动标注等操作,以实现在复杂地物背景和叶片遮挡等情况下正确识别目标,即在健康叶片、患病叶片、枯萎叶片、杂草和土壤中准确识别出所有的患病叶片。此外,用智能手机在生产现场拍摄图像,会存在手机分辨率、光线、拍摄角度等多种因素,会导致识别正确率降低等问题,需要对采集到的图像进行预处理和数据增强以提高模型识别率,通过对YOLO v5s原始模型骨干网络重复多次增加CA注意力机制模块(Coordinate attention),增强YOLO算法对关键信息的提取能力,利用加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),增强模型不同特征层的融合能力,从而提高模型的泛化能力,替换损失函数EIoU(Efficient IoU loss),进一步优化算法模型,实现多方法叠加优化后系统对目标识别性能的综合提升。在相同试验条件下,对比YOLO v5原模型、YOLO v8、Faster R-CNN、SSD等模型,本方法的精确率P、召回率R、平均识别准确率mAP0.5、mAP0.5:0.95分别达到97.40%、94.20%、97.20%、79.10%,本文所提出的算法在提高了精确率与平均精度的同时,保持了较高的运算速度,满足对作物黄化曲叶病毒病检测的准确性与时效性的要求,并为移动端智能识别作物叶片病害提供了理论基础。  相似文献   

17.
现有基于深度学习的农作物病害识别方法对网络浅层、中层、深层特征中包含的判别信息挖掘不够,且提取的农作物病害图像显著性特征大多不足,为了更加有效地提取农作物病害图像中的判别特征,提高农作物病害识别精度,提出一种基于多层信息融合和显著性特征增强的农作物病害识别网络(Crop disease recognition network based on multi-layer information fusion and saliency feature enhancement, MISF-Net)。MISF-Net主要由ConvNext主干网络、多层信息融合模块、显著性特征增强模块组成。其中,ConvNext主干网络主要用于提取农作物病害图像的特征;多层信息融合模块主要用于提取和融合主干网络浅层、中层、深层特征中的判别信息;显著性特征增强模块主要用于增强农作物病害图像中的显著性判别特征。在农作物病害数据集AI challenger 2018及自制数据集RCP-Crops上的实验结果表明,MISF-Net的农作物病害识别准确率分别达到87.84%、95.41%,F1值分别达到87.72%、95....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号