首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
油葵收获割台工作性能仿真及试验研究   总被引:2,自引:0,他引:2  
为研究油葵收获割台在工作过程中的性能与可靠性,得到该割台正常工作时的关键参数,利用SOLIDWORKS对割台进行三维参数化建模并导入ADAMS中进行运动学仿真,得到收获时茎秆受力和摆动程度的仿真结果并进行正交组合分析,仿真和分析结果表明:割台正常工作最优参数的组合是拉茎辊转速800 r/min、机器的行驶速度2.12 km/h、拉茎间隙10 mm、拉茎辊的倾角20°,同时往复切割刀的切割速度2 m/s时茎秆的受力最小,通过田间试验发现整个收获过程籽粒损失率≤3%,喂入输送绞龙的茎秆较短,收获可靠性较好,结果表明该割台适合油葵的机械化收获。  相似文献   

2.
针对目前油葵收获难度大,现有割台收获效率低、丢盘及含杂率较高等问题,结合油葵种植特点,设计出一种基于螺旋拉茎辊采盘割台。阐述了割台整体设计方案和主要技术参数,并对其关键部件结构设计。同时,分析了拉茎辊、切割装置、螺旋输送器等转速与功率,验证了机构设计的合理性。田间试验结果表明:割台运行流畅,收获率为96.5%,含杂率为4.1%,收获效率较高,满足采收作业要求。该研究可解决油葵收获存在的问题,可为油葵联合收割机割台结构优化及作业参数确定提供参考。  相似文献   

3.
针对目前我国油葵收获机械化程度低,严重依赖人工导致效率低、劳动强度高等问题,结合华北油葵的种植模式,设计了一种油葵收获割台,确定了割台的整体方案及工作方式。该割台主要由机架、分禾器、拉茎辊、拨禾喂入装置、葵盘接穗装置和输送搅龙等组成,能够实现下拉并切割茎秆,减轻葵盘与接穗板间的撞击,减少籽粒的损失,最终只收获葵盘和与其连接的少许茎秆。田间试验结果表明:割台工作稳定,工作性能满足油葵收获的需求。同时,就割台在收获过程中存在的问题进行总结分析并提出相应解决措施,为油葵割台的后续研发提供了理论基础和应用实例。  相似文献   

4.
基于有效降低玉米收获机板式摘穗割台的损失率和断茎秆率,寻找拉茎辊转速、割台高度和机器前进速度3个作业参数的最优匹配值,应用SAS软件对3因素进行了响应面设计和分析,并结合ANSYS软件分析玉米秸秆在拉茎辊中径向压缩和弯曲变形。研究结果表明:在搜索半径为1时,损失率岭脊分析的最大和最小响应值为5.19%和2.36%,损失率和断茎秆率的回归模型决定系数分别为0.84和0.9;断茎秆率岭脊分析的最大和最小值分别为14.3%和10.3%。与长轴方向相比,短轴方向的压缩极容易把玉米秸秆掐断,导致秸秆堵塞在割台上的概率增大。试验结果为玉米机械化收获技术的发展提供了理论基础。   相似文献   

5.
大田玉米收获机收获制种玉米时容易产生伤穗落籽、杂物堵塞等现象,本文针对适收期制种玉米生物特性,设计了一种大型制种玉米联合收获机,采用小行距对行柔性板式摘穗割台和可替换组合式剥皮装置,确保低损摘穗、输送、剥皮作业,降低籽粒损失与损伤;其中割台上方配备钢质覆胶弧形摘穗板,“橡胶+钢质”夹持输送链和六棱低速拉茎辊,可替换组合式剥皮装置采用柔性破皮+揉搓+降速组合形式。通过Plackett-Burman试验设计筛选提取影响机具指标的主要因素,采用Box-Behnken试验设计原理,以机具前进速度、拉茎辊转速和剥皮辊转速为试验因素,以总损失率与含杂率为性能指标,通过田间试验对机具进行检验,优化得出机具最佳作业参数。试验结果表明,优化后,当机具前进速度为4.87km/h、拉茎辊转速为877.27r/min、剥皮辊转速为442.52r/min时,果穗总损失率为1.61%,含杂率为0.55%。田间试验结果表明,当收获机前进速度为4.9km/h、拉茎辊转速为880r/min、剥皮辊转速为450r/min时,果穗总损失率为1.64%,含杂率为0.57%,满足制种玉米机械化联合收获的作业要求,可为制种玉米联合收获机设计与试验提供参考。  相似文献   

6.
针对国内制种玉米种穗缺少相应的收获机,而制种玉米收获劳动强度大,现有玉米收获机的果穗损失率、落地籽粒损失率等技术指标不能满足使用要求等问题,设计了对中拉茎切柄、柔性摘穗、快速清种制种玉米种穗收获机。简述了整机结构和工作原理,对关键部件进行了理论分析、设计计算和选型,通过田间试验对该机的可靠性和实用性进行验证。以割台拉茎辊转速、前进速度、排杂风机转速作为试验因素,以果穗损失率和落地籽粒损失率为性能指标,进行了三因素三水平正交试验,通过方差分析获得最优参数组合为前进速度4.83km/h、割台拉茎辊转速788r/min、排杂风机转速1200r/min,此时果穗损失率为1.83%,落地籽粒损失率为1.01%。将对应参数进行试验验证,得到验证试验结果为:果穗损失率1.85%,落地籽粒损失率1.01%。优化结果与验证试验结果基本一致,整机各项性能指标满足使用要求。  相似文献   

7.
油葵联合收获机专用割台设计与试验   总被引:1,自引:0,他引:1  
针对国内现有油葵联合收获机割台存在的物料堵塞、堆积以及因拨禾轮回带导致的葵盘无法进入割台等问题,结合我国油葵种植模式和农艺要求,设计了一种拨禾轮式油葵联合收获机专用割台。对分禾过程中油葵茎秆的姿态进行分析,确定了内分禾器宽度、长度和内分禾器间隙;选取不同拨禾速比λ,对拨禾轮运动轨迹进行仿真分析,确定了拨禾速比取值范围,并得出拨禾轮的最优直径和转速;为降低输送器输送时拨指对葵盘的击打和油葵茎秆的缠绕,设计了刮板式输送器;为保证良好的切割效果,基于刀机速比γ,确定了往复式切割器切割速度。在新疆维吾尔自治区阜康市河南庄子村进行了油葵收获田间试验,当整机前进速度为0.8 m/s时,喂入量为3.3 kg/s,割台平均损失率仅为1.42%,整机作业效率0.69 hm~2/h。收获作业过程中整机运行平稳,割台收获过程无堵塞、无缠绕,满足油葵联合收获机割台的设计要求。  相似文献   

8.
拨禾链式油葵割台静态滑切角恒定切割器设计与试验   总被引:3,自引:0,他引:3  
针对油葵缺乏适用切割器的问题,设计了拨禾链式油葵割台切割器。在阐述拨禾链式油葵割台切割器结构和工作原理的基础上,对滑切角恒定刀刃进行设计,确定了影响切割性能的关键结构与工作参数。对切割过程中植株受力和植株滑切过程功耗进行分析,确定了滑切角的选用范围;对割刀运动轨迹进行分析,明确了割刀转速范围;对植株几何切割位置进行分析,推导得出割刀安装位置范围。通过单因素试验得出,在滑切角为50°~70°、割刀转速为750~1 050 r/min、相对位置为100~300 mm范围内时,切割器功耗低、落粒损失率小。通过二次正交旋转试验构建了转速、滑切角、相对位置与功耗、落粒损失率的回归方程,优化得出较优作业参数为:滑切角61°、转速750 r/min、相对位置180 mm,此时对应功耗最小值为64.08 W,落粒损失率最小值为1.24%。为了验证该参数组合的准确性,进行了台架试验,结果表明,实际切割功耗为66.12 W,实际落粒损失率为1.28%,与预测值的误差在5%以内,该切割器满足油葵低损失切割要求。  相似文献   

9.
<正>一、工作原理当玉米收获机沿行间行走时,分禾器将玉米植株引向摘穗部件,由拉茎辊中的导锥将其抓取,导入拉茎辊间隙中由拨禾链作用向后移动,同时左右拉茎辊反转,夹持茎秆向下运动,使整个玉米植株通过两摘穗板间隙,将果穗摘脱。摘脱的果穗再由拨禾链送入割台搅龙。割台搅龙将摘脱的果穗及断秸秆从左向右推送,输送到前升运器,在升运器链耙及拨草轮作用下未剥苞叶的果穗及断秸秆被向上输送,长的秸秆被升运器上部拉  相似文献   

10.
4LZ-3型自走式玉米联合收获机摘穗台工作参数的确定   总被引:1,自引:0,他引:1  
介绍了在4LZ型自走式玉米联合收割机的设计中摘穗台工作参数的确定。经计算拉茎辊长度为658m m,拉茎辊工作倾角为22°,拨禾链线速度为1.369m/s,拉茎辊圆周线速度为4.87m/s,拉茎辊同时拉茎秆株数为2株,上述参数满足了生产要求。  相似文献   

11.
为解决果树枝粉碎还田问题,设计了一种9 ZFS-350型履带式自走剪枝粉碎机.首先,阐述了该机的整体结构和工作原理;然后,根据理论分析及前期试验确定以喂入量、粉碎转速、导流板倾角为试验因素,粉碎合格率为目标值,利用Design-expert数据处理软件对其目标值进行响应面优化分析.分析表明:影响目标值的显著顺序为粉碎转...  相似文献   

12.
针对食葵机械化收获过程割台损失大、葵盘输送过程籽粒表皮易划伤、脱粒过程籽粒破损严重等问题,根据食葵生物力学特性、种植模式及机械化收获要求,在传统割台的基础上增设脱粒装置,设计了集分禾、扶禾、拨禾、切割、输送及脱粒等功能于一体的食葵联合收获割台装置,葵盘在割台上实现脱粒,有效缩短了葵盘输送路径,为后续提高清选质量奠定基础。为降低割台损失,依据适收期食葵植株姿态,设计了一种不对行拨杆式拨禾轮,并设计了侧边倾角30°的分禾器,同时在相邻分禾器之间增加软毛刷收集碰撞飞溅籽粒;为减少脱粒过程籽粒破损,设计一种轴流螺旋滚筒式脱粒装置;基于物料抛送过程动力学和运动学分析,得出螺旋输送器拨板安装倾角为18°时葵盘较顺畅进入脱粒装置。为验证割台结构设计的可行性,开展了田间试验,结果表明,留茬高度为700 mm时,联合收获机在1.21~2.11 m/s范围内5组不同速度条件下进行田间作业,割台损失率不大于3%、未脱净率不大于2%、破损率不大于3%,均能够满足食葵收获要求。  相似文献   

13.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

14.
切流式油葵脱粒筛分机设计与试验   总被引:3,自引:0,他引:3  
针对油葵脱粒生产中存在的油葵籽粒含杂率、损失率高等问题,设计了一种切流式油葵脱粒筛分机。利用RecurDyn软件建立了振动筛动力学模型,以筛面质心点为对象分析了筛面运动规律。结果表明,该振动筛的运动有利于油葵籽粒向前输送和分散,可有效避免堆积堵塞现象。通过单因素试验确定了滚筒转速、喂入量、预设脱粒间隙的取值范围;以滚筒转速、喂入量、预设脱粒间隙为试验因素,油葵籽粒含杂率、损失率为评价指标,设计Box-Behnken试验,运用Design-Expert 10.0.7软件对Box-Behnken试验结果进行方差分析,建立了评价指标与试验因素的回归模型。以降低油葵籽粒含杂率、损失率为目标,对滚筒转速、喂入量、预设脱粒间隙进行多目标寻优求解,获得了较优工作参数组合:滚筒转速264 r/min、喂入量1.9 kg/s、预设脱粒间隙36 mm。脱粒试验结果表明,油葵籽粒含杂率、损失率分别为1.94%、2.64%,满足脱粒要求。  相似文献   

15.
为准确把握农机事故的风险程度,探究农机事故发生原因和规律,有效预防农机产品在工作过程中各种事故的发生.通过将事故树分析法与三角模糊理论相结合来构建模糊事故树模型,对造成农机事故的因素进行分析研究,结果如下:通过事故树分析推断出造成农机事故的已知原因和潜在原因共23个,求解出57个最小割集和3个最小径集;利用三角模糊理论...  相似文献   

16.
为提高新疆地区食葵收获机械化水平,针对插盘晾晒、分段收获人工成本高、劳动强度大等问题,模仿人工收获工作原理设计一款柔性带式食葵取盘收获机,该机主要部件为模拟人工双手取盘的柔性带式取盘装置和模拟人工敲击葵盘的脱粒装置。根据葵盘的物理特性和取盘的运动过程分析,确定取盘装置中输送带带宽为130 mm、葵秆与竖直方向夹角为11.7°、脱粒辊直径为80 mm、脱粒辊间的间距为170 mm。依据Box Benhnken的中心组合试验方法,以机具行进速度、脱粒辊转速及脱粒辊转差率为试验因素,籽粒损失率为试验指标,开展试验。结果表明:各因素对损失率显著顺序依次为脱粒辊转速、机具行进速度、脱粒辊转差率,最优组合为机具行进速度0.32 m/s、脱粒辊转速400 r/min及脱粒辊转差率016,该参数组合下食葵籽粒损失率为2.97%,所设计的机具基本达到低损收获的设计要求,为插盘式食葵机械收获技术提供参考。  相似文献   

17.
为了解决针对型孔轮式排种器播量调节困难的问题,在偏心轮型孔轮式排种器的基础上,设计了一种由型孔轮和调节环(舌)组成的变容量型孔轮式排种器,以排种器的转速、调节舌类型、播量调节档位、行进速度、调节舌宽度为变量对油菜种子进行了单因素和多因素试验。试验结果表明:影响排种均匀性、各行排量一致性和种子破碎率的主要因素为排种器的转速、调节舌类型和型孔大小。变容量型孔轮式排种器的转速以30~50 r/min为宜,调节舌类型凹圆头优于平头,型孔长度增大对提高排种均匀性和各行排量一致性及降低破碎率有利。在所设计的结构尺寸条件下,该排种器适应于各类小粒度种子的条播。  相似文献   

18.
针对现有马铃薯茎叶切碎机作业茎秆打碎长度合格率低、带薯率高、工作效率低等问题,设计了一种全垄仿形式茎叶切碎刀辊,对刀具工作过程进行分析,建立刀具运动、刀具-茎秆碰撞和茎秆捡拾数学模型,明确影响装置工作性能主要参数,完成全垄仿形式茎叶切碎刀辊总体结构与茎叶切碎刀具设计。采用三因素五水平二次回归正交旋转中心组合试验方法,以作业速度、刀辊转速、刀辊离地距离为试验因素,打碎长度合格率、带薯率为评价指标,应用Design-Expert 8.0.6.1软件进行试验数据处理与参数组合优化,结果表明,各因素对打碎长度合格率均具有显著性影响,影响由大到小依次为刀辊转速、作业速度、刀辊离地距离;各因素对带薯率均具有显著性影响,影响由大到小依次为刀辊离地距离、刀辊转速、作业速度。在刀辊转速为1 450 r/min、作业速度为3.5~6.7 km/h、刀辊离地距离为285~317 mm时,打碎长度合格率大于90%,带薯率小于等于0.3%。本研究结果为马铃薯茎叶切碎机具作业质量和效率提升提供了设计理论与技术支持。  相似文献   

19.
针对现有马铃薯茎叶切碎机作业茎秆打碎长度合格率低、带薯率高、工作效率低等问题,设计了一种全垄仿形式茎叶切碎刀辊,对刀具工作过程进行分析,建立刀具运动、刀具-茎秆碰撞和茎秆捡拾数学模型,明确影响装置工作性能主要参数,完成全垄仿形式茎叶切碎刀辊总体结构与茎叶切碎刀具设计。采用三因素五水平二次回归正交旋转中心组合试验方法,以作业速度、刀辊转速、刀辊离地距离为试验因素,打碎长度合格率、带薯率为评价指标,应用Design-Expert 8.0.6.1软件进行试验数据处理与参数组合优化,结果表明,各因素对打碎长度合格率均具有显著性影响,影响由大到小依次为刀辊转速、作业速度、刀辊离地距离;各因素对带薯率均具有显著性影响,影响由大到小依次为刀辊离地距离、刀辊转速、作业速度。在刀辊转速为1450r/min、作业速度为3.5~6.7km/h、刀辊离地距离为285~317mm时,打碎长度合格率大于90%,带薯率小于等于0.3%。本研究结果为马铃薯茎叶切碎机具作业质量和效率提升提供了设计理论与技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号