首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Objective

To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation.

Study design

Randomized, prospective clinical study.

Animals

In total, 41 calves scheduled for elective umbilical surgery.

Methods

Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg?1) and butorphanol (0.1 mg kg?1) intramuscularly and 10 minutes later lidocaine (2 mg kg?1; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg?1) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg?1) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups.

Results

The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5–4.5) mg kg?1 and 3.5 (2.5–3.5) mg kg?1, respectively, nor the induction quality differed significantly between the groups.

Conclusion and clinical relevance

A bolus of lidocaine (2 mg kg?1) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured.  相似文献   

2.

Objective

To determine the dose of cis-atracurium needed to produce a moderate neuromuscular blockade (NMB) in pigs.

Study design

Prospective experimental study.

Animals

Seven pigs [five females and two males; median (range) body weight: 47 (36–64) kg].

Methods

Pigs were premedicated with intramuscular midazolam (0.3 mg kg?1) and ketamine (7 mg kg?1). Anaesthesia was induced with intravenous (IV) propofol 3 (1–4) mg kg?1 and maintained with isoflurane in oxygen. Based on a preliminary study, the subjects were administered 0.3 mg kg?1 cis-atracurium followed by 0.48 mg kg?1 hour?1 constant rate infusion (CRI) IV. A moderate NMB was defined as a train-of-four (TOF) count of ≤2 by acceleromyography. When the TOF count was >2, 0.1 mg kg?1 cis-atracurium was administered and the CRI was increased. The cis-atracurium CRI was decreased when the TOF count was under 2 for more than 15 minutes. The total dose of cis-atracurium required to maintain a moderate NMB was calculated as the total amount of cis-atracurium used (both CRI and supplementary boluses) divided by the administration time.

Results

The cis-atracurium CRI lasted for 87 (76–151) minutes. To induce and maintain a moderate neuromuscular blockade, the initial dose of cis-atracurium was 0.3 (0.3– 0.5) mg kg?1 and the CRI was 0.71 (0.37–0.98) mg kg?1 hour?1.

Conclusions and clinical relevance

The doses described in our study may help researchers obtain a moderate NMB using cis-atracurium in pigs.  相似文献   

3.
4.

Objective

To investigate the sedative effects in dogs of tiletamine–zolazepam–acepromazine (TZA) or ketamine–flunitrazepam (KF) administered orally and to evaluate the effectiveness of encapsulated TZA for capturing free-roaming dogs.

Study design

Experimental study followed by a field trial.

Animals

Six research dogs and 27 free-roaming dogs.

Methods

In a pilot study, six research dogs were administered liquid TZA (20 mg kg?1 tiletamine–zolazepam and 2 mg kg?1 acepromazine) or liquid KF (50 mg kg?1 ketamine and 2 mg kg?1 flunitrazepam) orally: treatment 1, forcefully squirting liquid medication into the mouth; treatment 2, encapsulating liquid medication for administration in canned food; treatment 3, administering liquid medication mixed with gravy. Sedation was scored. A follow-up field trial attempted capture of 27 free-roaming dogs.

Results

In the pilot study, the median time (range) to lateral recumbency (% dogs) after TZA administration was: treatment 1, 47.5 (35–80) minutes (67%); treatment 2, 30 (15–65) minutes (83%); and treatment 3, 75 (45–110) minutes (100%). No dogs in KF treatment 2 or 3 achieved lateral recumbency. Based on these results, 20 free-roaming dogs were offered encapsulated TZA in canned food: TZ (20 mg kg?1) and acepromazine (2 mg kg?1). Of these, no further drugs to four dogs (one dog captured), 10 dogs were administered a second dose within 30 minutes (five dogs captured) and six dogs were administered TZ (5 mg kg?1) and xylazine (1.1–2.2 mg kg?1) intramuscularly by blow dart (six dogs captured). Seven dogs were initially offered twice the TZA dose (five dogs captured). In total, 63% free-roaming dogs were captured after administration of encapsulated TZA in canned food.

Conclusions and clinical relevance

Oral administration of encapsulated TZA in canned dog food can aid in the capture of free-roaming dogs, but additional drugs may be required. The sedation onset time and medication palatability influenced the capture rate.  相似文献   

5.

Objective

The evaluation of alfaxalone as a premedication agent and intravenous anaesthetic in pigs.

Study design

Prospective, clinical trial.

Animals

Nine healthy, 6–8-week-old female Landrace pigs weighing 22.2 ± 1.0 kg, undergoing epidural catheter placement.

Methods

All pigs were premedicated with 4 mg kg?1 alfaxalone, 40 μg kg?1 medetomidine and 0.4 mg kg?1 butorphanol administered in the cervical musculature. Sedation was subjectively scored by the same observer from 1 (no sedation) to 10 (profound sedation) prior to induction of anaesthesia with alfaxalone intravenously to effect. All pigs were maintained on alfaxalone infusions with the rate of administration adjusted to maintain appropriate anaesthetic depth. Quality of induction was scored from 1 (poor) to 3 (smooth) and basic cardiorespiratory variables were recorded every 5 minutes during anaesthesia. Results are reported as mean ± standard deviation or median (range) as appropriate.

Results

Sedation scores were 9 (7–10). Inductions were smooth in all pigs and cardiovascular variables remained within normal limits for the duration of anaesthesia. The induction dose of alfaxalone was 0.9 (0.0–2.3) mg kg?1. Three pigs did not require additional alfaxalone after premedication to facilitate intubation.

Conclusions and clinical relevance

Intramuscular alfaxalone in combination with medetomidine and butorphanol produced moderate to deep sedation in pigs. Alfaxalone produced satisfactory induction and maintenance of anaesthesia with minimal cardiovascular side effects. Appropriate monitoring of pigs premedicated with this protocol is required as some pigs may become anaesthetized after intramuscular administration of this combination of drugs.  相似文献   

6.
7.

Objective

To assess quality of sedation following intramuscular (IM) injection of two doses of alfaxalone in combination with butorphanol in cats.

Study design

Prospective, randomized, ‘blinded’ clinical study.

Animals

A total of 38 cats undergoing diagnostic imaging or noninvasive procedures.

Methods

Cats were allocated randomly to be administered butorphanol 0.2 mg kg?1 combined with alfaxalone 2 mg kg?1 (group AB2) or 5 mg kg?1 (group AB5) IM. If sedation was inadequate, alfaxalone 2 mg kg?1 IM was administered and cats were excluded from further analysis. Temperament [1 (friendly) to 5 (aggressive)], response to injection, sedation score at 2, 6, 8, 15, 20, 30, 40, 50 and 60 minutes, overall sedation quality scored after data collection [1 (excellent) to 4 (inadequate)] and recovery quality were assessed. Heart rate (HR), respiratory rate (fR) and arterial haemoglobin saturation (SpO2) were recorded every 5 minutes. Groups were compared using t tests and Mann–Whitney U tests. Sedation was analysed using two-way anova, and additional alfaxalone using Fisher's exact test (p < 0.05).

Results

Groups were similar for sex, age, body mass and response to injection. Temperament score was lower in group AB2 [2 (1–3)] compared to AB5 [3 (1–5)] (p = 0.006). Group AB5 had better sedation at 6, 8, 20 and 30 minutes and overall sedation quality was better in AB5 [1 (1–3)], compared to AB2 [3 (1–4)] (p = 0.0001). Additional alfaxalone was required for 11 cats in AB2 and two in AB5 (p = 0.005). Recovery quality, HR, fR and SpO2 were similar. Seven cats required oxygen supplementation. Complete recovery times were shorter in AB2 (81.8 ± 24.3 versus 126.6 ± 33.3 minutes; p = 0.009). Twitching was the most common adverse event.

Conclusions and clinical relevance

In combination with butorphanol, IM alfaxalone at 5 mg kg?1 provided better quality sedation than 2 mg kg?1. Monitoring of SpO2 is recommended.  相似文献   

8.

Objective

To compare the effects of thiopentone, propofol and alfaxalone on arytenoid cartilage motion and establish the dose rates to achieve a consistent oral laryngoscopy examination.

Study design

Randomised crossover study.

Animals

Six healthy adult Beagle dogs.

Methods

Each dog was randomly administered three induction agents with a 1-week washout period between treatments. Thiopentone (7.5 mg kg?1), propofol (3 mg kg?1) or alfaxalone (1.5 mg kg?1) was administered over 1 minute for induction of anaesthesia. If the dog was deemed inadequately anaesthetised, then supplemental boluses of 1.8, 0.75 and 0.4 mg kg?1 were administered, respectively. Continual examination of the larynx, using a laryngoscope, commenced once an adequate anaesthetic depth was reached until examination end point. The number of arytenoid motions and vital breaths were counted during three time periods and compared over time and among treatments. Data were analysed using Friedman and Mann–Whitney U tests, Spearman rho and a linear mixed model with post hoc pairwise comparison with Tukey correction.

Results

The median (range) induction and examination times were 2.8 (2.0–3.0), 2.7 (2.0–3.3) and 2.5 (1.7–3.3) minutes (p = 0.727); and 14.1 (8.0–41.8), 5.4 (3.3–14.8) and 8.5 (3.8–31.6) minutes (p = 0.016) for thiopentone, propofol and alfaxalone, respectively. The median dose rates required to achieve an adequate anaesthetic depth were 6.3 (6.0–6.6), 2.4 (2.4–2.4) and 1.2 (1.2–1.2) mg kg?1 minute?1, respectively. There was no significant difference for the total number of arytenoid motions (p = 0.662) or vital breaths (p = 0.789) among induction agents.

Conclusion and clinical relevance

The number of arytenoid motions were similar among the induction agents. However, at the dose rates used in this study, propofol provided adequate conditions for evaluation of the larynx with a shorter examination time which may be advantageous during laryngoscopy in dogs.  相似文献   

9.
10.

Objective

To determine the effects of two dexmedetomidine continuous rate infusions on the minimum infusion rate of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent haemodynamic and recovery effects in Greyhounds undergoing laparoscopic ovariohysterectomy.

Study design

Prospective, randomized and blinded clinical study.

Animals

Twenty-four female Greyhounds.

Methods

Dogs were premedicated with dexmedetomidine 3 μg kg?1 and methadone 0.3 mg kg?1 intramuscularly. Anaesthesia was induced with IV alfaxalone to effect and maintained with a TIVA mixture of alfaxalone in combination with two different doses of dexmedetomidine (0.5 μg kg?1 hour?1 or 1 μg kg?1 hour?1; groups DEX0.5 and DEX1, respectively). The alfaxalone starting dose rate was 0.07 mg kg?1 minute?1 and was adjusted (± 0.02 mg kg?1 minute?1) every 5 minutes to maintain a suitable depth of anaesthesia. A rescue alfaxalone bolus (0.5 mg kg?1 IV) was administered if dogs moved or swallowed. The number of rescue boluses was recorded. Heart rate, arterial blood pressure and arterial blood gas were monitored. Qualities of sedation, induction and recovery were scored. Differences between groups were tested for statistical significance using a Student’s t test or Mann–Whitney U test as appropriate.

Results

There were no differences between groups in sedation, induction and recovery quality, the median (range) induction dose of alfaxalone [DEX0.5: 2.2 (1.9–2.5) mg kg?1; DEX1: 1.8 (1.2–2.9) mg kg?1], total dose of alfaxalone rescue boluses [DEX0.5: 21.0 (12.5–38.8) mg; DEX1: 22.5 (15.5–30.6) mg] or rate of alfaxalone (DEX0.5: 0.12 ± 0.04 mg kg?1 minute?1; DEX1: 0.12 ± 0.03 mg kg?1 minute?1).

Conclusions and clinical relevance

Co-administration of dexmedetomidine 1 μg kg?1 hour?1 failed to reduce the dose rate of alfaxalone compared with dexmedetomidine 0.5 μg kg?1 hour?1 in Greyhounds undergoing laparoscopic ovariohysterectomy. The authors recommend an alfaxalone starting dose rate of 0.1 mg kg?1 minute?1. Recovery quality was good in the majority of dogs.  相似文献   

11.

Objective

The aim of this study was to determine whether lumbosacral epidural administration of magnesium sulphate added to ropivacaine prolongs and improves perioperative analgesia, without adverse effects on motor block duration or hind limb neurological function, in dogs undergoing hip arthroplasty.

Study design

Investigator-blind, controlled, randomized, prospective clinical trial.

Animals

A group of 20 client-owned dogs undergoing hip arthroplasty were allocated randomly to either group C (control, 1 mg kg?1epidural ropivacaine) or group M (magnesium, epidural injection of 1 mg kg?1 ropivacaine and 2 mg kg?1magnesium sulphate).

Methods

All dogs were premedicated with intramuscular acepromazine. General anaesthesia was induced with propofol and maintained with isoflurane in oxygen. Intraoperatively, nociception was assessed based on changes in heart rate, respiratory rate and mean arterial pressure above baseline values. Postoperatively, pain was evaluated with a Sammarco pain score, a Glasgow pain scale and a visual analogue scale (VAS). Tarlov’s scale was used to quantify motor block. All dogs were evaluated at recovery and then 1, 2, 3, 4, 5 and 24 hours after that. Rescue analgesia was provided during surgery with fentanyl and, postoperatively, with buprenorphine. Groups were compared using one-way repeated-measure analysis of variance followed by the Holm–Sidak method for multiple comparison or nonparametric tests when appropriate.

Results

The two treatment groups did not differ (p > 0.05) with respect to intraoperative physiological variables, rescue analgesia, postoperative pain scores (Sammarco q = 1.00; Glasgow q = 3.10; VAS q = 0.50) and duration of the motor block (Tarlov’s q = 2.40).

Conclusions and clinical relevance

The addition of epidural magnesium to ropivacaine did not improve or prolong the analgesia provided by ropivacaine alone. Further studies are needed to determine whether an epidural magnesium dose of >2 mg kg?1 would exert better analgesia, without causing adverse effects, in dogs undergoing orthopaedic surgery.  相似文献   

12.

Objective

To describe the sedative and physiologic effects of two doses of alfaxalone administered intramuscularly in dogs.

Study design

Randomized, blinded, crossover experimental trial.

Animals

Ten adult mixed-breed dogs.

Methods

Dogs were assigned randomly to be administered one of three intramuscular injections [saline 0.1 mL kg?1 (S), alfaxalone 1 mg kg?1 (A1) or alfaxalone 2 mg kg?1 (A2)] on three occasions. Heart rate (HR), respiratory rate (fR) and sedation score were assessed before injection (T0) and at 5 (T5), 10 (T10), 15 (T15), 20 (T20), 30 (T30), 45 (T45) and 60 (T60) minutes postinjection. Rectal temperature was determined at T0 and T60. Adverse events occurring between the time of injection and T60 were recorded.

Results

Sedation scores were higher in group A2 at T15 and T30 compared with group S. There were no additional differences between groups in sedation score. The A2 group had higher sedation scores at T15, T20 and T30 compared with T0. The A1 group had higher sedation scores at T10 and T30 compared with T0. Temperature was lower in groups A1 and A2 compared with S at T60, but was not clinically significant. There were no differences between or within groups in HR or fR. Adverse effects were observed in both A1 and A2 groups. These included ataxia (17/20), auditory hyperesthesia (5/20), visual disturbance (5/20), pacing (4/20) and tremor (3/20).

Conclusions and clinical relevance

While alfaxalone at 2 mg kg?1 intramuscularly resulted in greater median sedation scores compared with saline, the range was high and adverse effects frequent. Neither protocol alone can be recommended for providing sedation in healthy dogs.  相似文献   

13.

Objective

To evaluate the onset, magnitude and duration of thermal antinociception after oral administration of two doses of tapentadol in cats.

Study design

Prospective, randomized, blinded, experimental study.

Animals

Six healthy adult cats weighing 4.4 ± 0.4 kg.

Methods

Skin temperature (ST) and thermal threshold (TT) were evaluated using a wireless TT device up to 12 hours after treatment. Treatments included placebo (PBO, 50 mg dextrose anhydrase orally), buprenorphine (BUP, 0.02 mg kg?1) administered intramuscularly, low-dose tapentadol (LowTAP, 25 mg orally; mean 5.7 mg kg?1) and high-dose tapentadol (HighTAP, 50 mg orally; mean 11.4 mg kg?1) in a blinded crossover design with 7 day intervals. Statistical analysis was performed using anova with appropriate post hoc test (p ≤ 0.05).

Results

Salivation was observed immediately following 11 out of 12 treatments with tapentadol. The ST was significantly increased at various time points in the opioid treatments. Hyperthermia (≥ 39.5 °C) was not observed. Baseline TT was 45.4 ± 1.4 °C for all treatments. Maximum TT values were 48.8 ± 4.8 °C at 1 hour in LowTAP, 48.5 ± 3.0 °C at 2 hours in HighTAP and 50.2 ± 5.3 °C at 1 hour in BUP. TT significantly increased after LowTAP at 1 hour, after HighTAP at 1–2 hours, and after BUP at 1–2 hours compared with baseline values. TTs were significantly increased in BUP at 1–2 hours compared with PBO.

Conclusion and clinical relevance

Oral administration of tapentadol increased ST and TT in cats. The durations of thermal antinociception were similar between HighTAP and BUP, both of which were twice as long as that in LowTAP. Studies of different formulations may be necessary before tapentadol can be accepted into feline practice.  相似文献   

14.
15.

Objective

To investigate the pharmacokinetics of buprenorphine and its main active metabolite, norbuprenorphine, after administration of an intravenous loading dose followed by constant rate infusion (CRI) in dogs.

Study design

Prospective, clinical study.

Animals

A total of seven healthy dogs undergoing elective ovariectomy.

Methods

Buprenorphine was administered as a loading dose (intravenous bolus of 15 μg kg?1) followed by CRI (2.5 μg kg?1 hour?1 for 6 hours). Moreover, intraoperative analgesia was supplemented by an intramuscular carprofen (4 mg kg?1) injection, administered prior to surgery, and by lidocaine, administrated through subcutaneous infiltration and through a splash on the ovarian vascular pedicle during surgery. Pain and sedation were scored for all animals throughout the 24-hour study period and rescue analgesia was administered when a visual analogue scale score was > 40 mm. Blood samples were collected from a jugular catheter at regular intervals, and plasma concentrations of buprenorphine and norbuprenorphine were determined by a validated liquid chromatography–tandem mass spectrometry method.

Results

Buprenorphine showed a two-compartment kinetic profile. Maximum concentration was 23.92 ± 8.64 ng mL?1 at 1 minute (maximum time); elimination half-life was 41.87 ± 17.35 minutes; area under the curve was 486.68 ± 125.66 minutes ng?1 mL?1; clearance was 33.61 ± 13.01 mL minute?1 kg?1, and volume of distribution at steady state was 1.77 ± 0.50 L kg?1. In no case was rescue analgesia required. Norbuprenorphine resulted below the lower limit of quantification in almost all samples.

Conclusions and clinical relevance

The results suggest that a buprenorphine CRI can be a useful tool for providing analgesia in postoperative patients, considering its minor side effects and the advantages of a CRI compared to frequent boluses. The negligible contribution of norbuprenorphine to the therapeutic effect was confirmed.  相似文献   

16.

Objective

To evaluate the onset and duration of hematological changes and the use of Doppler ultrasound (spleen) in dogs sedated with acepromazine or xylazine.

Study design

Clinical study.

Animals

A total of 24 mixed breed dogs aged 1–4 years and weighing 15–25 kg.

Methods

Dogs were randomly distributed into two groups: acepromazine group (AG) which were administered acepromazine (0.05 mg kg?1) intramuscularly and xylazine group (XG) administered xylazine (0.5 mg kg?1) intramuscularly. Sonographic evaluations (morphologic and hemodynamic splenic vascularization) and hematologic tests were performed before drug administration (baseline) and 5, 15, 30, 60, 120, 240, 360, 480 and 720 minutes after drug administration.

Results

A significant reduction occurred in erythrogram variables in AG at 15–720 minutes corresponding with a significant enlargement of the spleen. In XG, a significant reduction was observed in the erythrogram variables at 30–60 minutes without a significant enlargement of the spleen. Hilar diameter did not change over time in either group. Flow alterations were found only in the splenic artery in AG, with a decreased final diastolic velocity observed at 60–120 minutes.

Conclusions

Administration of acepromazine resulted in decreased red blood cell count, hemoglobin, packed cell volume and an increased diameter of the spleen. Xylazine administration resulted in similar hematologic changes but of smaller magnitude and duration and without splenic changes. The absence of significant changes in the Doppler flow parameters of the splenic artery and vein and the hilar diameter suggests that the splenomegaly that was observed in AG was not due to splenic vasodilation. No splenic sequestration occurred after xylazine administration.

Clinical relevance

The results indicate that acepromazine decreases the erythrocyte concentrations by splenic erythrocyte sequestration and concomitant splenomegaly. Xylazine can cause slight hematologic changes, but without splenic changes.  相似文献   

17.

Objective

To assess the effects of xylazine and dexmedetomidine on equine chondrocytes, in vitro.

Study design

Prospective, experimental study.

Study material

Equine articular chondrocytes from five male horses.

Methods

Chondrocytes were isolated from healthy equine articular cartilage of the metacarpo/metatarsophalangeal joints. Cell viability was assessed using the WST-8 assay by exposing chondrocytes to xylazine (0.5, 1, 2, 4, 8, 16.6, 25, 50 mg mL?1) or dexmedetomidine (0.001, 0.005, 0.01, 0.05, 0.175, 0.25 mg mL?1) for 15, 30 and 60 minutes. Based on the results of these tests, cells were treated with xylazine (1, 4, 25 mg mL?1) or dexmedetomidine (0.05, 0.175, 0.25 mg mL?1) for 15 minutes to further evaluate: cell viability by neutral red uptake; cell membrane integrity by lactate dehydrogenase release and by fluorescence microscopy with Hoechst 33342 and propidium iodide (PI), and apoptosis by flow cytometry using double staining with annexin V-fluorescein isothiocyanate/PI and by cell morphology.

Results

Both drugs reduced cell viability in a dose-dependent manner. Specifically, all xylazine concentrations, except 0.5 mg mL?1 and 1 mg mL?1, significantly reduced cell viability, whereas the effects of dexmedetomidine were evident only at 0.175 mg mL?1 and 0.25 mg mL?1. The highest concentrations of xylazine (25 mg mL?1) and dexmedetomidine (0.25 mg mL?1) caused loss of membrane integrity. Cell morphology and flow cytometry analyses demonstrated signs of late apoptosis in xylazine-treated cells, and signs of late apoptosis and necrosis in dexmedetomidine-treated cells.

Conclusions and clinical relevance

This study offers new insights into the potential chondrotoxicity induced by dexmedetomidine and xylazine. Therefore, the intra-articular administration of α2-agonists should be conducted with care, especially for doses of ≥ 4 mg mL?1 of xylazine and 0.175 mg mL?1 and 0.25 mg mL?1 of dexmedetomidine.  相似文献   

18.

Objective

To characterize the pharmacokinetics of dexmedetomidine when administered as a short intravenous (IV) infusion to isoflurane-anesthetized rabbits.

Study design

Experimental study.

Animals

A total of six healthy adult female New Zealand White rabbits.

Methods

Rabbits were anesthetized with isoflurane in oxygen. Following determination of isoflurane minimum alveolar concentration (MAC), the anesthetic dose was reduced to 0.7 × MAC, and dexmedetomidine hydrochloride (20 μg kg?1) was infused IV over 5 minutes. Arterial blood samples were obtained immediately before and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240 and 360 minutes following termination of the infusion. Samples were transferred into tubes containing ethylenediaminetetraacetic acid and centrifuged immediately. The plasma was harvested and stored at –80 °C until analyzed. Concentrations of dexmedetomidine in plasma were determined by liquid chromatography mass spectrometry. Compartment models were fitted to the time and concentration data using nonlinear regression.

Results

A three-compartment model best fit the data set. Median volume of distribution at steady state and terminal half-life were 3169 mL kg?1 (range, 2182–3859 mL kg?1) and 80 minutes (range, 72–88 minutes), respectively.

Conclusions and clinical relevance

The pharmacokinetics of dexmedetomidine in isoflurane-anesthetized, healthy, New Zealand White rabbits were characterized in this study. Data from this study can be used to determine dosing regimens for dexmedetomidine in isoflurane-anesthetized rabbits.  相似文献   

19.

Objective

To evaluate whether intratesticular and incisional ropivacaine infiltration produces sufficient intra- and postoperative analgesia for castrating dogs under sedation.

Study design

Randomized, blinded, controlled clinical study.

Animals

Twenty-three healthy dogs weighing 5.8–35.6 kg admitted for castration.

Methods

Dogs were sedated with medetomidine (0.01 mg kg?1), butorphanol (0.2 mg kg?1) and midazolam (0.2 mg kg?1) intramuscularly, and were randomly assigned to group R, 0.2–0.4 mL kg?1 of ropivacaine 0.5%, or group S, an equivalent volume of saline injected intratesticularly and along the incision line. If persistent motion was observed during surgery, sedation was considered to be insufficient and general anaesthesia was induced. Carprofen 2.2 mg kg?1 was administered postoperatively. Pain was evaluated in all dogs before sedation and postoperatively following atipamezole administration at 1, 2, 4, 8 and 24 hours using an interactive visual analogue scale (IVAS; 0–100), the Glasgow composite pain scale-short form (CMPS-SF; 0–24), and a mechanical algometer. Methadone 0.3 mg kg?1 was administered intravenously to dogs if IVAS >30 or CMPS-SF >4.

Results

There was no significant difference between groups for the number of dogs administered general anaesthesia. The time from the beginning of surgery to induction of general anaesthesia was significantly shorter [median (range)] in group S [6 (3–25) minutes] than in group R [56 (36–76) minutes]. At 8 hours IVAS was significantly higher in group S (14 ± 10) than in group R (6 ± 4).

Conclusions and clinical relevance

Intratesticular and incisional ropivacaine infiltration delayed the time to anaesthesia induction, and provided analgesia after castration performed under deep sedation in dogs. Intratesticular local anaesthesia can be an important part of the anaesthetic plan for castration.  相似文献   

20.

Objective

To compare dexmedetomidine–midazolam with alfaxalone–midazolam for sedation in leopard geckos (Eublepharis macularius).

Study design

Prospective, randomized, blinded, complete crossover study.

Animals

Nine healthy adult leopard geckos.

Methods

Geckos were administered a combination of dexmedetomidine (0.1 mg kg?1) and midazolam (1.0 mg kg?1; treatment D–M) or alfaxalone (15 mg kg?1) and midazolam (1.0 mg kg?1; treatment A–M) subcutaneously craniodorsal to a thoracic limb. Heart rate (HR), respiratory rate (fR), righting reflex, palpebral reflex, superficial and deep pain reflexes, jaw tone and escape response were assessed every 5 minutes until reversal. Conditions for intubation and response to needle prick were evaluated. Antagonist drugs [flumazenil (0.05 mg kg?1) ± atipamezole (1.0 mg kg?1)] were administered subcutaneously, craniodorsal to the contralateral thoracic limb, 45 minutes after initial injection, and animals were monitored until recovery.

Results

HR, but not fR, decreased significantly over time in both treatments. HR was significantly lower than baseline at all time points in D–M and for all but the 5 and 10 minute time points in A–M. HR was significantly higher in A–M at all time points after drug administration when compared with D–M. Sedation scores between protocols were similar for most time points. All animals in A–M lost righting reflex compared with seven out of nine (78%) geckos in D–M. Geckos in A–M lost righting reflex for significantly longer time. Mean ± standard deviation time to recovery after antagonist administration was 6.1 ± 2.2 minutes for D–M and 56 ± 29 minutes for A–M, and these times were significantly different.

Conclusions and clinical relevance

Combination D–M or A–M provided sedation of a level expected to allow physical examinations and venipuncture in leopard geckos. A–M provided a faster onset of sedation compared with D–M. Recovery was significantly faster following antagonist reversal of D–M, compared with A–M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号