首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of prey density, within-field vegetation, and the composition and patchiness of the surrounding landscape on the abundance of insect predators of cereal aphids was studied in wheat fields in eastern South Dakota, USA. Cereal aphids, aphid predators, and within-field vegetation were sampled in 104 fields over a three year period (1988–1990). The composition and patchiness of the landscape surrounding each field were determined from high altitude aerial photographs. Five landscape variables, aggregated at three spatial scales ranging from 2.6 km2 to 581 km2, were measured from aerial photographs. Regression models incorporating within-field and landscape variables accounted for 27–49% of the variance in aphid predator abundance in wheat fields. Aphid predator species richness and species diversity were also related to within-field and landscape variables. Some predators were strongly influenced by variability in the composition and patchiness of the landscape surrounding a field at a particular spatial scale while others responded to variability at all scales. Overall, predator abundance, species richness, and species diversity increased with increasing vegetational diversity in wheat fields and with increasing amounts of non-cultivated lands and increasing patchiness in the surrounding landscape.  相似文献   

2.
Current biodiversity conservation policies have so far had limited success because they are mainly targeted to the scale of individual fields with little concern on different responses of organism groups at larger spatial scales. We investigated the relative impacts of multi-scale factors, including local land use intensity, landscape context and region, on functional groups of beetles (Coleoptera). In 2008, beetles were suction-sampled from 95 managed grasslands in three regions, ranging from Southern to Northern Germany. The results showed that region was the most important factor affecting the abundance of herbivores and the abundance and species composition of predators and decomposers. Herbivores were not affected by landscape context and land use intensity. The species composition of the predator communities changed with land use intensity, but only in interaction with landscape context. Interestingly, decomposer abundance was negatively related to land use intensity in low-diversity landscapes, whereas in high-diversity landscapes the relation was positive, possibly due to enhanced spillover effects in complex landscapes. We conclude that (i) management at multiple scales, from local sites to landscapes and regions, is essential for managing biodiversity, (ii) beetle predators and decomposers are more affected than herbivores, supporting the hypothesis that higher trophic levels are more sensitive to environmental change, and (iii) sustaining biological control and decomposition services in managed grassland needs a diverse landscape, while effects of local land use intensity may depend on landscape context.  相似文献   

3.
Changes in land use affect species interactions and population dynamics by modifying the spatial template of trophic interaction and the availability of resources in time and space. We developed a process-based spatially explicit model for evaluating the effects of land use on species viability by modelling foraging performance and energy sequestration in a stage structured, three-trophic population model. The model is parameterized with realistic parameters for a ladybeetle–aphid–host plant interaction, and is run in four realistic landscapes in the Czech Republic. We analysed whether changes in crop selection and fertilizer input could explain the dramatic and unexplained decline in abundance of the ladybeetle Coccinella septempunctata in the Czech Republic from 1978 to 2005. The results indicate that a major reduction in fertilizer input after the transition to a market economy, resulting in lower aphid population densities in cereal crops and negatively affecting energy sequestration, survival and reproduction of ladybeetles, provides a sufficient explanation for the observed population decline. Simulations further indicated that the population viability of C. septempunctata is highly dependent on availability of aphid prey in crops, in particular cereal, which serves as their major reproduction habitat. The results demonstrate how the abundance of naturally occurring predators, which are instrumental for biological pest control, depends upon the spatial resource template that are provided at the landscape scale.  相似文献   

4.
Assessing the associations between spatial patterns in population abundance and environmental heterogeneity is critical for understanding various population processes and for managing species and communities. This study evaluates responses in the abundance of the European rabbit (Oryctolagus cuniculus), an important prey for predators of conservation concern in Mediterranean ecosystems, to environmental heterogeneity at different spatial scales. Multi-scale habitat models of rabbit abundance in three areas of Doñana, south-western Spain, were developed using a spatially extensive dataset of faecal pellet counts as an abundance index. The best models included habitat variables at the three spatial scales examined: distance from lagoons (broad scale), mean landscape shrub coverage and interspersion of pastures (home-range scale), and shrub and pasture cover (microhabitat scale). These variables may well have been related to the availability of food and refuge for the species at the different scales. However, the models’ fit to data and their predictive accuracy for an independent sample varied among the study regions. Accurate predictions in some areas showed that the combination of variables at various spatial scales can provide a reliable method for assessing the abundance of ecologically complex species such as the European rabbit over large areas. On the other hand, the models failed to identify abundance patterns in a population that suffered the strongest demographic collapse after viral epidemics, underlining the difficulty of generalizing this approach. In the latter case, factors difficult to implement in static models such as disease history and prevalence, predator regulation and others may underlie the lack of association. Habitat models can provide useful guidelines for the management of landscape attributes relevant to rabbits and help improve the conservation of Mediterranean communities. However, other influential factors not obviously related to environmental heterogeneity should also be analyzed in more detail.  相似文献   

5.
The relation between two species of bats, the pipistrelle (Pipistrellus pipistrellus (Schreber, 1774)) and the serotine (Eptesicus serotinus (Schreber, 1774)) and linear landscape elements such as hedgerows, tree lines and tree lanes was studied in an agricultural area in The Netherlands. The pipistrelle was observed almost entirely close to landscape elements, while serotines more frequently crossed fields and meadows. Serotine activity in these open areas was, however, negatively related to the distance to a landscape element and to windspeed. On a landscape scale the results indicate a more than proportional positive relation between the density of serotine bats and the density of linear landscape elements, whereas this relation was only proportional in the case of the pipistrelle. It is argued, that landscapes with a high density of linear elements have a surplus value for serotine bats. Three possible functions of linear elements for bats (orientation clues, foraging habitat and shelter from wind and/or predators) are discussed. Any of these may explain the results of this study.  相似文献   

6.
Widespread adoption of genetically modified glyphosate-resistant (GR) crops in the US has dramatically changed the agricultural landscape to one that selects for establishment and spread of weedy species resistant to glyphosate, a commonly applied herbicide. Weed species that possess the means to readily spread across the landscape will be contained by weed management strategies that limit weed establishment and prevent seed set. An empirically-derived simulation model was developed to explore GR Conyza canadensis spread in relation to characteristics of the agricultural landscape. C. canadensis seeds are carried in the wind and move among fields and therefore, access high quality habitat (GR crops) at long distances. The baseline scenario was the current GR adoption levels in many US agricultural landscapes with corn and soybean rotated annually. Alternate scenarios examined the interacting effects of management uniformity (GR crop adoption) and increased landscape richness (three crops: corn, soybean, alfalfa, instead of two), over a 10 year simulation period. When landscape uniformity increased (increased GR corn adoption), 3× more fields would be infested with the resistant biotype and a specific field would have up to 24% greater likelihood of being infested compared to the current GR crop adoption levels. Increased landscape richness (adding alfalfa as a third crop) slightly decreased GR C. canadensis abundance. Reduced GR management uniformity by way of reducing GR soybeans to half their current adoption levels had the greatest impact on spread and prevented GR C. canadensis from reaching high abundance. Large-scale reliance on glyphosate for weed management has increased high-fitness habitat and will result in rapid spread of glyphosate-resistant weeds. Without significant reductions of glyphosate use and without spatial coordination of weed and crop management practices, GR weeds will continue to spread rapidly and impact agricultural practices in areas reliant on glyphosate.  相似文献   

7.
Nest predation is an important cause of mortality for many bird species, especially in grassland ecosystems where generalist predators have responded positively to human disturbance and landscape fragmentation. Our study evaluated the influence of the composition and configuration of the surrounding landscape on nest predation. Transects consisting of 10 artificial ground nests each were set up in 136 roadsides in six watersheds in south-central Iowa. Nest predation on individual roadside transects ranged from 0 to 100% and averaged 23%. The relationship of landscape structure within spatially-nested landscapes surrounding each roadside transect (within 200, 400, 800, 1200, and 1600 m of the transect line) to nest predation was evaluated by using multiple regression and canonical correlation analyses. The results of this multiscale landscape analysis demonstrated that predation on ground nests was affected by the surrounding landscape mosaic and that nest predators with different-sized home ranges and habitat affinities responded to landscapes in different ways. In general, wooded habitats were associated with greater nest predation, whereas herbaceous habitats (except alfalfa/pasture) either were associated with less nest predation or were not important. Different landscape variables were important at different spatial scales. Whereas some block-cover habitats such as woodland were important at all scales, others such as rowcrops and alfalfa/pasture were important at large scales. Some strip-cover habitats such as gravel roads and paved roads were important at small scales, but others such as wooded roadsides were important at all all scales. Most landscape metrics (e.g., mean patch size and edge density) were important at large scales. Our study demonstrated that the relationships between landscape structure and predator assemblages are complex, thus making efforts to enhance avian productivity in agricultural landscapes a difficult management goal.  相似文献   

8.
Investigations of spatial patterns in forest tree species composition are essential in the understanding of landscape dynamics, especially in areas of land-use change. The specific environmental factors controlling the present patterns, however, vary with the scale of observation. In this study we estimated abundance of adult trees and tree regeneration in a Southern Alpine valley in Ticino, Switzerland. We hypothesized that, at the present scale, spatial pattern of post-cultural tree species does not primarily depend on topographic features but responds instead to small-scale variation in historical land use. We used multivariate regression trees to relate species abundances to environmental variables. Species matrices were comprised of single tree species abundance as well as species groups. Groups were formed according to common ecological species requirements with respect to shade tolerance, soil moisture and soil nutrients. Though species variance could only be partially explained, a clear ranking in the relative importance of environmental variables emerged. Tree basal area of formerly cultivated Castanea sativa (Mill.) was the most important factor accounting for up to 50% of species’ variation. Influence of topographic attributes was minor, restricted to profile curvature, and partly contradictory in response. Our results suggest the importance of biotic factors and soil properties for small-scale variation in tree species composition and need for further investigations in the study area on the ecological requirements of tree species in the early growing stage.  相似文献   

9.
The storm that struck France on december 26th and 28th 1999 felled 140 million m3 of timber and had a high economic, social and landscape impact. This event offered the opportunity to study large-scale patterns in populations of forest insect pests that would benefit from the abundant breeding material. A large-scale survey was carried out in France in 2000 to sample the most frequently observed species developing on spruce (Ips typographus, Pityogene schalcographus) and pine (Tomicus piniperda, Ips sexdentatus) in 898 locations distributed throughout wind-damaged areas. The local abundance of each species scored on a 0 to 5 scale was analysed using geostatistical estimators to explore the extent and intensity of spatial autocorrelation, and was related to site, stand, and neighbourhood landscape metrics of the forest cover (in particular the interconnection with broadleaf forest patches) found within dispersal distance. All species but I. sexdentatus, which was much less abundant, displayed large-scale spatial dependence and regional variations in abundance. Lower infestation levels per tree (windfalls and standing trees) were observed in stands with a high proportion of wind-damaged trees, which was interpreted as the result of beetles distributing themselves among the available breeding material. More infestations were observed in wind-broken trees as compared to wind-felled trees. More importantly, populations showed significant relationships with the structure of coniferous stands (in particular with the number of coniferous patches). T. piniperda population levels were negatively correlated to the amount of coniferous edge shared with broadleaf forest patches, possibly because of the disruptive effect of non-host volatiles on host-finding processes at the landscape-scale. The differences observed between species regarding patterns and relationships to site, stand, and forest cover characteristics are discussed in relation to the ecological characteristics of each species.  相似文献   

10.
Linear habitats are becoming increasingly common as a consequence of habitat fragmentation, and may provide the sole habitat for some species. Hedgerows are linear features that can vary substantially in structure and quality. Having surveyed 180 hedgerows, in four locations, and sampled their small mammal communities we examined the effect of physical hedgerow attributes on the abundance of small mammal species. Using three elements of landscape structure, we explored whether variation was best explained by the Random Sample Hypothesis (that small islands represent a random sample of those species populating larger areas), or by the Fragmentation Hypothesis (that species abundance will decrease with a loss of habitat area). We tested the relationship between the relative abundance of small mammals and 1. hedgerow connectivity; 2. total habitat availability and 3. local habitat complexity. We then explored the predictive power of combinations of these habitat variables. Connectivity was a positive predictor of wood mice Apodemus sylvaticus, and hedgerow gappiness was a negative predictor of bank voles Clethrionomys glareolus. The total amount of habitat available (hedgerow width, height and length) was a positive indicator of total small mammal biomass. These results support the Fragmentation Hypothesis that species abundance and distribution decrease with a loss of habitat area. The preservation of linear and associated habitats may therefore be important in maintaining metapopulations of the species we studied.  相似文献   

11.
Tick density and population dynamics are important factors in the ecological processes involved in pathogen circulation in a habitat. These characteristics of tick populations are closely linked to habitat suitability, which reflects the limiting ecological factors and landscape features affecting tick populations; however, little work has been done on the regional assessment of habitat suitability. In this study, a regional model for the distribution and abundance of the tick Ixodes ricinus in central Spain is developed. An occurrence and an abundance model were constructed; climate and vegetation variables were found to be the main predictors of both occurrence and density in a relatively homogeneous matrix of habitat patches, whereas topographical variables were found to have small contributions and were therefore discarded. The residuals of the abundance model showed good correlation with the isolation of each patch. The predictive power of the abundance model was greatly enhanced by inclusion of the traversability (a measure of the permeability of each patch to the propagules of the metapopulation) and recruitment (an index of the relative importance of each patch to the traffic through the entire habitat network). The removal from the landscape of the patches whose recruitment values were in the top 10% has a critical effect on tick density, an effect not observed when patches are removed at random. These results indicate that permanent tick populations can be sustained only in landscapes containing a minimum network of viable sites. Graph theory and measurements of patch isolation should prove to be important elements in the forecasting of tick abundance and the management of the features underlying the landscape ecology of tick populations and pathogen circulation in the field.  相似文献   

12.
The conversion of forests and farmlands to human settlements has negative impacts on many native species, but also provides resources that some species are able to exploit. American Crows (Corvus brachyrhynchos), one such exploiter, create concern due to their impact as nest predators, disease hosts, and cultural harbingers of evil. We used various measures of crow abundance and resource use to determine crows’ response to features of anthropogenic landscapes in the Puget Sound region of the United States. We examined land cover and land use composition at three spatial scales: study sites (up to 208 ha), crow home ranges within sites (18.1 ha), and local land cover (400 m2). At the study site and within-site scales crow abundance was strongly correlated with land cover providing anthropogenic resources. In particular, crows were associated with the amount of ‘maintained forest’ cover, and were more likely to use grass and shrub cover than forest or bare soil cover. Although crows did not show a generalized response to an edge variable, they exhibited greater use of patchy habitat created by human settlements than of native forests. Radio-tagged territorial adults used resources within their home ranges relatively evenly, suggesting resource selection had occurred at a larger spatial scale. The land conversion pattern of new suburban and exurban settlements creates the mix of impervious surfaces and maintained vegetation that crows use, and in our study area crow populations are expected to continue to increase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Avian nest predation is known to increase with the degree of forest fragmentation. A common explanation is that farmland allows for high densities of generalist predators, and predators penetrating into the forest cause higher nest losses at forest-farmland edges than in forest interiors. In contrast to numerous patch-level studies of forest edge effects conducted earlier, we broadened the spatial extent to the landscape. We tested the hypothesis of increased predation near farmland over distances of >4 km from forest–farmland edges into forest interiors in five mountain ranges in Germany, using artificial ground nests. We considered two landscape settings: (1) Transitions between a forest matrix and a farmland matrix, and (2) farmland patches within a forest matrix. Nest losses were not significantly higher in vicinity to a farmland matrix, but proximity to a pasture within the forest matrix strongly increased predation risk. We speculate that these differences resulted from landscape geometry. Farmland patches and matrix alike are highly attractive to generalist predators, and are regularly visited by red foxes from the forest. Predators that traverse the forest and take prey along the way, will cause a concentration of predation risk towards a patch (pasture), but not towards an adjacent matrix (farming lowlands), of feeding habitat. Contrary to previous evidence that edge effects in nest predation level off after 50 m, nest fate was related to distance to pastures across the entire study extent of 4.1 km. Our results suggest that landscape context and predator mobility may greatly affect spatial predation patterns.  相似文献   

14.
This paper aims to answer the following question: are the fluctuations of abundance of Common Vole (Microtus arvalis) specific to different types of landscapes? The research was carried out in landscapes where grassland was dominant. The sampling method was based upon a partition in both landscape types and landscape units. Tracking of vole indices was used to evaluate their relative abundance. Six landscape transects were sampled during two successive years. Results show that population variation and diffusion of demographic states are closely related to landscape types. The possible causes of this are discussed. The landscape units can be used as global variables to assess outbreak risk and landscape design can be used to prevent them.  相似文献   

15.
We measured the activity of mammalian predators, numbers of singing male songbirds, and predation rates on nests of songbirds (152 natural, open-cup nests and 380 artificial nests) on 38 250 m transects located along various types of forest-field edges in a wildlife management area in east-central Illinois. We then related these variables to each other and to measures of the vegetative structure of our transects that we anticipated might influence predator activity or predation rates on nests of birds characteristic of edge and shrubland habitats. Mammalian predators, particularly raccoons (Procyon lotor), were abundant in the wildlife area and present on all transects surveyed. We did not find significant relationships among the variables we measured. Rather, rates of nest predation were consistently high (>70%) and generally evenly distributed around our study site. Medium-sized, generalist mammalian predators in the midwestern United States reach their highest population densities in fragmented landscapes with abundant edge habitat, particularly agricultural edges. Areas of natural habitat in these landscapes dominated by agriculture may concentrate predators and act as ecological traps for nesting birds because they attract high densities of breeding birds that are subjected to high rates of nest predation.  相似文献   

16.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

17.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Throughout most of the north-west Iberian Peninsula, chestnut (Castanea sativa) woods are the principal deciduous woodland, reflecting historical and ongoing exploitation of indigenous forests. These are traditionally managed woodlands with a patchy distribution. Eurasian nuthatches (Sitta europaea) inhabit mature deciduous woods, show high site fidelity, and are almost exclusively found in chestnut woods in the study area. We studied the presence and abundance of nuthatch breeding pairs over two consecutive years, in relation to the size, degree of isolation and intensity of management of 25 chestnut woods in NW Spain. Degree of isolation was assessed in view of the presence of other woodland within a 1-km band surrounding the study wood. Wood size was the only variable that significantly predicted the presence of breeding pairs (in at least one year, R 2 = 0.69; in both years, R 2 = 0.50). The number of pairs was strongly predicted by wood size, isolation and management (R 2 = 0.70 in 2004; R 2 = 0.84 in 2005); interestingly, more isolated woods had more breeding pairs. Breeding density was likewise significantly or near-significantly (P ≤ 0.1) higher in small isolated woods, which is possibly attributable to lower juvenile dispersal in lightly forested areas and/or to lower predator density in smaller and more isolated patches. Breeding density was higher (though not significantly so) in more heavily managed woods, possibly due to the presence of larger chestnut crops and larger trees (with higher nuthatch prey abundance). Our findings highlight the complexity of the relationships between the patch properties and the three studied levels (presence, number and density of pairs), and also the importance of traditionally managed woodlands for the conservation of forest birds.  相似文献   

19.
Human land-use practices have dramatically altered the composition and configuration of native habitats throughout many ecosystems. Within heterogeneous landscapes generalist predators often thrive, causing cascading effects on local biological communities, yet there are few data to suggest how attributes of fragmentation influence local population dynamics of these species. We monitored 25 raccoon (Procyon lotor) populations from 2004 to 2009 in a fragmented agricultural landscape to evaluate the influence of local and landscape habitat attributes on spatial and temporal variation in demography. Our results indicate that agricultural ecosystems support increased densities of raccoons relative to many other rural landscapes, but that spatial and temporal variation in demography exists that is driven by non-agricultural habitat attributes rather than the availability of crops. At the landscape scale, both density and population stability were positively associated with the size and contiguity of forest patches, while at the local scale density was positively correlated with plant diversity and the density of tree cavities. In addition, populations occupying forest patches with greater levels of plant diversity and stable water resources exhibited less temporal variability than populations with limited plant species complexity or water availability. The proportion of populations comprised of females was most strongly influenced by the availability of tree cavities and soft mast. Despite the abundance of mesopredators in heterogeneous landscapes, our results indicate that all patches do not contribute equally to the regional abundance and persistence of these species. Thus, a clear understanding of how landscape attributes contribute to variation in demography is critical to the optimization of management strategies.  相似文献   

20.
Calvete  C.  Estrada  R.  Angulo  E.  Cabezas-Ruiz  S. 《Landscape Ecology》2004,19(5):531-542
Populations of European wild rabbit (Oryctolagus cuniculus) have been decreasing since the 1950s. Changes in agricultural practices have been suggested as reasons for their decline in Mediterranean landscapes. We evaluated the environmental variables affecting rabbit distribution in a semiarid agricultural landscape of Northeastern Spain. Sampling was performed in 147 sites randomly distributed across Zaragoza province. At each site, data were recorded in five 100 m segments along a 1 km transect, following ecotones between crops and natural-vegetation areas. A rabbit abundance index was estimated from latrine count, pellet density and number of plots with pellets. In addition to environmental variables that have been shown to be related to rabbit abundance in other habitats, as climate, soil hardness and topography of the site, we measured landscape components related to agricultural use, such as structure of natural vegetation in remaining areas non-devoted to agricultural use and distances to different types of crops and to ecotone between crop and natural vegetation. Our results showed that rabbit abundance was positively correlated to yearly mean temperature, February and May mean rainfall, and negatively correlated to September and November mean rainfall, hardness of soil, and site topography. In relation to agricultural use, rabbit abundance was positively correlated to the scrub structure of natural-vegetation areas and negatively correlated to distance to edge between cultivated unirrigated cereal crops (wheat or barley) and yearly resting cereal crops. Rabbit abundance increased only when the edge between alternate cereal crops was less than 50 m from the ecotone between crops and natural vegetation.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号