首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several hundred thousand primordial follicles are present in the mammalian ovary, however, only 1% develop to the preovulatory stage and finally ovulate. The remainder will be eliminated via a degenerative process called ‘atresia’. The endocrinological regulatory mechanisms involved in follicular development and atresia have largely been characterized but the precise temporal and molecular mechanisms involved in the regulation of these events remain unknown. Many recent studies suggest that apoptosis in ovarian granulosa cells plays a crucial role in follicular atresia. Notably, death ligand‐receptor interaction and subsequent intracellular signaling have been demonstrated to be the key mechanisms regulating granulosa cell apoptosis. In this review we provide an overview of granulosa cell apoptosis regulated by death ligand‐receptor signaling. The roles of death ligands and receptors [Fas ligand (FasL)]‐Fas, tumor necrosis factor α (TNFα)‐TNF receptor and TNFα‐related apoptosis‐inducing ligand (TRAIL)‐TRAIL receptor (TRAILR)] and intracellular death‐signal mediating molecules (Fas‐associated death domain protein), TNF receptor 1‐associated death domain protein, caspases, apoptotic protease‐activating factor 1, TNFR‐associated factor 2 and cellular FLICE‐like inhibitory protein in granulosa cells are discussed.  相似文献   

2.
3.
Several hundred thousand primordial follicles are present in the mammalian ovary, however, only a limited number develop to the pre-ovulatory stage, and then finally ovulate. The others, more than 99%, will be eliminated through a degenerative process called 'atresia'. The endocrinological regulatory mechanisms involved in follicular development and atresia have been characterized to a large extent, but the precise temporal and molecular mechanisms involved in the regulation of these events have remained unknown. From many recent studies, it is suggested that the apoptosis in ovarian granulosa cells plays a crucial role in follicular atresia. Notably, death ligand–receptor interaction and subsequent intracellular signalling have been demonstrated to be the key mechanisms regulating granulosa cell apoptosis. In this review, we provide an overview of granulosa cell apoptosis regulated by death ligand–receptor signalling. The roles of death ligands and receptors [Fas ligand (FasL)–Fas, tumour necrosis factor (TNF)α–TNF receptor (TNFR), and TNFα-related apoptosis-inducing ligand (TRAIL)–TRAIL receptor (TRAILR)] and intracellular death-signal mediators [Fas-associated death domain protein (FADD), TNF receptor 1-associated death domain protein (TRADD), caspases, apoptotic protease-activating factor 1 (Apaf1), TNFR-associated factor 2 (TRAF2), and cellular FLICE-like inhibitory protein (cFLIP), etc.] in granulosa cells will be discussed.  相似文献   

4.
More than 99% of follicles undergo a degenerative process known as "atresia", in mammalian ovaries, and only a few follicles ovulate during ovarian follicular development. We have investigated the molecular mechanism of selective follicular atresia in mammalian ovaries, and have reported that follicular selection dominantly depends on granulosa cell apoptosis. However, we have little knowledge of the molecular mechanisms that control apoptotic cell death in granulosa cells during follicle selection. To date, at least five cell death ligand-receptor systems [tumor necrosis factor (TNF)alpha and receptors, Fas (also called APO-1/CD95) ligand and receptors, TNF-related apoptosis-inducing ligand (TRAIL; also called APO-2) and receptors, APO-3 ligand and receptors, and PFG-5 ligand and receptors] have been reported in granulosa cells of porcine ovaries. Some cell death ligand-receptor systems have "decoy" receptors, which act as inhibitors of cell death ligand-induced apoptosis in granulosa cells. Moreover, we showed that the porcine granulosa cell is a type II apoptotic cell, which has the mitochondrion-dependent apoptosis-signaling pathway. Briefly, the cell death receptor-mediated apoptosis signaling pathway in granulosa cells has been suggested to be as follows. (1) A cell death ligand binds to the extracellular domain of a cell death receptor, which contains an intracellular death domain (DD). (2) The intracellular DD of the cell death receptor interacts with the DD of the adaptor protein (Fas-associated death domain: FADD) through a homophilic DD interaction. (3) FADD activates an initiator caspase (procaspase-8; also called FLICE), which is a bipartite molecule, containing an N-terminal death effector domain (DED) and a C-terminal DD. (4) Procaspase-8 begins auto-proteolytic cleavage and activation. (5) The auto-activated caspase-8 cleaves Bid protein. (6) The truncated Bid releases cytochrome c from mitochondrion. (7) Cytochrome c and ATP-dependent oligimerization of apoptotic protease-activating factor-1 (Apaf-1) allows recruitment of procaspase-9 into the apoptosome complex. Activation of procaspase-9 is mediated by means of a conformational change. (8) The activated caspase-9 cleaves downstream effector caspases (caspase-3). (9) Finally, apoptosis is induced. Recently, we found two intracellular inhibitor proteins [cellular FLICE-like inhibitory protein short form (cFLIPS) and long form (cFLIPL)], which were strongly expressed in granulosa cells, and they may act as anti-apoptotic/survival factors. Further in vivo and in vitro studies will elucidate the largely unknown molecular mechanisms, e. g. which cell death ligand-receptor system is the dominant factor controlling the granulosa cell apoptosis of selective follicular atresia in mammalian ovaries. If we could elucidate the molecular mechanism of granulosa cell apoptosis (follicular selection), we could accurately diagnose the healthy ovulating follicles and precisely evaluate the oocyte quality. We hope that the mechanism will be clarified and lead to an integrated understanding of the regulation mechanism.  相似文献   

5.
6.
丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)信号通路存在于所有生物体内的大多数细胞内,是哺乳动物细胞重要的信号转导通路,可将细胞表面信号刺激转导至细胞及其核内,与细胞增殖、存活、分化、凋亡等生理病理过程密切相关。在机体发生热应激时,MAPKs信号途径被激活,调控机体产生一系列生物学功能变化。作者综述MAPKs信号转导通路的激活机制和生物效应,重点阐述了MAPKs通路与热应激反应之间的关系。  相似文献   

7.
Bisphenol A (BPA) is a chemical of high production volume that is used widely in many industries and is known as a xenooestrogen and anti‐thyroid hormone endocrine disrupter. There is little information regarding the effects of BPA in the presence of thyroid hormone on porcine granulosa cell development. Thus, the primary granulosa cells were treated with thyroxine (T4, 10 nM), BPA (10 µM) or T4 plus BPA; we subsequently evaluated the effects of T4 or BPA on 17β‐estradiol synthesis, cellular proliferation and apoptosis. Our data showed that BPA significantly increased the accumulation of 17β‐estradiol and promoted granulosa cell proliferation, whereas T4 significantly decreased 17β‐estradiol and had no effect on cellular proliferation. In addition, it was noteworthy that T4 treatment induced apoptosis in porcine granulosa cells and BPA co‐incubation attenuated T4‐induced apoptosis as shown from flow cytometric assay analysis. We hypothesized that BPA attenuates T4‐induced apoptosis by regulating 17β‐estradiol accumulation and oestrogen receptor‐mediated signalling pathways. In conclusion, our results demonstrated that T4 affected 17β‐estradiol accumulation and induced cellular apoptosis, but did not affect granulosa cell proliferation. Exposure to BPA increased 17β‐estradiol accumulation, promoted granulosa cell proliferation and attenuated T4‐induced apoptosis in porcine granulosa cells in vitro.  相似文献   

8.
9.
10.
Early follicular development is closely related to oocyte‐granulosa cells‐ovarian stromal cells/theca cells. The aim of the present study was to investigate the effects of ovarian cortical, medullary stromal and theca cells on oestradiol and progesterone biosynthesis, proliferation and apoptosis of goat ovary granulosa cells in vitro. Using Transwell coculture system, we evaluated steroidogenesis, cell proliferation and apoptosis, and some molecular expressions regarding steroidogenic enzyme, luteinizing hormone receptor and apoptosis‐related genes in granulosa cells. The results indicated that ovarian stromal/theca cells were able to stimulate oestradiol and progesterone production, promote cell proliferation and inhibit apoptosis of granulosa cells. Among all the three kinds of cells, theca cells affected strongly on granulosa cell function, and ovarian medullary stromal cells had the weakest effect on granulosa cells. These findings would provide an important knowledge of cell interaction among follicular cells during follicular development.  相似文献   

11.
杆状病毒的酪氨酸蛋白磷酸酯酶研究   总被引:1,自引:0,他引:1  
酪氨酸蛋白磷酸酯酶是生命细胞内一类重要的酶 ,与细胞信号转导有关 ,对多种生理过程如生长、分化、代谢、细胞周期调节和细胞骨架等具有重要的调节功能。某些杆状病毒和痘苗病毒的基因组中具有编码酪氨酸蛋白磷酸酯酶的开读框 ,与感染性和致病性有关。病毒编码的酪氨酸蛋白磷酸酯酶具有双重底物特异性 ,即可以同时催化蛋白质酪氨酸和丝氨酸 /苏氨酸残基上的脱磷酸反应  相似文献   

12.
To investigate the causes of the occurrence and persistence of porcine cystic follicles, we evaluated the apoptosis and proliferation of follicular cells in these cysts. Apoptotic frequencies were examined by TUNEL assay and the expression of apoptosis regulators (XIAP, bax, bc1-2 and caspase-3) by immunohistochemistry, Western blotting and real-time quantitative PCR; cell proliferation activity was evaluated by PCNA immunohistochemistry and proliferation of in vitro cultured granulosa and theca cells. The low apoptotic frequency and weak proliferative activity were found in cystic follicles. Low frequency of apoptosis might be associated with decreased amounts of apoptotic-related factors (bax and caspase-3) and increased amounts of anti-apoptotic factors (XIAP and bcl-2) in cystic follicles. Significantly lower proliferation activity was detected in granulosa and theca cells from cystic follicles, and lesser PCNA-positive cells were found in cystic follicles. Our results indicate that the programmed cell death and cell proliferation system were altered in cystic follicles. The disorder between apoptosis and proliferation was responsible for maintaining a static condition without degeneration, which leads to the long-term persistence of follicles. These findings provide important novel insights into the pathogenesis of follicular cysts in sows.  相似文献   

13.
旨在分析组织蛋白酶D(cathepsin D, CTSD)对黔北麻羊卵泡颗粒细胞的调控机制并初步探究其对产羔性状的影响机理。本研究以36周龄、健康、多胎黔北麻羊母羊(n=5)为研究对象,屠宰后采集卵巢组织分离培养卵泡颗粒细胞,构建真核表达载体pEGFP-N3-CTSD,将其导入细胞后在转录与翻译水平验证真核表达效率;通过CCK-8法检测在不同时间段内重组质粒对颗粒细胞增殖的影响;通过流式细胞仪检测重组质粒对颗粒细胞凋亡及周期的影响;随后使用RT-qPCR法在细胞水平检测重组质粒对细胞凋亡相关基因Bcl-2、BaxCaspase-3,细胞周期相关因子Cyclin A1、Cyclin D2、Cyclin E mRNA表达水平的影响,最后,以多胎性状候选基因BMPR-IBFSHRINHA为功能基因,在转录与翻译水平上验证重组质粒对其mRNA与蛋白表达的影响。双酶切及测序结果证实,黔北麻羊CTSD基因真核表达载体pEGFP-N3-CTSD构建成功,且在转录与翻译水平极显著上调CTSD在颗粒细胞中的表达(P<0.01);细胞增殖检测结果表明,颗粒细胞中上调CTSD后能够抑制细胞的增殖,其中在12、24、48、72 h对细胞增殖的抑制效率达到极显著(P<0.01);细胞凋亡检测结果表明,CTSD的过表达能够极显著促进颗粒细胞的凋亡(P<0.01),且能够显著下调细胞抗凋亡基因Bcl-2的表达(P<0.05),极显著上调细胞促凋亡相关基因BaxCaspase-3的表达(P<0.01);此外,细胞周期检测发现,pEGFP-N3-CTSD在转染后能够极显著上调G0/G1期与G2/M期的细胞数量(P<0.01),极显著下调S期细胞数量(P<0.01),同时能够极显著提高细胞周期相关因子Cyclin A1的表达(P<0.01),极显著降低Cyclin D2的表达(P<0.01)。RT-qPCR及Western blot检测结果表明,在颗粒细胞中上调CTSD后,能够极显著的下调多胎性状候选基因与蛋白BMPR-IB、FSHR、INHA在转录和翻译水平中的表达(P<0.01)。本研究发现,CTSD的高表达能抑制细胞的增殖,促进细胞凋亡,改变颗粒细胞的周期进程;还能改变细胞凋亡相关因子Bcl-2、BaxCaspase-3与细胞周期相关因子Cyclin A1、Cyclin D2、Cyclin E的表达;同时也能够极显著降低颗粒细胞中多胎性状候选基因与蛋白BMPR-IB、FSHR、INHA的表达量(P<0.01)。这提示,CTSD可能通过改变细胞水平相关因子的表达量来调控颗粒细胞的生物学行为以及影响山羊多胎性状候选基因的表达进而间接的成为影响山羊产羔性状的重要因子,本研究为进一步探明CTSD对山羊产羔性状调控机理及对颗粒细胞的影响机制奠定基础。  相似文献   

14.
In the mammalian ovary, follicular development and atresia are closely regulated by cell death and survival-promoting factors, including hormones (gonadotropins) and intraovarian regulators (gonadal steroids, cytokines, and intracellular proteins). Several hundred thousand primordial follicles are present in the mammalian ovary; however, only a limited number of primordial follicles develop to the preovulatory stage and ovulate. The others, more than 99% of follicles, will be eliminated via a degenerative process known as "atresia". The endocrinological regulatory mechanisms involved in follicular development and atresia have been characterized to a large extent, but the precise temporal and molecular mechanisms involved in the regulation of these events have remained largely unknown. Recent studies suggest that the apoptosis of ovarian granulosa cells plays a major role in follicular atresia. In this review, we provide an overview of development and atresia of follicles, and apoptosis of granulosa cells in mammals.  相似文献   

15.
16.
High-yield dairy cows are usually subject to high-intensive cell metabolism and produce excessive reactive oxygen species (ROS). Once ROS is beyond the threshold of scavenging ability, it can induce oxidative stress, imperilling the reproductive performance of cows. The study was to investigate the effects of vitamin E (VE) on H2O2-induced proliferation and apoptosis of bovine granulosa cells and the underlying molecular mechanism. Granulosa cells were pretreated with VE for 24 hr and then treated with H2O2 for 6 hr. The results showed that VE treatment decreased the intracellular ROS levels, increased the MDA content, and improved the antioxidant enzyme activity in a dose-dependent manner. Furthermore, VE treatment promoted the proliferation and inhibited apoptosis in granulosa cells by up-regulation of CCND1 and BCL2 levels and down-regulation of P21, BAX, and CASP3 levels. The cytoprotective effects of VE were attributed to the activation of the NRF2 signalling pathway. Knockdown of the NRF2 impaired the cytoprotective effects of VE on granulosa cells. Besides, the PI3K/AKT and ERK1/2, but not the p38 signalling pathway is involved in the regulation of VE-mediated cell proliferation and apoptosis. The PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited the VE-induced granulosa cell proliferation and promoted apoptosis, whereas the p38 inhibitor SB203580 had the opposite effects. These results were confirmed by proliferation and apoptosis-related gene expression at mRNA and protein levels. The results also showed that the PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited VE-induced NRF2, GCLC, GCLM, and HO-1 expression, whereas the p38 inhibitor SB203580 not. Overall, the results demonstrated that VE-regulated granulosa cell proliferation and apoptosis via NRF2-mediated defence system by activating the PI3K/AKT and ERK1/2 signalling pathway.  相似文献   

17.
Recent studies suggest that ovarian follicular atresia is associated with DNA fragmentation and degeneration of granulosa cells, the hallmark of programmed cell death or apoptosis. Apoptosis of granulosa cells play a major role in follicular atresia. These studies have also demonstrated the involvement of tumour suppressors, apoptotic proteins and survival factors. These factors contribute to the developmental decision as to whether the ovarian follicles mature or undergo atresia. However, the precise temporal and molecular events involved in the apoptotic pathways in this process need to be elucidated. The present report summarizes the role of Jun N‐terminal kinase (JNK), p38 mitogen activated protein kinase (p38 MAPK), and extracellular‐signal regulated kinase (ERK)‐signalling module in the regulation of pro‐ and anti‐apoptotic factors of the granulosa cells in regulating follicular atresia. The findings presented here suggest that the loss of tropic hormone support is translated into the attenuation of Raf‐1‐MAPK/ERK kinase (MEK)‐ERK‐signalling pathway of the granulosa cells and this results in the decreased phosphorylation of the pro‐apoptotic BAD.  相似文献   

18.
卵巢是家禽的重要繁殖器官,会产生大量卵泡,而卵泡在生长发育的各个阶段中都可能因为不同因素的调控而发生闭锁,最终导致繁殖性能衰退。颗粒细胞对卵泡的生长发育有重要调控作用,其凋亡会诱导卵泡发生闭锁。诱导颗粒细胞发生凋亡的因素较多,包括激素、细胞因子、氧化应激、线粒体及其他体外因素。颗粒细胞凋亡主要由线粒体途径导致,其涉及到半胱天冬酶(Caspase)家族参与,当线粒体裂解时会释放细胞色素C (Cyt-C),随后形成凋亡小体激活Caspase-3和Caspase-8,最终激活Caspase-9导致颗粒细胞凋亡;当颗粒细胞发生凋亡,家禽体内卵泡丧失生物功能并且卵泡细胞之间的调控失衡,促使卵泡内卵母细胞和膜细胞凋亡,最终导致卵泡发生闭锁;颗粒细胞在存活状态下所分泌的生长因子、性腺类固醇、细胞因子能减少卵母细胞氧化损伤,防止细胞内活性氧(ROS)水平过高导致的线粒体DNA损伤,从而避免线粒体功能障碍而造成的颗粒细胞凋亡。作者从颗粒细胞凋亡及其影响因素、颗粒细胞凋亡和卵泡闭锁的关系、颗粒细胞凋亡对卵泡闭锁的影响3个方面进行阐述,以期为减少卵泡闭锁、提高家禽繁殖性能提供理论依据。  相似文献   

19.
In the mammalian ovary, more than 99% of follicles degenerate without ovulation and few oocytes ovulate and succeed to the next generation. Granulosa cell apoptosis plays a critical role in this process, follicular atresia. However, the molecular mechanisms responsible for the regulation of granulosa cell apoptosis have not been clarified. Death ligand and receptor systems are major apoptosis-inducing factors. This review describes the granulosa cell apoptosis via death ligand and receptor systems during follicular atresia in the porcine ovary.  相似文献   

20.
More than 99% of follicles in mammalian ovaries undergo atresia, but the mechanisms regulating the strict selection process are still unclear. Granulosa cell apoptosis is considered the trigger of follicular atresia, which occurs in advance of the death of an oocyte. Cellular FLICE-like inhibitory protein (cFLIP), a homologue of procaspase-8 (also called FLICE), is an intracellular anti-apoptotic protein. It is expressed in granulosa cells of porcine ovaries, where its levels decreases during follicular atresia. We hypothesized that cFLIP regulates granulosa cell apoptosis by acting as a pro-survival factor. In the present study, to further reveal the function of cFLIP in granulosa cells, we examined the anti-apoptotic mechanism of cFLIP using KGN, a human granulosa tumor cell line. Fas-mediated apoptosis was induced by co-treatment with anti-Fas antibody (CH-11), which acts as an agonist of Fas-ligand, and cycloheximide (CHX). When cFLIP was stably expressed in KGN cells following transfection of an expression vector, the Fas-mediated apoptosis was inhibited. Suppression of cFLIP by small interfering RNA (siRNA) spontaneously induced cell death. Silencing of cFLIP promoted cleavage of procaspase-8, and the cell death caused by cFLIP siRNA was completely blocked by a caspase-8 inhibitor (Z-IETD-FMK), indicating that cFLIP regulates apoptosis in KGN cells by inhibiting cleavage of procaspase-8. In conclusion, cFLIP is an essential pro-survival factor for granulosa cells, and it prevents granulosa cell apoptosis by inhibiting procaspase-8 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号