首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil.  相似文献   

2.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

3.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

4.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably.  相似文献   

5.
Nitrogen (N) cycling in terrestrial ecosystems is complex since it involves the closely interwoven processes of both N uptake by plants and microbial turnover of a variety of N metabolites. Major interactions between plants and microorganisms involve competition for the same N species, provision of plant nutrients by microorganisms and labile carbon (C) supply to microorganisms by plants via root exudation. Despite these close links between microbial N metabolism and plant N uptake, only a few studies have tried to overcome isolated views of plant N acquisition or microbial N fluxes. In this study we studied competitive patterns of N fluxes in a mountainous beech forest ecosystem between both plants and microorganisms by reducing rhizodeposition by tree girdling. Besides labile C and N pools in soil, we investigated total microbial biomass in soil, microbial N turnover (N mineralization, nitrification, denitrification, microbial immobilization) as well as microbial community structure using denitrifiers and mycorrhizal fungi as model organisms for important functional groups. Furthermore, plant uptake of organic and inorganic N and N metabolite profiles in roots were determined.Surprisingly plants preferred organic N over inorganic N and nitrate (NO3) over ammonium (NH4+) in all treatments. Microbial N turnover and microbial biomass were in general negatively correlated to plant N acquisition and plant N pools, thus indicating strong competition for N between plants and free living microorganisms. The abundance of the dominant mycorrhizal fungi Cenococcum geophilum was negatively correlated to total soil microbial biomass but positively correlated to glutamine uptake by beech and amino acid concentration in fine roots indicating a significant role of this mycorrhizal fungus in the acquisition of organic N by beech. Tree girdling in general resulted in a decrease of dissolved organic carbon and total microbial biomass in soil while the abundance of C. geophilum remained unaffected, and N uptake by plants was increased. Overall, the girdling-induced decline of rhizodeposition altered the competitive balance of N partitioning in favour of beech and its most abundant mycorrhizal symbiont and at the expense of heterotrophic N turnover by free living microorganisms in soil. Similar to tree girdling, drought periods followed by intensive drying/rewetting events seemed to have favoured N acquisition by plants at the expense of free living microorganisms.  相似文献   

6.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

7.
《Soil biology & biochemistry》2001,33(12-13):1811-1816
A high metal-containing soil and a low metal-containing soil were supplied with 14C-labelled glucose at two rates, one to provide a constant glucose-to-soil ratio and the other a constant glucose-to-biomass ratio. The aim was to assess the effects of these different ratios on the microbial substrate utilisation efficiency. Glucose was added with or without N to investigate the extraction efficiency of the fumigation-extraction method shortly after substrate addition. The addition of glucose without N resulted in a proportionally larger increase in microbial biomass C than in microbial ninhydrin-reactive N (ENIN) within the first few days after substrate addition, due to N deficiency. The biomass C-to-ENIN ratio remained constant in all soil treatments after glucose addition in combination with N, indicating that the extraction efficiency of the fumigation-extraction method is not affected by the addition of glucose. Lower percentages of glucose added were incorporated into the microbial biomass with an increasing ratio of glucose-to-biomass. The ratio of respired to biomass incorporated 14C increased in all high metal-containing soil treatments markedly above that of the low metal-containing soil from day two of the incubation, markedly overriding the effects on the glucose C-to-biomass C ratio. Our results clearly demonstrated that more substrate was diverted by microorganisms into catabolic at the expense of anabolic processes in a high metal-containing soil.  相似文献   

8.
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China. Despite the popularity of this practice, our understanding of the underlying processes for straw and manure combined application is relatively poor. In this study, rice straw (carbon (C)/nitrogen (N) ratio of 63), green manure (hairy vetch, C/N ratio of 14), and their mixtures (C/N ratio of 25 and 35) were added into a paddy soil, and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment. All plant residue treatments significantly enhanced CO2 and CH4 emissions, but decreased N2O emission. Dissolved organic C (DOC) and N (DON) and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment, and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments. Changes in plant residue C/N ratio, DOC/DON ratio, and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil. Additionally, the treatment with green manure alone yielded the largest C and N losses, and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential (nGWP) among the amended treatments. In conclusion, the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw (N immobilization) or the sole application of leguminous green manure (high C and N losses), and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP.  相似文献   

9.
A 28-day incubation experiment at 12°C was carried out on the decomposition of maize leaf litter to answer the questions: (1) Is the decomposition process altered by chemical manipulations due to differences in the colonization of maize leaf litter? (2) Do organisms using this maize material contribute significantly to the soil microbial biomass? The extraction of the maize straw reduced its initial microbial biomass C content by 25%. Fumigation and extraction eliminated the microbial biomass by 88%. In total, 17% of added maize straw C was mineralized to CO2 during the 28-day incubation at 12°C in the treatment with non-manipulated straw. Only 14% of added C was mineralized in the treatment with extracted straw as well as in the treatment with fumigated and extracted straw. The net increase in microbial biomass C was 79 μg g?1 soil in the treatment with non-manipulated straw and an insignificant 9 μg g?1 soil in the two treatments with manipulated straw. However, the net increase did not reflect the fact that the addition of maize straw replaced an identical 58% (≈180 μg g?1 soil) of the autochthonous microbial biomass C3-C in all three straw treatments. In the two treatments with manipulated straw, the formation of maize-derived microbial biomass C4-C was significantly reduced by 25%. In the three straw treatments, the ratio of fungal ergosterol-to-microbial biomass C ratio showed a constant 60% increase compared to the control, and the contents of glucosamine and muramic acid increased by 18%. The average fungal C/bacterial C ratio was 3.6 in the soil and 5.0 in the recovered maize straw, indicating that fungal dominance was not altered by the initial chemical manipulations of the maize straw-colonizing microorganisms.  相似文献   

10.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

11.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

12.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils.  相似文献   

13.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

14.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

15.
Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments:control with no earthworms,regular density(RD)with two earthworms,and increased density(ID)with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms.Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation(P<0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.  相似文献   

16.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

17.
C and N mineralization was quantified in an incubation experiment with two samples containing different amounts of microbial biomass. The samples from two layers (0–20, 20–30 cm) of an arable luvisol from loess were fertilized with nitrate, mixed with 14C-labelled straw and incubated for 52 days at different O2 levels. Decreasing O2 concentrations (21, 2, 1 and 0% O2) in soil conducted a decrease in C and N mineralization. More C and N were mineralized in samples with a higher initial microbial biomass. The differences in microbial biomass were still present at the end of the experiment, but more proliferation was detected in samples with the lower initial microbial biomass, leading to equal ratios between microbial biomass-C and soil organic C in both soils.  相似文献   

18.
The turnover of organic matter determines the availability of plant nutrients in unfertilized soils, and this applies particularly to the alkaline saline soil of the former Lake Texcoco in Mexico. We investigated the effects of alkalinity and salinity on dynamics of organic material and inorganic N added to the soil. Glucose labelled with 14C was added to soil of the former Lake Texcoco drained for different lengths of time, and dynamics of 14C, C and N were investigated with the Detran model. Soil was sampled from an undrained plot and from three drained for 1, 5 and 8 years, amended with 1000 mg 14C‐labelled glucose kg?1 and 200 mg NH4+‐N kg?1, and incubated aerobically. Production of 14CO2 and CO2, dynamics of NH4+, NO2 and NO3, and microbial biomass 14C, C and N were monitored and simulated with the Detran model. A third stable microbial biomass fraction had to be introduced in the model to simulate the dynamics of glucose, because > 90 mg 14C kg?1 soil persisted in the soil microbial biomass after 97 days. The observed priming effect was mostly due to an increased decay of soil organic matter, but an increased turnover of the microbial biomass C contributed somewhat to the phenomenon. The dynamics of NH4+ and NO3 in the NH4+‐amended soil could not be simulated unless an immobilization of NH4+ into the microbial biomass occurred in the first day of the incubation without an immediate incorporation of it into microbial organic material. The dynamics of C and a priming effect could be simulated satisfactorily, but the model had to be adjusted to simulate the dynamics of N when NH4+ was added to alkaline saline soils.  相似文献   

19.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle.  相似文献   

20.
Wheat plants were grown on two soils of different texture, a sandy soil and a silty clay loam, in an atmosphere containing 14CO2. The 14C and total C content of the shoots, roots, soil rhizosphere CO2 and soil microbial biomass were measured 21, 28, 35 and 42 days after germination. There was a pronounced effect of soil texture on the turnover of root-derived C through the microbial biomass. Turnover was relatively fast and at a constant rate in the sandy soil but slowed down in the clay soil, following an initial high assimilation of root products into the microbial biomass.Four percent of the total fixed 14C was retained in the clay loam after 6 weeks compared with a corresponding value of 1.2% for the sandy soil. The proportion of fixed 14C recovered as rhizosphere CO2 at each of the sampling times was relatively constant for the sandy soil (ca 19%) but decreased from 17% at day 28 to 11% at day 42 in the clay soil. The proportion of total fixed 14C in the soil biomass as measured by a fumigation technique increased to a maximum value of 20% after 6 weeks in the sandy soil but decreased in the clay soil from 86% at day 21 to 26% after 42 days plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号