首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A virgin Pinus koraiensis forest in the Xiaoxing’an Mountains was selected to study its rainfall redistribution effect via 97 rainfall occurrences during a growing season. The following results were obtained: 1) The canopy interception of the P. koraiensis virgin forest amounted to 98168 mm during a growing season (May to September), which was 19.6 per cent of the total rainfall and 1.3 times that of a secondary Betula platyphylla forest. Compared with other forest types in China (11.4%–36.5%), the ratio of the canopy interception in the virgin pine forest was at a medium level. 2) The throughfall of the virgin pine forest was 395.77 mm, which accounted for 78.7% of total precipitation, and the stem-flow was 8.78 mm, accounting for 1.74% of total precipitation. Compared with the secondary birch forest, the virgin pine forest had lower throughfall but higher stem-flow. 3) Cubic regression equations (p < 0.01) which describe the relation between throughfall, stem-flow and canopy interception in the virgin pine forest and rainfall in an open field were fitted. A linear regression equation (p < 0.01) was found to be a better fit for the relationship between throughfall of the secondary birch forest and rainfall outside the forest. Factors affecting throughfall and stem-flow were analyzed, with results providing a good reference to the study of rainfall redistribution in coniferous and broadleaved mixed forests. __________ Translated from Science of Soil and Water Conservation, 2006, 4(6): 61–65 [译自: 中国水土保持科学]  相似文献   

2.
川西亚高山原始云杉林内降雨分配研究   总被引:17,自引:3,他引:17  
穿透雨、茎流和林冠截留在森林生态系统水文循环和水量平衡中占有极其重要的地位 (VanDijketal .,2 0 0 1) ,因而从生理学、生态学和水文学的观点来看 ,研究一定区域内植被与降雨之间的相关性具有重要的意义 (Aboaletal .,1999)。川西亚高山针叶林处于我国东南半壁湿润地区与西北半壁干旱地区的过渡地带上 ,且多分布于江河上游 ,在涵养水源、保持水土、稳定河川流量、维护生态平衡等方面具有重要的地位 ,被誉为庇护四川及长江流域的“绿色万里长城”(杨玉坡 ,1990 )。马雪华 (1987)对米亚罗地区亚高山冷杉林的林冠截留做了一些初步的观测 …  相似文献   

3.
The effects of dry deposition, canopy leaching, precipitation ion concentration, and precipitation H+ concentration on net throughfall flux (NTF, throughfall minus bulk precipitation) were evaluated on a seasonal basis by using a multiple regression analysis approach based on an observation period of 4 years in Shaoshan subtropical mixed evergreen forest, south-central China. Regression analysis results indicated that the estimated canopy exchange flux was the dominant factor regulating the NTF and the calculated dry deposition was a minor term. The seasonal dry deposition of base cations accounted for 15%–43% of the NTF. The NTF analysis showed that K+, Ca2+, Mg2+, Na+, and weak acids in throughfall were derived from foliar leaching and the canopy uptakes of H+, NH4 +, and NO3 were from precipitation. The retention rate of proton (H+ and NH4 +) in the canopy was close to the canopy leaching rate of base cations when corrected for weak acids because weak acid-induced canopy leaching did not exchange with protons, which suggested that the canopy leaching processes neutralized acid precipitation in Shaoshan forest.  相似文献   

4.
Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model's ability in simulating the interception of individual rainfall events were suggested.  相似文献   

5.
Interception loss, gross precipitation, throughfall and stemflow solution chemistry beneath pine (Pinus pseudostrobus Lindl.), oak (Quercus sp.) and pine-oak natural forest canopies in northeastern Mexico were measured. Coefficients of variation for throughfall were 12% in pine and oak canopies and 17% in the mixed pine-oak canopy. The variability of stemflow averaged 66, 126 and 73% for pine, oak and the mixed pine-oak canopies, respectively. Linear regression analysis of net versus gross precipitation for the three canopies showed highly significant correlations (r = 0.974-0.984). Total precipitation during the experimental period was 974 mm and estimated interception loss was 19.2, 13.6 and 23% for the pine, oak and pine-oak canopies, respectively. Stemflow did not occur following rainfall events of less than 4 mm and, in all canopies, stemflow represented a minimal proportion of gross precipitation (0.60, 0.50 and 0.03% for pine, oak and pine-oak, respectively). Throughfall pH in pine (6.2), oak (6.3) and pine-oak (6.3) canopies was significantly more acidic than gross precipitation (6.6). Stemflow pH ranged from 3.7 (pine) to 6.0 (oak). The pine-oak canopy registered the highest throughfall and stemflow electrical conductivities, 104 and 188 microS cm(-1), respectively. Net nutrient leaching of K, Mg, Na, Fe, Mn and Zn was significantly higher from the pine-oak canopy than from the pure pine and oak canopies. Mean depositions of Ca and Cu in throughfall behaved similarly among the three types of canopies. A greater proportion of Zn in gross precipitation was absorbed by the oak canopy than by the pine and pine-oak canopies. Enrichment factors beneath the pine-oak canopy relative to gross precipitation varied from 1.2 to 3.2 for macro-nutrients (Ca, K, Mg and Na) and from 1.4 to 3.1 for micro-nutrients (Cu, Fe, Mn and Zn). Stemflow depositions of Ca, K, Mg and Cu were higher in the pine-oak canopy, whereas stemflow depositions of Na, Fe, Mn and Zn were higher in the pine canopy.  相似文献   

6.
紫金山麻栎林降水分配格局研究   总被引:1,自引:0,他引:1  
对紫金山栎林林冠截留、树干茎流与降水量之间的关系进行了研究。在观测的46场降水中,降水量达823.8 mm,林冠总截留量、树干茎流量和穿透雨量分别为207.95 mm、33.30 mm、582.55 mm,林冠截留率、树干茎流率和穿透率分别为25.24%、4.04%、70.71%。随着降水量的增大,林冠截留量、树干茎流量、穿透雨量及穿透率都有所增加,林冠截留率降低,树干茎流率在2~50 mm降水量级中逐渐增大,在>50 mm降水量级有所降低。林冠截留量与降水量之间呈幂函数关系,而树干茎流量、穿透雨与降水量之间呈线性相关。  相似文献   

7.
Data have been compiled from published sources on nitrogen (N) fluxes in precipitation, throughfall, and leaching from 69 forest ecosystems at 50 sites throughout China, to examine at a national level: (1) N input in precipitation and throughfall, (2) how precipitation N changes after the interaction with canopy, and (3) whether N leaching increases with increasing N deposition and, if so, to what extent. The deposition of dissolved inorganic N (DIN) in precipitation ranged from 2.6 to 48.2 kg N ha−1 year−1, with an average of 16.6 kg N ha−1 year−1. Ammonium was the dominant form of N at most sites, accounting for, on average, 63% of total inorganic N deposition. Nitrate accounted for the remaining 37%. On average, DIN fluxes increased through forest canopies, by 40% and 34% in broad-leaved and coniferous forests, respectively. No significant difference in throughfall DIN inputs was found between the two forest types. Overall, 22% of the throughfall DIN input was leached from forest ecosystems in China, which is lower than the 50–59% observed for European forests. Simple calculations indicate that Chinese forests have great potential to absorb carbon dioxide from the atmosphere, because of the large forest area and high N deposition.  相似文献   

8.
通过对杜仲林下穿透雨的定位监测,结果表明:在测定期间,穿透雨量占总降雨量的72.5%,2004年7月的穿透雨量最大(319.9 mm),而穿透雨率最大值(85.5%)出现在2004年12月;在水平空间分布上,林下穿透雨显示出明显的空间变化,各观测点的穿透雨率具有显著性差异,而且穿透雨的空间变化率随着降雨量和降雨强度的增加而减小;杜仲林下穿透雨呈现明显的汇集效应,其中50%的观测点和28.8%的降雨出现了穿透雨率大于100%的情况;林冠特征影响穿透雨的空间分布,冠层的厚度和盖度与穿透雨之间均有显著的负相关性,但是穿透雨率与距主干的距离和分枝角度呈正相关.  相似文献   

9.
  • ? Dissolved organic matter (DOM) and its main constituents carbon (DOC) and nitrogen (DON) represent an important part of the C and N cycles in forest ecosystems. Although many investigations have been addressing this issue, the knowledge on particulate organic matter (0.45 μm < POM < 500 μm) dynamics, its origin and involvement in organic matter cycling in forest ecosystems is still imperfect.
  • ? In this paper, we report on dissolved and particulate organic carbon and nitrogen fractions in throughfall solutions collected from a broadleaved and coniferous forest stand in Central Germany. Over a period of 2.5 y (2005–2007) we followed the concentrations and fluxes of DOM and POM at a mature beech (Fagus sylvatica L.) and a Norway spruce (Picea abies L.) forest site. Bulk and throughfall precipitation were sampled in weekly (2005) and fortnightly (2006–2007) intervals and analyzed for dissolved (< 0.45 μm, filtered) and total (< 500 μm, unfiltered) amounts of organic carbon (DOC, TOC, POC) and nitrogen (TN, DN, PON, NO3-N) species. Proportions of particulate organic C and N were determined by difference between total and dissolved fractions.
  • ? Under spruce, throughfall concentrations of most C and N fractions were twice as high as under beech. At both sites, concentrations and fluxes were significantly higher during the growing than the dormant season. At the broadleaved site, 80% of the annual fluxes of the DOC and TOC and 70% of the DN and TN were released during the growing season, compared to 60% for C and N at the coniferous site. POC under beech contributes with up to 30% to TOC compared to less than 20% at the spruce site.
  • ? We suggest that pollen deposition, insect excretions and accumulated organic matter mobilised by dry/wet precipitation patterns play a supreme role for the formation of DOM and POM in forest canopies. The study demonstrates that the canopy is an important source for POM. Dynamics of DOM and POM are mainly driven by tree species effects and seasonality as well as by biotic agents.
  •   相似文献   

    10.
    在2001年森林生长季(6-9月),通过测量降雨各分量,分析了中国吉林省长白山北坡红松阔叶林冠层对降水分配各分量的影响。结果表明:干流量(37.39 mm),透流量(326.02 mm)和截留量(105.67 mm),分别占同期降雨量(469.08 mm) 的7.97%、69.50%和22.53%。林冠对降雨的月份分配规律是:树干茎流率的月变化为七、八月份大于其它月份,穿透率从6-9月份有逐渐减少的趋势,而截留率的变化正好与穿透率相反,从19.43%增加到31.02%。林内降雨中的养分元素浓度发生显著变化,除Ca、Mg外,其它元素的浓度都有所增加。经分析得出,大气降雨中养分元素的浓度序列为:Ca> Mg> N> K> Fe > P> Cu > Mn;而穿透雨中养分元素的浓度序列为:K>N>Mg>Ca>P>Fe>Mn>Cu;在林冠淋溶中各养分元素的浓度序列为:Mn> P>K>Cu>Fe>N>Mg>Ca。图1表5参13。  相似文献   

    11.
    Climate change towards a warmer and dryer vegetation period may negatively impact growing conditions for Scots pine monocultures situated on dry, sandy soils in Central Europe. The purpose of the study was to evaluate the effect of thinning on precipitation throughfall in young Scots pine stands on typical pine sites. In 1992, observation of precipitation and throughfall started at the Tyniště research site (lowland of Eastern Bohemia) in a 7-year-old pine stand planted in rows at a stocking of ca 10,000 trees ha−1. Throughfall was measured at weekly intervals during the growing season (April-September) by gauges randomly located in two treatments - variant 1C - Control without thinning and variant 2T - Thinned - and compared to precipitation at an open space outside of the canopy. The results demonstrated the positive effects of heavy low thinning (removal of 47% of the total number of trees and 31% of total pre-treatment basal area) on the water supply of young Scots pine stands. On the Thinned treatment, throughfall increased by 2-8% compared to Control plot. This positive effect persisted for six years after the first canopy reduction and the differences were significant for the first four years after thinning. After the second treatment (high thinning), throughfall on the Thinned treatment showed a nominal, but statistically insignificant increase. The likely reason for this result is that the application of a different type of thinning increased the variability of the canopy and, consequently, the effect of released crowns could not be detected.  相似文献   

    12.
    Nitrogen fertilization in the nursery, along with altering the configuration of forest gaps, may improve the reforestation success of longleaf pine seedlings. During the very droughty 1998 growing season in Florida and Georgia, survival was higher under the forest canopy than in small (0.10 ha, 36 m diameter) and large (1.6 ha, 144 m diameter) canopy gaps. In the large gaps, survival of containerized seedlings was higher along the edges, particularly the SW edge. Shade from adult trees and the nurse effect of shrubs increased survival, while grass competition reduced survival. During dry years part of the “exclusionary zone” along the edge of canopy gaps (SW sector) may serve as a “survival zone”, at least in the short term. A model using oval-shaped gaps oriented from NW to SE, with an area of 0.25 ha is proposed to maximize the survival and growth of artificially regenerated longleaf pine seedlings.  相似文献   

    13.
    Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropics as a consequence of increasing human activities in the next decades. In the literature, it is frequently assumed that tropical montane forests are N-limited, while tropical lowland forests are P-limited. In a low-level N and P addition experiment, we determined the short-term response of N and P cycles in a north Andean montane forest on Palaeozoic shists and metasandstones at an elevation of 2100 m a.s.l. to increased N and P inputs. We evaluated experimental N, P and N + P additions (50 kg ha−1 yr−1 of N, 10 kg ha−1 yr−1 of P and 50 kg + 10 kg ha−1 yr−1 of N and P, respectively) and an untreated control in a fourfold replicated randomized block design. We collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall and litterfall before the treatment began (August 2007) until 16 months after the first nutrient application (April 2009). Less than 10 and 1% of the applied N and P, respectively, leached below the organic layer which contained almost all roots and no significant leaching losses of N and P occurred to below 0.15 m mineral soil depth. Deposited N and P from the atmosphere in dry and wet form were retained in the canopy of the control treatment using a canopy budget model. Nitrogen and P retention by the canopy were reduced and N and P fluxes in throughfall and litterfall increased in their respective treatments. The increase in N and P fluxes in throughfall after fertilization was equivalent to 2.5% of the applied N and 2% of the applied P. The fluxes of N and P in litterfall were up to 15% and 3%, respectively, higher in the N and N + P than in the control treatments. We conclude that the expected elevated N and P deposition in the tropics will be retained in the ecosystem, at least in the short term and hence, N and P concentrations in stream water will not increase. Our results suggest that in the studied tropical montane forest ecosystem on Palaeozoic bedrock, N and P are co-limiting the growth of organisms in the canopy and organic layer.  相似文献   

    14.
    The ecosystems occurring on dystrophic soils, such as sandy soils, are highly dependent on nutrients from the atmosphere and those cycled by their own biota. Nutrient inputs from rainfall and throughfall were measured between October 2001 and August 2003 in a secondary Atlantic rainforest in southern Brazil. Canopy interception (rainfall minus throughfall) was 17.3% of the annual rainfall of 2,235 mm. Monthly interception ranged from 12 to 31% during the rainiest months (precipitation above 200 mm) and from 1 to 45% during the driest months (precipitation below 50 mm) indicating relatively high variability during this period. The studied site may be susceptible to water stress in this period due to the high permeability of the sandy soil. Approximately 80% of the Ca and Na and 57% of Mg were mainly from rainfall (bulk deposition) whereas the main input source for K was net throughfall (about 78%). Mean annual inputs via throughfall (in kg ha−1) were: 90.6 for Na, 29.1 for K, 7.1 for Ca, and 2.9 for Mg. The highest nutrient inputs occurred during the rainy season. Na fluxes were relatively high, while K, Ca, and Mg inputs were low, compared with other tropical and subtropical forests. Information on nutrient fluxes for different forest ecosystems are fundamental for building up a database that can give support to environmental diagnosis, to forest management, and to conservation and restoration techniques.  相似文献   

    15.
    《林业研究》2020,31(5)
    The explicit purpose of this study was to characterize climate and vegetation along the western slope of the El Sira Mountains(Peru) and evaluate radial tree growth in response to seasonal rainfall anomalies. From May 2011 until September 2015, we monitored radial stem growth of 67 trees using point dendrometers and measured climate within five sites along an altitudinal gradient. The transect extends from lowland terra firme forests, over submontane forests, late and mid successional montane cloud forests up to exposed elfin forests. Monthly rainfall estimates by the TRMM PR satellite(product 3B42) were highly correlated with our rain gauge observations but underestimate rainfall at high altitudes. Different intra-annual tree growth patterns could be identified within each elevational forest type, showing species with strictly seasonal growth, continuous growth or alternating growth patterns independent of the seasons. Stem growth at each site was generally larger during rainy seasons, except for the elfin forest. The rainy season from October 2013 to March 2014 was extraordinarily dry, with only 73% of long-term mean precipitation received, which resulted in reduced radial growth, again with the exception of the elfin forest. This indicates that montane tropical rain forests may suffer from prolonged droughts, while exposed ridges with elfin forests still receive plenty of precipitation and benefit from receiving more solar radiation for photosynthesis.  相似文献   

    16.
    Throughfall varies in space, which complicates measurements and makes it difficult to achieve accurate spatial representation. In the present research, we measured gross rainfall and throughfall from May 2011 to September 2012, leaf area index, and locations of trees within a Pinus tabulaeformis plantation forest in the Loess Plateau of northwestern China. The spatial heterogeneity of throughfall and related factors, as well as the minimum number and locations of collectors needed to measure throughfall accurately, were analyzed by statistical techniques. The results indicated that the throughfall was concentrated at the canopy edge, indicating that the edge of the canopy of P. tabulaeformis had a convergence effect on throughfall. The analysis of semivariance of throughfall demonstrated that canopy structure was a key factor influencing spatial variation of throughfall in low rainfall events, but measurement errors and other nonspatial variables were the primary factors affecting the variation of throughfall in high rainfall events. Based on the mean throughfall at different proportions of canopy radius centered on the individual tree stem, the minimum number and locations of collectors needed to accurately measure throughfall was estimated. In this study, four rain collectors (diameter 20?cm) at the 3/5 canopy radius could reasonably represent the average throughfall under the individual P. tabulaeformis canopy.  相似文献   

    17.
    为了评估生态公益林涵养水源服务功能,选择德庆县三叉顶自然保护区生态公益林,定位观测2006年6月~2007年6月100次大气降水事件的截留分配效应。结果表明,观测期内降水总量为1 317.60mm,林冠截留量、树干茎流量和穿透水量分别是318.37,87.85和911.38 mm,林冠截留率、茎流率和穿透率分别为24.16%,6.67%和69.17%。林外降水量大于1.3 mm时才能观测到穿透雨,林外降水量达到3.0mm时才开始有树干茎流出现。林冠截留量、树干茎流量和穿透量与降水量均呈正相关,相关系数R2分别为0.788 8,0.957 7和0.965 9;林冠截留率与林外降水量呈负相关,而树干茎流率和穿透率呈正相关,相关系数R2分别为0.835 6,0.803 4和0.874 2。  相似文献   

    18.
    为了评估生态公益林涵养水源服务功能,选择德庆县三叉顶自然保护区生态公益林,定位观测2006年6月~2007年6月100次大气降水事件的截留分配效应。结果表明,观测期内降水总量为1317.60mm,林冠截留量、树干茎流量和穿透水量分别是318.37,87.85和911.38mm,林冠截留率、茎流率和穿透率分别为24.16%,6.67%和69.17%。林外降水量大于1.31mm时才能观测到穿透雨,林外降水量达到3.0mm时才开始有树干茎流出现。林冠截留量、树干茎流量和穿透量与降水量均呈正相关,相关系数序分别为0.7888,0.9577和0.9659;林冠截留率与林外降水量呈负相关,而树干茎流率和穿透率呈正相关,相关系数尺。分别为0.8356,0.8034和0.8742。  相似文献   

    19.
    干旱半干旱区山地森林的水分调节功能   总被引:19,自引:0,他引:19  
    处于中国西北干旱半干旱区的山地森林以独特的水文作用成9为山前平原及川区绿洲生态经济系统稳定发展的基础。以典型山地森林祁连山水源涵养林的主要群落青海云杉林为例,通过长期定位观测研究森林调节小气候的水文规律及功能,揭示了森林对降水的分配调节作用。森林通过林冠层截留降水使到达林内的降水量减少、强度降低、雨滴对地面的冲击减弱,避免林内发生地表径流引起水土流失;森林通过林冠层遮蔽减弱太阳辐射降低了林内土壤蒸发,保持林内湿度较高、土壤含有较多水分,为喜湿耐荫植物生长发育创造了适宜的阴湿环境,并提供了充足的水分条件;森林的蒸腾发散使同一高度林区上空的湿度比草地或裸地高,改变了局地大气环流,为降水形成准备了物质条件,起到了增加林区降水的作用。  相似文献   

    20.
    The interception of rainfall by vegetation and the subsequent evaporation of intercepted water from the canopy surface play an important role in hydrological processes, and the water and energy balance of forest ecosystems. Spatial variability of interception has different effects on water yield from watersheds located in different climatic and biome regions. In order to explain the spatial patterns of interception, we adopted grid-sampling method to install rain-gauges to measure throughfall. Results show that the coefficient of variation (Cv) of throughfall tends to decline as rain intensity increases. After the canopy is saturated, Cv of throughfall remained at a constant value, which is close to the Cv of the canopy leaf area index (LAI) value 0.18. Thus, the Cv of LAI is regarded as the extremum of that of throughfall. Because of the special characteristic of Chinese pine (Pinus tabulaeformis), and the lower droopy branches, negative values for interception account for only 13% of the total samples. Furthermore, the max is above 70% of gross rainfall. __________ Translated from Science of Soil and Water Conservation, 2006, 4(3): 26–30 [译自: 中国水土保持科学]  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号