首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rehabilitated forests established about 100 years ago on denuded lands in a hilly granitic area are widespread in the Kyoto–Osaka area, the second largest megalopolis in Japan. From 2001 to 2003, we monitored the annual nitrogen (N) budget of a rehabilitated forest watershed dominated by Quercus serrata and Ilex pedunculosa. The ion concentrations of bulk rain in the watershed were similar to those of other watersheds in Japan. The annual bulk rain input of N ranged from 5.1 to 6.3 kg N ha−1 year−1, and the N deposition from throughfall and stem-flow ranged from 7.5 to 8.2 kg N ha−1 year−1. Estimated annual outputs of N from the stream ranged from 3.3 to 10.6 kg N ha−1 year−1. These results indicate that the amount of N deposition in this area is less than that in urban Tokyo (>10 kg N ha−1 year−1), but the N output of the watershed is comparable with that of the Tokyo area. We discuss the characteristics of N dynamics in rehabilitated forests, focusing on the biogeochemical processes of this watershed.  相似文献   

2.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

3.
Nitrogen (N) deposition exceeds the critical loads for this element in most parts of Switzerland apart from the Alps. At 17 sites (8 broadleaved stands, 8 coniferous stands, and 1 mixed stand) of the Swiss Long-term Forest Ecosystem Research network, we are investigating whether N deposition is associated with the N status of the forest ecosystems. N deposition, assessed from throughfall measurements, was related to the following indicators: (1) nitrate leaching below the rooting zone (measured on a subset of 9 sites); (2) the N nutrition of the forest stand based on foliar analyses (16 sites); and (3) crown defoliation, a non specific indicator of tree vitality (all 17 sites). Nitrate leaching ranging from about 2 to 16 kg N ha−1 a−1 was observed at sites subjected to moderate to high total N deposition (>10 kg ha−1 a−1). The C/N ratio of the soil organic layer, or, when it was not present, of the upper 5 cm of the mineral soil, together with the pool of organic carbon in the soil, played a critical role, as previous studies have also found. In addition, the humus type may need to be considered as well. For instance, little nitrate leaching (<2 kg N ha−1 a−1) was recorded at the Novaggio site, which is subjected to high total N deposition (>30 kg ha−1 a−1) but characterized by a C/N ratio of 24, large organic C stocks, and a moder humus type. Foliar N concentrations correlated with N deposition in both broadleaved and coniferous stands. In half of the coniferous stands, foliar N concentrations were in the deficiency range. Crown defoliation tended to be negatively correlated with N concentrations in the needles. In the majority of the broadleaved stands, foliar N concentrations were in the optimum nutritional range or, on one beech plot with high total N deposition (>25 kg ha−1 a−1), above the optimum values. There was no correlation between the crown defoliation of broadleaved trees and foliar concentrations.  相似文献   

4.
Studies on the combined effects of beech–spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via throughfall and soil solution were measured in adjacent stands of pure spruce, mixed spruce–beech and pure beech on three nutrient rich sites (Flysch) and three nutrient poor sites (Molasse) over a 2-year period. At low deposition rates (highest throughfall fluxes: 17 kg N ha−1 year−1 and 5 kg S ha−1 year−1) there was hardly any linkage between nutrient inputs and outputs. Element outputs were rather driven by internal N (mineralization, nitrification) and S (net mineralization of organic S compounds, desorption of historically deposited S) sources. Nitrate and sulfate seepage losses of spruce–beech mixtures were higher than expected from the corresponding single-species stands due to an unfavorable combination of spruce-similar soil solution concentrations coupled with beech-similar water fluxes on Flysch, while most processes on Molasse showed linear responses. Our data show that nutrient leaching through the soil is not simply a “wash through” but is mediated by a complex set of reactions within the plant–soil system.  相似文献   

5.
The ecosystems occurring on dystrophic soils, such as sandy soils, are highly dependent on nutrients from the atmosphere and those cycled by their own biota. Nutrient inputs from rainfall and throughfall were measured between October 2001 and August 2003 in a secondary Atlantic rainforest in southern Brazil. Canopy interception (rainfall minus throughfall) was 17.3% of the annual rainfall of 2,235 mm. Monthly interception ranged from 12 to 31% during the rainiest months (precipitation above 200 mm) and from 1 to 45% during the driest months (precipitation below 50 mm) indicating relatively high variability during this period. The studied site may be susceptible to water stress in this period due to the high permeability of the sandy soil. Approximately 80% of the Ca and Na and 57% of Mg were mainly from rainfall (bulk deposition) whereas the main input source for K was net throughfall (about 78%). Mean annual inputs via throughfall (in kg ha−1) were: 90.6 for Na, 29.1 for K, 7.1 for Ca, and 2.9 for Mg. The highest nutrient inputs occurred during the rainy season. Na fluxes were relatively high, while K, Ca, and Mg inputs were low, compared with other tropical and subtropical forests. Information on nutrient fluxes for different forest ecosystems are fundamental for building up a database that can give support to environmental diagnosis, to forest management, and to conservation and restoration techniques.  相似文献   

6.
Atmospheric lead and cadmium deposition in bulk precipitation and throughfall was investigated at four forests in the Kanto district, Japan, to assess the impact of human activities on the environmental health of forests. Annual lead and cadmium depositions in bulk precipitation ranged from 8.9 to 25.7 g ha−1 year−1 and from 0.77 to 1.30 g ha−1 year−1, respectively. Lead and cadmium deposition increased in the summer at every forest due to large amounts of rainfall. At one of the forests, the depositions were also high in the winter due to heavy snowfall. These depositions were similar to recent depositions observed at other rural and urban sites in Japan and several forests in Europe and North America after 1990. These results indicate that although anthropogenic lead and cadmium are deposited at these rates over wide areas, depositions are still higher than in remote areas.  相似文献   

7.
High elevation ecosystems are particularly sensitive to environmental change. Mountain agriculture is extending to areas at high elevations in Taiwan but the effects on nutrient cycling of the surrounding ecosystems are largely unknown. We examined precipitation chemistry at Piluchi Experimental Forest in central Taiwan to evaluate the contributions of local air pollution and long-range transport of air pollutants on nutrient cycling at this seemingly remote forest. Sea-salt aerosols and anthropogenic pollutants resulting from long-range transport of air pollutants and mountain agriculture activities are the key factors affecting precipitation chemistry at Piluchi Experimental Forest. Precipitation chemistry was dominated by ions of oceanic origin in the summer and by anthropogenic pollutants SO4 2−, NO3 and NH4 + in the winter and spring, the northeast monsoon season. The much higher concentrations of S and N in the northeast monsoon season than the summer suggest a substantial contribution from long-range transport as the prevailing air masses moved from inland China and passed over the industrialized east coast of China before arriving in Taiwan. The very high concentration of NH4 + (22 μeq L−1) in the spring, when the local application of N-containing fertilizers was high, signifies the influences of mountain agriculture. Despite very low concentrations relative to other sites in Taiwan, annual input of NH4 + (3.6 kg ha−1 year−1), NO3 (7.2 kg ha−1 year−1) and SO4 2− (10 kg ha−1 year−1) via precipitation was substantial suggesting that high elevation ecosystems of Taiwan are not free from the threat of atmospheric deposition of pollutants.  相似文献   

8.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   

9.
Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropics as a consequence of increasing human activities in the next decades. In the literature, it is frequently assumed that tropical montane forests are N-limited, while tropical lowland forests are P-limited. In a low-level N and P addition experiment, we determined the short-term response of N and P cycles in a north Andean montane forest on Palaeozoic shists and metasandstones at an elevation of 2100 m a.s.l. to increased N and P inputs. We evaluated experimental N, P and N + P additions (50 kg ha−1 yr−1 of N, 10 kg ha−1 yr−1 of P and 50 kg + 10 kg ha−1 yr−1 of N and P, respectively) and an untreated control in a fourfold replicated randomized block design. We collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall and litterfall before the treatment began (August 2007) until 16 months after the first nutrient application (April 2009). Less than 10 and 1% of the applied N and P, respectively, leached below the organic layer which contained almost all roots and no significant leaching losses of N and P occurred to below 0.15 m mineral soil depth. Deposited N and P from the atmosphere in dry and wet form were retained in the canopy of the control treatment using a canopy budget model. Nitrogen and P retention by the canopy were reduced and N and P fluxes in throughfall and litterfall increased in their respective treatments. The increase in N and P fluxes in throughfall after fertilization was equivalent to 2.5% of the applied N and 2% of the applied P. The fluxes of N and P in litterfall were up to 15% and 3%, respectively, higher in the N and N + P than in the control treatments. We conclude that the expected elevated N and P deposition in the tropics will be retained in the ecosystem, at least in the short term and hence, N and P concentrations in stream water will not increase. Our results suggest that in the studied tropical montane forest ecosystem on Palaeozoic bedrock, N and P are co-limiting the growth of organisms in the canopy and organic layer.  相似文献   

10.
The relationships of nitrogen biogeochemistry are reviewed, focusing on forested watersheds in North America, Europe and Japan. Changes in both local and global nitrogen cycles that affect the structure and function of ecosystems are described. Within northeastern United States and Europe, atmospheric deposition thresholds of ~8 and ~10 kg N ha−1 year−1, respectively, result in enhanced mobilization of nitrate. High nitrate concentrations and drainage water loss rates up to 22 kg N ha−1 year−1 have also been found near Tokyo. Although atmospheric deposition may explain a substantial portion of the spatial pattern of nitrate in surface waters, other factors also play major roles in affecting the spatial patterns of nitrogen biogeochemistry. Calcium availability influences the composition of the vegetation and the biogeochemistry of nitrogen. The abundance of sugar maple is directly linked to soil organic matter characteristics and high rates of nitrogen mineralization and nitrification. Seasonal patterns of nitrate concentration and drainage water losses are closely coupled with differences in seasonal temperature and hydrological regimes. Snow-dominated forested catchments have highest nitrate losses during snowmelt. Watersheds in the main island of Japan (Honshu) with high summer temperatures and precipitation inputs have greatest losses of nitrate occur during the late summer. Understanding future changes in nitrate concentrations in surface waters will require an integrated approach that will evaluate concomitantly the influence of both biotic and biotic factors on nitrogen biogeochemistry.  相似文献   

11.
To investigate the potential effects of nitrogen (N) deposition on Japanese forests, a chronic N-addition experiment that included three treatments (HNO3, NH4NO3, and control) was carried out in a 20-year-old Japanese cedar (Cryptomeria japonica D. Don) stand in eastern Japan over 7 years. The amount of N applied was 168 kg N ha−1 year−1 on the HNO3 plots and 336 kg N ha−1 year−1 on the NH4NO3 plots. Tree growth, current needle N concentration, and soil solution chemistry were measured. Nitrogen application decreased the pH and increased NO3 , Ca2+, Mg2+, and Al concentrations in the soil solution. The needle N concentration increased in both of the N plots during the first 3 years. Nevertheless, the annual increments in height and in the diameter at breast height of the Japanese cedars were not affected by N application, and no visible signs of stress were detected in the crowns. Our results suggest that young Japanese cedar trees are not deleteriously affected by an excess N load.  相似文献   

12.
Fine root biomass, rates of dry matter production and nutrients dynamics were estimated for 1 year in three high elevation forests of the Indian central Himalaya. Fine root biomass and productivity were higher in closed canopied cappadocian maple forest (9.92 Mg ha−1 and 6.34 Mg ha−1 year−1, respectively), followed by Himalayan birch forest (6.35 Mg ha−1 and 4.44 Mg ha−1 year−1) and Bell rhododendron forest (6.23 Mg ha−1 and 2.94 Mg ha−1 year−1). Both fine root biomass and productivity declined with an increase in elevation. Across the sites, fine root biomass was maximal in fall and minimal in summer. In all sites, maximum nutrient concentration in fine roots was in the rainy season and minimum in winter. Fine root biomass per unit basal area was positively related with elevation, Bell rhododendron forest having the largest fine root biomass per unit of basal area (0.53 Mg m−2) and cappadocian maple the least (0.18 Mg m−2). The production efficiency of fine roots per unit of leaf biomass also increased with elevation and ranged from 1.13 g g−1 leaf mass year−1 in cappadocian maple forest to 1.28 g g−1 leaf mass year−1 in Bell rhododendron forest. Present fine root turnover estimates showed a decline towards higher elevations (0.72 year−1 in cappadocian maple and 0.58 year−1 in Bell rhododendron forest) and are higher than global estimates (0.52).  相似文献   

13.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

14.
In this study, the supply and input–output balances of phosphorus (P) were investigated for a 10-year-period at 85 long-term monitoring sites in German forest ecosystems under the European Level II programme. These sites encompass 23 European beech (Fagus sylvatica L.) stands, 9 oak stands comprised of common oak (Quercus robur L.) and/or sessile oak (Quercus petraea Liebl.), 20 Scots pine (Pinus sylvestris L.) and 33 Norway spruce (Picea abies H.Karst.) stands. We quantified P concentrations in needles and leaves, P inputs from the atmosphere, P outputs through leaching and harvesting, and total P in the soil and humus layers. The P concentrations in European beech leaves from two sites (>1 mg P g−1 dry weight), and in Norway spruce needles from four sites (>1.2 mg P g−1 dry weight), were deficient over several years. In contrast, the oak and Scots pine sites were well supplied with P. When P removal through harvesting was disregarded, P balances were positive or stable (median 0.21 kg P ha−1 a−1). With harvesting, balances were mostly negative (median −0.35 kg P ha−1 a−1), with long-term P removal from the forest ecosystems.  相似文献   

15.
Improved or planted fallows using fast-growing leguminous trees are capable of accumulating large amounts of N through biological N2-fixation and subsoil N capture. During the fallow phase, the cycling of nutrients is largely efficient. However, there are few estimates of the fate of added N during the cropping phase, after the 'safety net' of fallow-tree roots is removed. Nitrate-N at the end of the fallow phase, which is pre-season to the subsequent crop, was monitored in seven land use systems in successive 20-cm soil layers to 120 cm depth at Domboshawa, Zimbabwe in October 2000. Thereafter, nitrate-N dynamics was monitored during cropping phase until April 2001 at 2-week intervals in plots that had previously 2-year planted fallows of Acacia angustissima and Sesbania sesban, and in a continuous maize control. Pre-season nitrate concentrations below 60 cm soil depth were <3 kg N ha−1 layer−1 for S. sesban, A. angustissima, Cajanus cajan and natural woodland compared with the maize (Zea mays L.) control, which had >10 kg N ha−1 layer−1. There was a flush of nitrate in the S. sesbania and A. angustissima plots with the first rains. Topsoil nitrate had increased to >29 kg N ha−1 by the time of establishing the maize crop. This increase in nitrate in the topsoil was not sustained as concentrations decreased rapidly due to leaching. Nitrate then accumulated below 40 cm, early in the season when maize root length density was still low (<0.1 cm cm−3) and inadequate to effectively intercept the nitrate. It is concluded that under light soil and high rainfall conditions, there is an inherent problem in managing nitrate originating from mineralization of organic materials as it accumulates at the beginning of the season, well ahead of peak demand by crops, and is susceptible to leaching before the crop root system develops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Bareroot Changbai larch (Larix olgensis Henry.) seedlings were reared with inorganic fertilizer (nitrogen (N):phosphorus (P) = 1:1, W/W) applied at a rate of 100 (F100) or 200 kg N ha−1 (F200) with (+) or without (−) chicken manure as a soil amendment (O) in north-eastern China. An unfertilized control treatment was included. Inorganic and organic fertilizer treatments tended to increase soil ammonium, nitrate, available P, total P, organic carbon content and electrical conductivity, and biomass and N concentration in seedlings. Organic amendment improved first order lateral root number, tap root length, fine root morphology (length, surface area, volume) in seedlings, while the F100 treatment increased N accumulation in needles and stems compared to the F200 treatment, on average. Most fertilizer treatments tended to increase P content in combined stems and roots, but F200 − O and F100 + O treatments diluted P in needles. Organic amendment combined with inorganic fertilizer at a rate of 100 kg N and P ha−1 is recommended to improve seedling growth and N reserves in woody tissues.  相似文献   

17.
Shifting land use from agriculture to forestry induces major changes in the carbon (C) and nitrogen (N) cycles, including fluxes of dissolved organic carbon (DOC) and nitrogen (DON). This study investigated the long-term effects of afforestation on ecosystem DOC and DON dynamics using a chronosequence approach comprising four arable fields and nine differently aged (10–92 years) Norway spruce stands growing on similar former arable soils in the same area. Along the chronosequence, concentrations and fluxes of DOC and DON were determined in bulk precipitation, throughfall, O horizon leachate and mineral soil solution during a 2–3-year period. Soil water fluxes were calculated using a soil hydrological model (SWAP). Results showed that DOC concentrations and fluxes with throughfall were strongly positively correlated with tree height (r2 = 0.95; P < 0.05 for both conc. and flux) and stand age, while DON showed no such trends, suggesting different origins of DOC and DON in throughfall. The highest concentrations and fluxes of DOC and DON occurred in soil leachate from the O horizon. Here, DOC flux was 250–310 kg C ha−1 yr−1 and DON flux 8–9 kg N ha−1 yr−1 in stands afforested between 65 and 92 years ago. Concentrations and fluxes of DOC and DON in the mineral subsoil were consistently low. Flux calculations suggest that there was a net loss of >90% (230–280 kg ha−1 yr−1) of DOC leached from the O horizon within 0–60 cm of the mineral soil. There was no significant effect of land use or forest age on DOC concentrations in solution from the lower part of the A horizon. The effect of time since afforestation was masked by soil properties that influence DOM retention in the mineral soil. Our data indicate that DOC concentrations in the A horizon of the sites studied were primarily related to the oxalate-extractable Al and Fe amounts in the same horizon. Afforestation of arable land induced a gradual qualitative change in soil organic matter (SOM) and dissolved organic matter (DOM), with significantly increasing C:N ratios in soil and soil solution over time. The development of an O horizon and the subsequent leaching of DOC and DON to the underlying mineral soil are important drivers of a changing soil C and N turnover following afforestation.  相似文献   

18.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

19.
Nitrogen inputs from biological nitrogen fixation contribute to productivity and sustainability of agroforestry systems but they need to be able to offset export of N when trees are harvested. This study assessed magnitudes of biological nitrogen fixation (natural 15N abundance) and N balance of Acacia mangium woodlots grown in farmer’s fields, and determined if N2 fixation capacity was affected by tree age. Tree biomass, standing litter, understory vegetation and soil samplings were conducted in 15 farmer’s fields growing A. mangium as a form of sequential agroforestry in Claveria, Misamis Oriental, Philippines. The trees corresponded to ages of 4, 6, 8, 10 and 12 years, and were replicated three times. Samples from different plant parts and soils (0–100 cm) were collected and analyzed for δ15N and nutrients. The B-value, needed as a reference of isotopic discrimination when fully reliant on atmospheric N, was generated by growing A. mangium in an N2-free sand culture in the glasshouse. Isotopic discrimination occurring during N2 fixation and metabolic processes indicated variation of δ15N values in the order of nodules > old leaves > young leaves > stems > litterfall and roots of the trees grown in the field, with values ranging from −0.8 to 3.5‰ except nodules which were enriched and significantly different from other plant parts (P < 0.0001). Isotopic discrimination was not affected by tree age (P > 0.05). Plants grown in N free sand culture exhibited the same pattern of isotopic discrimination as plants grown in the field. The estimated B-value for the whole plant of A. mangium was −0.86‰. Mature tree stands of 12 years accumulated up to 1994 kg N ha−1 in aboveground biomass. Average proportion of N derived from N2 fixation of A. mangium was 54% (±22) and was not affected by age (P > 0.05). Average yearly quantities of N2 fixed were 128 kg N ha−1 in above-ground biomass amounting to 1208 kg N fixed ha−1 over 12 years. Harvest of 12-year old trees removed approximately 91% of standing aboveground biomass from the site as timber and fuel wood. The resulting net N balance was +151 kg N ha−1 derived from remaining leaves, twigs, standing litter, and +562 kg N ha−1 when tree roots were included in the calculation. The fast growing A. mangium appears to be a viable fallow option for managing N in these systems. However, other nutrients have to be replaced by using part of the timber and fuel wood sales to compensate for large amounts of nutrient removed in order for the system to be sustainable.  相似文献   

20.
The effects of dry deposition, canopy leaching, precipitation ion concentration, and precipitation H+ concentration on net throughfall flux (NTF, throughfall minus bulk precipitation) were evaluated on a seasonal basis by using a multiple regression analysis approach based on an observation period of 4 years in Shaoshan subtropical mixed evergreen forest, south-central China. Regression analysis results indicated that the estimated canopy exchange flux was the dominant factor regulating the NTF and the calculated dry deposition was a minor term. The seasonal dry deposition of base cations accounted for 15%–43% of the NTF. The NTF analysis showed that K+, Ca2+, Mg2+, Na+, and weak acids in throughfall were derived from foliar leaching and the canopy uptakes of H+, NH4 +, and NO3 were from precipitation. The retention rate of proton (H+ and NH4 +) in the canopy was close to the canopy leaching rate of base cations when corrected for weak acids because weak acid-induced canopy leaching did not exchange with protons, which suggested that the canopy leaching processes neutralized acid precipitation in Shaoshan forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号