首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a 2-yr pot experiment the effects of texture and organic matter content on adsorption in soil and uptake in Perennial ryegrass (Lolium perenne) and Winter rape (Brassica napus) of Cd added to the soil were studied. The soils used were a clay, a loamy sand and a sapric peat mixed in different proportions. One mg kg?1 of Cd was added to each soil mixture. The organic matter showed a greater ability than clay to adsorb Cd in an unavailable form and thereby reduce plant uptake. The effect per unit of organic matter added was greatest at low organic matter content. Most of the Cd was adsorbed in a non-exchangeable form indicating the presence of strong organic complexing. The addition of organic matter reduced plant uptake more efficiently in sand than in clay even though the exchangeable Cd did not differ between the two soils. Increasing the clay content in sand from 9 to 63% led to slightly decreased water leachability but did not significantly decrease non-exchangeable Cd. Neither was plant uptake notably affected. The two crops showed a similar reaction to the different treatments. Uptake was correlated with Cd extractable in ammonium acetate at pH 7, but the relationship was different at each sampling occasion. No significant change in adsorption of the added Cd, fixation, was detected during the 2-yr period but seasonal variations in solubility and uptake were noticed.  相似文献   

2.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

3.
The individual effects of salinity and sodicity on organic matter dynamics are well known but less is known about their interactive effects. We conducted a laboratory incubation experiment to assess soil respiration and dissolved organic matter (DOM) dynamics in response to salinity and sodicity in two soils of different texture. Two non-saline non-sodic soils (a sand and a sandy clay loam) were leached 3–4 times with solutions containing different concentrations of NaCl and CaCl2 to reach almost identical electrical conductivity (EC1:5) in both soils (EC1:5 0.5, 1.3, 2.5 and 4.0 dS m?1 in the sand and EC1:5 0.7, 1.4, 2.5 and 4.0 dS m?1 in the sandy clay loam) combined with two sodium absorption ratios: SAR < 3 and 20. Finely ground wheat straw residue was added (20 g kg?1) as substrate to stimulate microbial activity. Cumulative respiration was more strongly affected by EC than by SAR. It decreased by 8% at EC 1.3 and by 60% at EC 4.0 in the sand, whereas EC had no effect on respiration in the sandy clay loam. The apparent differential sensitivity to EC in the two soils can be explained by their different water content and therefore, different osmotic potential at the same EC. At almost similar osmotic potential: ?2.92 MPa in sand (at EC 1.3) and ?2.76 MPa in the sandy clay loam (at EC 4.0) the relative decrease in respiration was similar (8–9%). Sodicity had little effect on cumulative respiration in the soils, but DOC, DON and specific ultra-violet absorbance (SUVA) were significantly higher at SAR 20 than at SAR < 3 in combination with low EC in both soils (EC 0.5 in the sand and EC 0.7 and 1.4 in the sandy clay loam). Therefore, high SAR in combination with low EC is likely to increase the risk of DOC and DON leaching in the salt-affected soils, which may lead to further soil degradation.  相似文献   

4.
Summary The aim of this study was to provide manageable data to help establish permissible limits for the pollution of soil by heavy metals. Therefore the short-and long-term effects of heavy metal pollution on phosphatase activity was studied in five different soil types. The results are presented graphically as logistic dose-response curves. It was possible to construct a curve for sand and silty loam soil but it was more difficult to establish a curve for sandy loam and clay soil and nearly impossible (except for Cu) for peat. The toxicity of the various metals can be compared on the basis of mmol values. In clay soils, for Cd, Cr, Cu, and Zn, the 50% effective ecological dose (ED50) values were comparable (approximately 45 mmol kg–1), but the ED10 values were very different, at 7.4, 41.4, 15.1, and 0.55, respectively. At the ED50 value, toxicity did not decrease with time and, in sandy soils, was approximately 2.6 mmol kg –1 dry soil for Cd, Cu, and Zn. In four out of five soils, the Cd toxicity was higher 1.5 years after the addition of heavy metal salts than after 6 weeks. Toxicity was least in the sandy loam, silty loam, and clay soil, and varied in general between 12 and 88 mmol kg–1. In setting limits, the criteria selected (no-effect level, ED10 or ED50) determine the concentration and also the toxicity of the sequence. It is suggested that the data presented here could be very useful in helping to set permissible limits for heavy metal soil pollution.  相似文献   

5.
A pot experiment to compare the availability of Cd, Ni and Znto ryegrass (Lolium perenne L.) was conducted at 15 and 25 °C. For this purpose, three ratesof sewage sludge (0, 10 and 50 t ha-1) were applied in aloamy sand (LS) and a clay loam (CL). Heavy metal availabilityassessed by soil extractions with 0.05 M CaCl2 and the organic matter content were monitored during a period of twoyears, while uptake by ryegrass was monitored over one year after addition of the sludge. The concentrations of Cd and Ni in both the ryegrass and the soil extracts increased significantly, during the first year, especially at 50 t ha-1. However, in the second year metal availability reached a plateau. During the first year, in the ryegrass Znconcentrations did not show an increase, but in the soil CaCl2-extracted Zn increased. During the same period,the organic matter content decreased rapidly, especially at25 °C, in the first year and much more slowly in thesecond, giving a total decrease of 16%. Temperature had a marked effect on metal availability; both soil extracts andplant samples from the 25 °C treatment had greater concentrations of Cd, Ni and Zn than those at 15 °C. This may be attributed to the organic matter, which decomposedmore rapidly at 25 °C. Moreover, soil-plant transfercoefficients (Tc) of the metals were significantly higher at 25 °C than at 15 °C, with Cd showing the greatest difference, followed in decreasing order by Zn and Ni.  相似文献   

6.
龙会英  张德  金杰 《土壤》2017,49(5):1049-1052
采用大田试验的方法,在云南省元谋县小雷宰流域内壤土、砂壤土和重壤土3种质地土壤上,以热研5号柱花草为材料,研究土壤质地对柱花草生长发育、生物量及土壤有机质、有机碳、全氮和全磷的影响。试验结果表明:3种土壤质地上种植柱花草,柱花草地上部和地下部生长量和生物量表现幼苗期增加缓慢,而分枝期后增加快的趋势。壤土耕性好,兼有砂土和重壤土的优点,有利柱花草地上部分的生长发育,柱花草地上部生长量、生物量及改善土壤肥力方面显著高于重壤土。砂壤土有利于柱花草根系向深层土壤生长,柱花草地下部生长量、生物量及根瘤显著高于种植在重壤土。在3种土壤质地种植柱花草后,土壤有机质、有机碳、全氮和全磷均有上升趋势。综合而言,通气性和保肥保水能力居中的壤土更适合柱花草的生长发育及干物质的积累。  相似文献   

7.
Abstract

Nitrate nitrogen (NO3‐N), which is an essential source of nitrogen (N) for plant growth, is now also considered a potential pollutant by the Environmental Protection Agency (EPA). This is because excess applied amounts of NO3‐N can move into streams by run‐off and into ground water by leaching, thereby becoming an environmental hazard. Soils have varied retentive properties depending on their texture, organic matter content, and cation exchange capacity (CEC). The purpose of this study was to determine the effect of soil texture on NO3‐N retention to reduce NO3‐N contamination in the environment. A sand, 85:15 sand:peat Greensmix, a loamy sand, and sandy clay loam soils were placed in 2×3 inch metal cylinders and soaked in a 240 ppm solution of NO3‐N for seven days to saturate the soil with NO3 ions. The columns were leached with water to collect 10 soil percolate samples of 50 mL each until a total volume of 500 mL was collected. Nitrate‐N was measured in each 50‐mL aliquot by automated colorimetry. The results showed that soil texture affected the retention of N03‐N in the sand, which adsorbed the least amount of NO3‐N at 119 ppm, followed by the Greensmix at 125 ppm, loamy sand at 149 ppm, and sandy clay loam at 173 ppm. More NO3‐N was released in the first 50 mL of the sand percolate at 63% followed by the Greensmix, loamy sand, and sandy clay loam at 58,46, and 37% NO3‐N released, respectively. Soils with more silt, clay, and organic matter retained more NO3‐N than the straight sand. Therefore, a straight sand would be the poorest of soil types since NO3‐N retention was low.  相似文献   

8.
The effects of addition and removal of organic matter and CaCO3 and of saturating a loam and a loamy sand soil with hydrogen (HCl treated), with calcium and with sodium on the retention of added copper were studied. Removal of organic matter reduced the copper-retaining capacity in soils, while addition of 1 to 4% humic acid to H2O2-treated soils increased the retention. Soil organic matter had higher specific copper retaining as well as fixing capacity than the added humic acid. Humic acid fixed about 62 and 49% of the copper it retained, while soil organic matter fixed about 65 and 61% in the loam and loamy sand respectively, which could not be extracted with 0.1 N HCl. About 30% extra copper retained by the added humic acid was exchangeable. Saturating the soils with hydrogen (HCl treatment) decreased the retention of added copper considerably but addition of CaCO3 up to 8% increased the retention by increasing the pH of the soil system. The CaCO3 induced retention was lower than caused by humic acid additions. The specific copper retention by native CaCO3 was slightly higher than that of added CaCO3. However, other changes associated with the pre-treatment of the soil may have caused those differences in specif is copper retention. Although CaCO3 had as high a copper fixing capacity as organic matter its contribution towards exchangeable copper was negligible.  相似文献   

9.
土壤紧实度对伴矿景天生长及镉锌吸收性的影响研究   总被引:2,自引:2,他引:0  
王丽丽  周通  李柱  周嘉文  吴胜春  吴龙华 《土壤》2017,49(5):951-957
采集黏土、壤黏土和砂质壤土,分别设置无压实、低紧实度及高紧实度3种处理,通过盆栽试验研究了土壤紧实度对Cd、Zn超积累植物伴矿景天生长和Cd、Zn吸收性的影响。结果表明,与无压实处理比较,砂质壤土、壤黏土和黏土中伴矿景天地上部生物量在低紧实度下显著下降66.8%~83.5%、59.9%~60.4%和57.9%~71.4%;高紧实度处理却显著提高了伴矿景天的根系活力(142%~241%)。高紧实度处理显著降低了壤黏土上伴矿景天地上部Cd和Zn含量,但低紧实度对砂质壤土和黏土上伴矿景天地上部Cd和Zn含量无显著影响。与无压实处理比较,低紧实度显著降低了砂质壤土、壤黏土和黏土上伴矿景天的Cd吸取量,分别下降50.4%~73.8%、61.4%~74.9%和43.4%~63.3%,Zn吸取量下降48.7%~79.5%、73.6%~79.0%和46.1%~63.5%;土壤紧实度对壤黏土上伴矿景天的镉锌吸取效率影响最明显。  相似文献   

10.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

11.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

12.
In a greenhouse experiment, effects of different phosphate fertilizer applications on soil Cd extracted by DTPA and NH4NO3 in relation to plant uptake of Cd were investigated. The soils used were a sand and a loam treated with lime to achieve three pHs ranging from 4.77 to 5.94 for the sandy soil and 4.97 to 6.80 for the loam soil. Oat (Avena sativa L.), ryegrass (Lolium multiflorum L.), carrot (Daucus carota L.), and spinach (Spinacia oleracea L.), were used as test species. Application of the high-Cd NPK fertilizer (adding 12.5 μg Cd kg?1 soil) significantly increased the extractable soil Cd, especially the DTPA-extractable Cd. Use of phosphate rock adding as much Cd as the high-Cd NPK fertilizer did not increase the extractable Cd in either of the soils. Both DTPA- and NH4NO3-extractable Cd decreased with the increases in soil pH. The Cd concentrations and total Cd uptake of plants were significantly correlated with the soil Cd extracted by DTPA and NH4NO3.  相似文献   

13.
Adsorption of Cd by two soils and its uptake by perennial ryegrass (Lolium perenne) and winter rape (Brassica napus) as a function of pH (pH 4 to 7) and the amount of Cd added to the soil (0 to 5 mg kg?1 soil) were studied in a 2-yr pot experiment. In the soils, the more soluble fractions of Cd increased as the pH was lowered. Increasing the pH from 5 to 7 by adding CaO invariably reduced the Cd-content of ryegrass plants, but this decrease was less consistent where the pH had only been increased to 6. In some cases, acidifying the soil with S to reach a pH of 4 also led to a decrease in plant Cd-content. The Cd-content of rapeseed plants was markedly higher at pH 4 than at pH 5. Plant damage at low pH was observed in this crop. Water-leachable and CaCl2-extractable soil Cd levels as well as plant uptake were higher in the sand soil than in the clay soil, whereas 1M NH4AcO (buffered at pH 4.8 and 7) extracted roughly equal amounts from both soils. Adding more Cd to the soil did not change the relation between Cd levels in soil and those in plants; instead the amounts of Cd in both increased in direct proportion to the amounts added. Fixation of added Cd apparently did not occur continuously at any pH or Cd-level during the 2-yr period, but seasonal variations in solubility and uptake were observed.  相似文献   

14.
Soil tilth has been defined in terms of a ‘Physical Index’ based on the product of the ratings of eight physical properties — soil depth, bulk density, available water storage capacity, cumulative infiltration or apparent hydraulic conductivity, aggregation or organic matter, non-capillary pore space, water table depth and slope. The Physical Index and a tillage guide were used to identify the tillage requirements of different soils varying in texture from loamy sand to clay in the semi-arid tropics. The physical index was 0.389 for a loamy sand, 0.518 for a black clay loam and 0.540 for a red sandy loam soil and the cumulative rating indices in summer and winter seasons were 45 and 44 for loamy sand, 52 and 51 for red sandy loam and 54 and 52 for black clay loam soils, respectively. The compaction of the loamy sand by eight passes of a 490 kg tractor-driven roller (0.75 m diameter and 1.00 m length) increased the physical index to 0.658 and chiselling of the red sandy loam and black clay loam increased the physical indices to 0.686 and 0.729, respectively. The grain yields of rainfed pearl millet and guar and irrigated pearl millet, wheat and barley increased significantly over the control (no compaction) yields by compaction.

The chiselling of the soils varying in texture from loamy sand to clay at 50 to 120-cm intervals up to 30–40 cm depth, depending upon the row spacing of seedlines and depth of the high mechanical impedance layer, increased the grain yields of rainfed and irrigated maize on alluvial loamy sand, rainfed maize on alluvial sandy loam and red sandy loam, rainfed sorghum on red sandy loam and black clay loam, irrigated sorghum on black clay loam and rainfed black gram on red sandy loam, pod yield of rainfed groundnut, tuber yield of irrigated tapioca and fresh fruit yield of rainfed tomato on red sandy loam and sugarcane yield on black clay soil, significantly over the yields of no-chiselling systems of tillage such as disc harrow and country plough.  相似文献   


15.
Reliable and quick methods for measuring nitrogen (N)–supplying capacities of soils (NSC) are a prerequisite for using N fertilizers. This study was conducted to develop a routine method for estimation of mineralizable N in two calcareous soils (sandy loam and clay soils) treated with municipal waste compost or sheep manure. The methods used were anaerobic biological N mineralization, mineral N released by 2 M potassium chloride (KCl), ammonium (NH4 +) N extracted by 1 N sulfuric acid (H2SO4), NH4 +-N extracted by acid potassium permanganate (KMnO4), and NH4 +-N released by oxidation of soil organic matter using acidified potassium permanganate. The results showed that oxidizable N extracted by acid permanganate, a simple and rapid measure of soil N availability, was correlated with results of the anaerobic method. Oxidative 0.05 N KMnO4 was the best method, accounting for 78.4% of variation in NSC. Also, the amount of mineralized N increased with increasing level of organic materials and was greater in clay soil than sandy loam soil.  相似文献   

16.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

17.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

18.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

19.
Sorption of Cd at low concentrations onto two Danish soils (loamy sand, sandy loam) was examined in terms of kinetics and governing factors. From an environmental point of view soil sorption of Cd is a fast process: More than 95% of the sorption takes place within 10 min, equilibrium is reached in 1 hr, and exposures up to 67 wk did not reveal any long term changes in Cd sorption capacities. The soils have very high affinity for Cd at pH = 6.00 (10?3 M CaCl2) exhibiting distribution coefficients in the order of 200 to 250 (soil Cd concentration/solute Cd concentration). However, the sorption isotherms describing the distribution of Cd between soil and solute are slightly curvelinear. In the pH-interval 4 to 7.7, the sorption capacity of the soil approximately increases 3 times for a pH increase of one unit. Increasing the Ca concentration from 10?3 to 10?2 M reduces the sorption capacity of the sandy loam to one third.  相似文献   

20.
不同质地耕层土壤有效态微量元素含量特征   总被引:2,自引:0,他引:2  
[目的]研究不同土壤质地下耕层土壤有效态微量元素含量特征,为合理制定农田土壤施肥方案和提高土壤养分资源利用率提供依据。[方法]以库车县不同质地耕层土壤(0—20cm)为调查对象,采用统计方法对土壤微量元素有效态含量特征进行分析。[结果](1)土壤有效态微量元素在壤土、砂壤土、黏土、黏壤土及砂土中含量差异显著(p0.05),且壤土和砂壤土的有效态微量元素含量相对较高;(2)土壤微量元素有效性综合指数排列顺序依次为:砂壤土(1.51)砂土(1.44)黏土(1.42)壤土(1.41)黏壤土(1.27);(3)土壤有机质与土壤有效态微量元素均具有极其显著的相关性(p0.01),pH值则与有效铜和有效锰相关显著(p0.05)。[结论]在不同土壤质地下,微量元素铁和锌含量较为缺乏,锰和铜含量则相对较为丰富,故应依据这一特性进行土地科学管理和施肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号