首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Long-term additions of different types of organic amendments affect the amount of soil organic matter. Less is known about how this in turn affects carbon (C) and nitrogen (N) mineralization from the pool of stabilized soil organic matter, or the extent to which gross N immobilization influences the net amount of N mineralized. Soils, differing in the quantity and quality of organic matter inputs they had received since 1956, were sampled approximately 6 or 18 months after the most recent applications of organic amendments. Two laboratory experiments were carried out to: (i) evaluate if, and how, the organic amendments had affected C mineralization, gross and net N mineralization; (ii) examine the relation between gross N immobilized and free-light fraction of organic matter; and (iii) assess predictors for gross N mineralization and immobilization rates in soils. The amount of soil organic C and N were major determinants of C and gross N mineralization, but not of net N mineralization. Carbon mineralization was related to gross N mineralization, but the ratio between the two was not constant. Gross N immobilization was related to the amount of free-light fraction material in the soil with 90% variation explained. For most common organic amendments applied in autumn, our results support the use of total soil organic N and C mineralization as predictors of gross N mineralization from stabilized soil organic matter. In addition, we propose that the amount of free-light fraction material present in the soil in spring is adequate as a predictor of the immobilization potential of the soil, without a need to consider the C-to-N ratio of this material.  相似文献   

2.
To evaluate the effect of climate change on ecosystem functioning, the temperature and moisture response of microbial C, N, and P transformations during decomposition of Calluna vulgaris (L.) Hull. litter was studied in a laboratory incubation experiment. The litter originated from a dry heathland in the Netherlands where P limited vegetation growth. Fresh litter was incubated at 5, 10, 15, or 20°C and at a moisture content of 50, 100, or 200% in a full factorial design. Microbial nutrient transformations and activity were evaluated during two successive periods: an initial period of 48 days characterized by microbial growth and a second period from 48 to 206 days in which microbial growth declined significantly. Temperature and moisture response of respiration rate, the metabolic quotient (qCO2), C, N, and P immobilization, net N and P mineralization and nitrification rates were evaluated by performing linear regressions. Microbial nutrient transformations and microbial activity depended both on temperature and moisture. In the first period, the respiration rate, qCO2, microbial C and N immobilization, net P mineralization, net N mineralization and net nitrification rates were more strongly affected by temperature, while the microbial P immobilization rate was more strongly affected by moisture. The respiration rate, qCO2, P immobilization rate, net P and N mineralization rate, and nitrification rate increased with temperature and moisture, while the C and N immobilization rate decreased with increasing temperature and increased with moisture. In the second period, C, N, and P immobilization and net N and P mineralization rates were significantly lower. The respiration rate and qCO2 continued to increase with temperature and moisture, but C and N immobilization rates increased with temperature and declined with increasing moisture. Net P mineralization rate decreased at higher temperature and moisture, and nitrification rate declined with increasing temperature and increased with moisture. It was concluded that plant growth in these P-limited systems is very sensitive to climate change as it strongly relies on the competition for P with microbes, and temperature and moisture have a large effect on the immobilization rate of available P.  相似文献   

3.
《Applied soil ecology》1999,11(2-3):135-146
Most studies of nutrient cycling in arctic ecosystems have either addressed questions of plant nutrient acquisition or of decomposition and mineralization processes, while few studies have integrated processes in both the soil and plant compartments. Here, we synthesize information on nutrient cycling within, and between, the soil/microbial and the plant compartments of the ecosystems and integrate the cycling of nutrients with the turnover of organic matter and the carbon balance in tundra ecosystems. Based on this compilation and integration, we discuss implications for ecosystem function in response to predicted climatic changes.Many arctic ecosystems have high amounts of nutrients in the microbial biomass compared to the pools in the plant biomass both due to large nutrient-containing organic deposits in the soil and low plant biomass. The microbial pools of N and P, which are the most commonly limiting nutrients for plant production, may approach (N) or even exceed (P) the plant pools. Net nutrient mineralization is low, the residence time of nutrients in the soil is long and the nutrients are strongly immobilized in the soil microorganisms. This contributes to pronounced nutrient limitation for plant productivity, implies that the microbial sink strength for nutrients is strong and that the microbes may compete with plants for nutrients, but also that they are a potential source of plant nutrients during periods of declining microbial populations. The extent of this competition is poorly explored and it is uncertain whether plants mainly take up nutrients continuously during the summer when the microbial activity and, presumably, also the microbial sink strength is high, or whether the main nutrient uptake occurs during pulses of nutrient release when the microbial sink strength declines.Improved knowledge of mechanisms for plant-microbial interactions in these nutrient-limited systems is important, because it will form a basis also for our understanding of the C exchange between the ecosystems and the atmosphere under the predicted, future climatic change. High microbial nutrient immobilization, i.e. low release of plant-available nutrients, paired with high microbial decomposition of soil organic matter will lead to a loss of C from the soil to the atmosphere, which may not be compensated fully by increased plant C fixation. Hence, the system will be a net source of atmospheric C. Conversely, if plants are able to sequester extra nutrients efficiently, their productivity will increase and the systems may accumulate more C and turn into a C sink, particularly if nutrients are allocated to woody tissues of low nutrient concentrations.  相似文献   

4.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

5.
《Applied soil ecology》2006,31(1-2):20-31
Plant-microbial competition for nutrients is considered to be a strong mechanism affecting nutrient distribution in subarctic ecosystems, but the role of grazers on the distribution of nutrients between the plants and soil microorganisms remain poorly understood. We designed a factorial fertilization and clipping experiment to study the potential competition between plants and soil microorganisms for soil nitrogen in an ecosystem under grazing. We assumed that clipping reduces plant photosynthetic capacity and C flux to the soil, which ultimately results in lower microbial substrate availability and reduced potential for N immobilization. In concurrence with microbial substrate availability, increased nutrient availability through fertilization was expected to enhance microbial N in the unclipped but not in the clipped treatment.Clipping significantly reduced microbial respiration, suggesting that grazing reduces the labile C available for soil microbes in the system. Clipping had no effect on microbial C and N and the amount of NH4-N captured in ion exchange resin bags, which was used as an index of net N mineralization. Microbial potential for N immobilization thus seemed insensitive to grazer-mediated changes in microbial availability of labile substrates. Fertilization had no effects or interactions with clipping on microbial C and N. By contrast, we found a close negative correlation between the plant root biomass and microbial N, indicating that plants had a negative impact on the microbial nutrient acquisition. The subarctic grassland vegetation seemed superior to the soil microorganisms in the competition for nutrients even when the plants were subjected to artificial grazing. We suggest that nutrient competition by higher plants constrained the microbial N immobilization in the system, which could explain why the reduction in microbial C availability by clipping had little effects on microbial N acquisition. In this subarctic system, grazing has significant influences on soil C cycling, but due to plant predominance in the competition for nutrients, does not affect N allocation between the plants and the soil microorganisms.  相似文献   

6.
Laboratory incubation experiments were conducted to study the C and N mineralization dynamics of crop residues (fine roots and straw) of the two main crops (winter wheat and peanut) in the Chinese Loess Plateau under different ways of incorporation. The C mineralization patterns of the soil amended with winter wheat residues differed greatly, and the highest C mineralization was observed in the treatment with winter wheat straw incorporated (39% of the total added C mineralized). The way of straw placement had only a minor effect on the pattern of C mineralization for peanut. Generally, winter wheat residues showed a stronger immobilization than peanut residues during the incubation period, without any net N release. Winter wheat straw incorporated showed the strongest N immobilization with 35 mg kg−1 (equivalent to 27% of added N) immobilized at the eighth week. This study indicated that retaining crop residues at the soil surface in the dry land soils of the Chinese Loess Plateau is beneficial for C sequestration. It also showed that N immobilization occurs only during a limited period of time, sufficient to prevent part of the mineral N pool from leaching, and that net N mineralization can be expected during the subsequent cropping season, thus enhancing synchronization of N supply and demand.  相似文献   

7.
Partial sterilization causes a change in N mineralization in soil. An increase in the net rate of N mineralization was reported in soil with chloropicrin applied to it (Rovira 1976), and has been well known in soil fumigated with chloroform to measure the microbial biomass N (Jenkinson and Ladd 1981). The gross rate of N mineralization increased in soil inoculated with fresh soil following fumigation with chloroform (Shen et al. 1984). The increased rate of N mineralization has been attributed to the rapid decomposition of organisms killed by partial sterilization (Jenkinson 1966). On the other hand, Nira et al. (1996) reported that the application of a fumigant in a field depressed the gross rates of N mineralization and immobilization in spite of the increase in the net rate of N mineralization. These results suggested that the increase in the net rate of N mineralization by partial sterilization is presumably due to the change in the ratio of N mineralization to immobilization. However, the residues of a fumigant may depress gross N transformation in the field, because the residues may continue to influence microbial activity long after the original treatment (Jenkinson 1966). Some effects of partial sterilization without residues on gross N mineralization remain to be determined.  相似文献   

8.
Estimated nutrient mineralization in northern nutrient-poor ecosystems, measured as differences in soil inorganic nutrients before and after a period of soil incubation in the absence of plants and litter, usually shows a discrepancy of much lower rates than plant nutrient uptake rates. In plots that had been pre-treated by 12 year of warming and fertilizer addition, we incubated soils together with litter and plants added and examined whether the absence of plants and litter in ‘traditional’ incubations could explain the discrepancy. The pre-treatment had no effect on nitrogen (N) mineralization but increased phosphorus (P) mineralization, while litter addition decreased N and increased P mineralization but without any effect on plant and microbial N and P sequestration. Incubations of soils with plants increased N mobilization to the soil inorganic plus plant pools several-fold as compared to the net mineralization in soils without plants. Hence, the presence of plants stimulated mobilization of the growth-limiting N. The growth-sufficient P was not affected by the presence of plants, however. Furthermore, increased plant and microbial N uptake correlated positively, which speaks against competition for plant available N from soil microbes in N-constrained ecosystems, at least during the time-span of 10 weeks the experiment lasted, and instead suggests facilitation.  相似文献   

9.
Acid deposition can deplete soil calcium (Ca) and be detrimental to the health of some forests. We examined effects of soil Ca and phosphorus (P) availability on microbial activity and nitrogen (N) transformations in a plot-scale nutrient addition experiment at the Hubbard Brook Experimental Forest in New Hampshire, USA. We tested the hypotheses that (1) microbial activity and N transformations respond to large but not small changes in soil Ca, (2) soil Ca availability influences net N mineralization via the immobilization of N, rather than via changes in microbial activity, and (3) the response to Ca is constrained by P availability. Seasonality was a primary influence on the microbial response to treatments; N cycling processes varied from May to October and treatment effects were only detectable in the mid-growing season, in July. Neither microbial activity (C mineralization) nor gross N mineralization responded to Ca or to P, in either horizon. In the Oa horizon in July net N mineralization was reduced by high Ca and by Ca + P, and gross nitrification was increased by P addition. In the Oe horizon in July net N mineralization was reduced by Ca + P. These results partially supported our hypotheses, suggesting that soil Ca depletion has the potential to increase mid-growing season N availability via subtle changes in N immobilization, and that this effect is sensitive to soil P chemistry. The horizon-specific nature of the responses that we detected suggests that the proportions of Oe and Oa horizons comprising the surface organic layer will influence the relative importance of these processes at the ecosystem scale. Our results highlight the need for further attention to seasonal changes in controls of microbial mineralization/immobilization processes, to functional differences between organic horizons, and to interactions between Ca and P in soils, in order to learn the specific mechanisms underlying the influence of Ca status on nutrient recycling in these northern hardwood ecosystems.  相似文献   

10.
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.  相似文献   

11.
 A litter bag technique was used to study the decomposition and release of N, P, K, Ca, and Mg from Leucaena leucocephala and L. pallida prunings and cattle manure in a hedgerow intercropping trial conducted in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping or alley farming) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. Manure was the most resistant to decomposition, losing only 15% of its dry matter (DM) in 15 weeks, compared to 41–57% lost by leucaena prunings. Large quantities of K (up to 104 kg ha–1) were mineralized from prunings and manure, but Ca and Mg were mostly immobilized. More N and P were released from prunings than from manure, which resulted in net immobilization of these nutrients in the initial stages of decomposition and net mineralization in later stages. Between the leucaenas more N was mineralized and less Ca and Mg were immobilized when L. leucocephala prunings were applied than when L. pallida prunings were applied. Fertilizer N increased DM decomposition and N mineralization. Mineralization of the nutrients was constrained by lignin and polyphenol contents. It is concluded that leucaena mulch and cattle manure may be significant sources of N and K for crop growth, but external sources of P, Ca and Mg may be required, particularly in acid soils which have low contents of these nutrients. However, this fertility effect has to be evaluated against the competition effect of trees to predict crop response. Received: 27 January 1997  相似文献   

12.
Eutrofication is a threat against nutrient-poor habitats as increased amounts of nutrients in ecosystems may cause changes in the vegetation. Nitrogen (N) deposition leads to conversion of Calluna heathlands into graminoid dominated heath, but low availability of P may hinder or slow down this process.In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments. The concentration of inorganic and dissolved organic N was significantly higher under D. flexuosa than C. vulgaris all though there were the same amounts of total N in the soil below the two species. N and P amendment enhanced available N and P in the soil, but added nutrients had little direct effects on microbes. The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower rates of net nitrification, net ammonification and DOC and DON production rates during winter in the soil under C. vulgaris than below D. flexuosa, although all these rates were equal under the two species on an annual basis. This indicates that these microbial processes were taking place during winter but were affected by exudates from C. vulgaris.  相似文献   

13.
Net mineralization of N from a range of shoot and root materials was determined over a period of 6 months following incorporation into a sandy-loam soil under controlled environment conditions. Biochemical “quality” components of the materials showed better correlation with net N mineralization than did gross measures of the respiration and N content of the soil microbial community during decomposition. The quality components controlling net N mineralization changed during decomposition, with water-soluble phenolic content significantly correlated with net N mineralization at early stages, and water-soluble N, followed by cellulose at later stages. C-to-N and total N were correlated with net N mineralization towards the end of the incubation only. Cumulative microbial respiration during the early stages of decomposition was correlated with net N mineralization measured after 2 months, at which time maximum net N mineralization was recorded for most residues. However, there was no relationship between microbial-N and net N mineralization. Biochemical quality factors controlling the C and N content of the residue remaining at the end of the incubation as light fraction organic matter (LFOM) were also investigated. Both C and N content of LFOM derived from the residues were correlated with residue cellulose content, and the chemical characteristics of LFOM were highly correlated with those of the original plant material. Incorporation of low cellulose, high water-soluble N-containing shoot residues resulted in more N becoming mineralized than had been added in the residues, demonstrating that net mineralization of native soil organic matter had occurred. Large amounts of N were lost from the mineral-N pool during the incubation, which could not be accounted for by microbial immobilization.  相似文献   

14.
 Pot and field experiments were conducted to determine microbial immobilization of N fertilizer during growth periods of winter wheat and winter barley. In a pot experiment with winter wheat, Ca(15NO3)2 was applied at tillering [Zadok's growth stage (GS) 25)], stem elongation (GS 31) and ear emergence (GS 49). Rates of 100 mg N pot–1, 200 mg N pot–1 or 300 mg N pot–1 were applied at each N application date. At crop maturity, 15N-labelled fertilizer N immobilization was highest at the highest N rate (3×300 mg N pot–1). For each N-rate treatment about 50% of the total immobilized fertilizer N was immobilized from the first N dressing, and 30% and 20% of the total 15N immobilized was derived from the second and third applications, respectively. In field trials with winter wheat (three sites) and winter barley (one site) N was applied at the same growth stages as for the pot trial. N was also applied to fallow plots, but only at GS 25. N which was not recovered (neither in crops nor in soil mineral N pools) was considered to represent net immobilized N. A clear effect of N rate (51–255 kg N ha–1) on net N immobilization was not found. The highest net N immobilization was found for the period between GS 25 (March) and GS 31 (late April) which amounted to 54–97% of the total net N immobilized at harvest (July/August). At GS 31, non-recovered N was found to be of similar magnitude for cropped and fallow plots, indicating that C from roots did not affect net N immobilization. Microbial biomass N (Nmic) was determined for cropped plots at GS 31. Although Nmic tended to be higher in fertilized than in unfertilized plots, fertilizer-induced increases in Nmic and net N immobilization were poorly correlated. It can be concluded that microbial immobilization of fertilizer N is particularly high after the first N application when crop growth and N uptake are low. Received: 6 July 1999  相似文献   

15.
Soil microbes produce extracellular enzymes that mineralize organic matter and release carbon and nutrients in forms that can be assimilated. Economic theories of microbial metabolism predict that enzyme production should increase when simple nutrients are scarce and complex nutrients are abundant; however, resource limitation could also constrain enzyme production. We tested these hypotheses by monitoring enzyme activities and nutrient pools in soil incubations with added simple and complex nutrient compounds. Over 28 days of incubation, we found that an enzyme's activity increased when its target nutrient was present in complex but not simple form, and carbon and nitrogen were available. β-Glucosidase and acid phosphatase activities also increased in treatments where only carbon and nitrogen were added. Glycine aminopeptidase and acid phosphatase activities declined in response to ammonium and phosphate additions, respectively. In some cases, mineralization responses paralleled changes in enzyme activity—for example, β-glucosidase activity increased and respiration was 5-fold greater in soil incubations with added cellulose, ammonium, and phosphate. However, a doubling of acid phosphatase activity in response to collagen addition was not associated with any changes in phosphorus mineralization. Our results indicate that microbes produce enzymes according to ‘economic rules’, but a substantial pool of mineral stabilized or constitutive enzymes mediates this response. Enzyme allocation patterns reflect microbial nutrient demands and may allow microbes to acquire limiting nutrients from complex substrates available in the soil.  相似文献   

16.
Apparent net N mineralization (mineralization minus immobilization) in fertilized and unfertilized treatments was determined in 133 fertilizer trials with cereals and sugar beet over 3 years (1988-90). Apparent net mineralization was defined as follows: Apparent net N mineralization = (crop N at harvest - crop N in spring) - (Nmin in spring - Nmin at harvest) - N fertilizer applied. Results can be summarised as follows:
  • 1 For both crop species, apparent net N mineralization decreased in the following order: unfertilized > optimally fertilized > overfertilized.
  • 2 The decrease in apparent net mineralization of N with increasing rate of N fertilizer was attributed to immobilization. This was confirmed by measurements of increased remineralization during the following autumn, winter and during the growing season in the following year.
  • 3 Both the soil Nmin at harvest and fertilizer N which was immobilized and remineralized during autumn and winter, is at risk of being leached. At optimal fertilizer doses 30 kg N/ha and 74 kg N/ha were leached on average over winter from loamy and sandy soils respectively.
  • 4 Apparent net mineralization was not important for optimally fertilized cereals and therefore does not need to be considered for fertilizer recommendations for winter cereals. This does not apply to land receiving slurry applications before or during the growth period.
  • 5 In contrast to cereals, apparent net mineralization contributed considerably to the nutrition of sugar beet. Approximately 140 kg N/ha were mineralized at the optimum rate of N fertilizer application. However, the EUF- and CaCl2-methods were unable to predict N mineralization and were therefore unable to improve the prediction of fertilizer requirement even in combination with the NO3 soil N fraction.
  相似文献   

17.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

18.
Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced their immobilization power. Hence, the cycling of N in subarctic heath tundra is strongly influenced by alternating release and immobilization by microorganisms, which on the other hand seems to be less affected by long-term warming than by addition or removal of sources of labile C.  相似文献   

19.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

20.
Fires in grasslands significantly alter nutrient cycling processes. Seasonal climatic changes can interact with fire to further modify nutrient cycling processes. To investigate the effects of fire on soil nitrogen transformation processes and their seasonal change and interannual variability in a typical steppe in Inner Mongolia, we determined the rates of net nitrogen mineralization and nitrification over two growing seasons and a winter following a prescribed spring fire in May 2006. Fire significantly decreased rates of both net nitrogen mineralization and net nitrification during the first growing season and winter following burning. Cumulative net nitrogen mineralization in unburned and burned plots in the 2006 growing season was 133% and 183% higher, respectively, than in the drier 2007 growing season. Nitrogen mineralization apparently occurred in winter and the cumulative net nitrogen mineralization from October 2, 2006, to April 27, 2007 in unburned and burned plots amounted to 1.18 ± 0.25 g N m−2 and 0.51 ± 0.08 g N m−2, respectively. Cumulative net nitrogen mineralization was higher in a wet 2006 than in a dry 2007 growing season, indicating that the net N mineralization rate was sensitive to soil moisture in a dry season. Our study demonstrated that a one-time prescribed fire decreased net N mineralization rates only for a short period of time after burning while interannual variation in climate had more significant effects on the process of nitrogen mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号