首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The behavior of juvenile yellowfin tuna Thunnus albacares in southwestern Japan was investigated using archival tag data from five fish (fork length 52.5–92 cm, days at liberty 26–280 days) released near the Nansei Islands (24–29°N, 122–130°E). Vertical behavior was classified into three patterns: “shallow” (≥50 % of daytime hours at depth of <50 m), “deep” (≥50 % of daytime hours at ≥100 m), and “intermediate” (other than “shallow” or “deep”). The pooled proportion of the number of days of each behavior was 29, 25 and 46 %, respectively. The proportion of “shallow” behavior increased with fish size. The proportion of time spent near the surface at nighttime increased in the colder season, when the thermal gradient was relatively small. Surface-oriented behavior (fish remained at a depth of <10 m for more than 10 min) occurred mainly during nighttime and between November and January. Dives exceeding 500 m were occasionally observed (0.02 day?1), and one fish dived to 1230 m. The results of our study show that yellowfin tuna were typically distributed in the mixed layer or upper thermocline where the water temperature was close to the sea surface temperature and that the vertical behavior was variable.  相似文献   

2.
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

3.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

4.
热带印度洋大眼金枪鱼渔场时空分布与温跃层关系   总被引:1,自引:0,他引:1  
为了解印度洋大眼金枪鱼(Thunnus obesus)温跃层参数适宜分布区间及季节变化,采用Argo浮标剖面温度数据重构热带印度洋各月平均温跃层特征参数,并结合印度洋金枪鱼委员会(IOTC)大眼金枪鱼延绳钓渔业数据,本文绘制了月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带印度洋大眼金枪鱼渔场CPUE时空分布和温跃层特征参数的关系。结果表明,热带印度洋温跃层上界深度、温度和下界深度都具有明显的季节性变化,大眼金枪鱼中心渔场分布和温跃层季节性变化有关。夏季季风期间,高CPUE渔区温跃层上界深度在30~50 m,浅于冬季的50~70 m;温跃层上界温度范围为24~30℃。在冬季季风期间,高CPUE区域对应的温跃层上界温度范围为27~30℃;从马达加斯加岛北部沿非洲大陆至索马里附近海域,温跃层下界深度在170~200 m时的渔区CPUE普遍较高;当深度超过300 m时,CPUE值均非常低。采用频次分析和经验累积分布函数计算其最适温跃层特征参数分布,得出大眼金枪鱼最适温跃层的上界、下界温度范围分别是26~29℃和13~15℃;其上界、下界深度范围分别是30~60 m和140~170 m。文章初步得出印度洋大眼金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为金枪鱼实际生产作业和资源管理提供理论参考。  相似文献   

5.
吉尔伯特群岛海域延绳钓渔场大眼金枪鱼的环境偏好   总被引:2,自引:0,他引:2  
为了掌握基里巴斯吉尔伯特群岛附近海域大眼金枪鱼的环境偏好,2009年9月至12月,金枪鱼延绳钓船"深联成719"在该海域进行了调查。利用仪器获取海洋环境数据,结合每天渔获数据,应用逐步回归方法,建立钓钩深度预测模型,计算大眼金枪鱼在各水层、温度、盐度、叶绿素、含氧量、水平海流和垂直海流范围内的渔获率,渔获率最大的各环境因子范围为大眼金枪鱼偏好的环境。结果表明:(1)大眼金枪鱼偏好的水层、水温、盐度、叶绿素、含氧量、水平海流和垂直海流范围分别为200.0~240.0 m、14.0~15.0℃、35.00~35.10、0.24~0.26μg/L、3.0~4.0 mg/L、0.00~0.20 m/s和0.03~0.04 m/s;(2)一般情况下,接近成熟的大眼金枪鱼偏好的水温为14.0~17.0℃;(3)大眼金枪鱼的适盐性较广;(4)溶解氧高于门限值(0.8 mg/L)时,大眼金枪鱼的分布由其它环境因子决定。  相似文献   

6.
To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days‐at‐liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ~1 mL L?1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ~2 mL L?1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W‐shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ~300–500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night‐time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL.  相似文献   

7.
A survey of yellowfin tuna, Thunnus albacares , fishing ground was carried out on board of the Chinese longliners from September 15 to December 12, 2005 in the tropical high seas of the Indian Ocean. The depth at which each yellowfin tuna was hooked was estimated using a stepwise regression analysis of theoretical hook depth and observed average hook depth measured using a temperature depth recorder. Water temperature, salinity, chlorophyll  a , dissolved oxygen and thermocline, which are important variables influencing yellowfin tuna habitats, were measured in the survey. Catch rates of yellowfin tuna were then analyzed with respect to depth, temperature, salinity, chlorophyll  a , dissolved oxygen and thermocline. We suggest that the optimum ranges of swimming depth, water temperature, chlorophyll  a and dissolved oxygen concentration for yellowfin tuna are 100.0–179.9 m, 15.0–17.9°C, 0.090–0.099  μ g L−1, 2.50–2.99 mg L−1, respectively; that salinity has less influence on the vertical distribution of adult yellowfin tuna; and that yellowfin tuna are mainly distributed within the thermocline in the high seas of the Indian Ocean. Our results match the yellowfin tuna's vulnerability to deep longline fishing gear well.  相似文献   

8.
Swimming performance of jack mackerel Trachurus japonicus (18.2 ± 0.8 cm fork length (FL), n = 185) was examined in a flume tank by measuring the stride length at low and high tail beat frequencies with electromyogram monitoring and a muscle twitch experiment. Stride length was analyzed by monitoring the tail beat frequency according to the swimming speed at different temperatures of 10, 15 and 22 °C. In the electromyographic observations, the initiation of ordinary muscle activity occurred between 71.4 and 99.6 cm/s, that is 3.7 to 5.3 FL/s, when the tail beat frequency was over 6 Hz. The swimming speeds increased rectilinearly with the tail beat frequency at each water temperature both for the low and high tail beat frequency. Lower stride length was observed at the lowest temperature (10 °C) tested. The forced swimming exercise significantly affected the muscle contraction time to become longer than the control fish, which indicated a reduction of the maximum swimming speed performance.  相似文献   

9.
Habitat models are used to correct estimates of fish abundance derived from pelagic longline fishing gear. They combine information on hook depth with the species’ preferences for ambient environmental conditions to adjust the gear's catchability. We compare depth distributions of bigeye tuna (Thunnus obesus) catch predicted by a habitat model with distributions derived from data collected by observers on longliners in the tropical Pacific Ocean. Our analyses show that the habitat model does not accurately predict the depth distribution of bigeye tuna; its predictions are worse than those from models that assume no effect of depth on catches. Statistical models provided superior fits to the observed depth distribution. The poor performance of the habitat model is probably due to (1) problems in estimating hook depth, (2) fine‐scale variations in environmental conditions, (3) incomplete knowledge of habitat preferences and (4) differences between the distribution of bigeye tuna and their vulnerability to longline gear.  相似文献   

10.
It is necessary to understand the processes involved in sinking death in Pacific bluefin tuna Thunnus orientalis aquaculture in order to develop methods to prevent or minimize this problem. We observed the nighttime vertical distribution of Pacific bluefin tuna in the water column on 2–9 DAH and the morphological characteristics of the larvae, in order to clarify the processes involved in sinking death. A cuboid tank (height 300 cm) was used to measure vertical distribution. The number of larvae was counted in each of 4 regions in the observation tank: upper layer (water depth 0–100 cm), middle layer (100–200 cm), lower layer (200–300 cm), and bottom area. The distribution of larvae in these regions at 4 days after hatching was polarized to the upper layer and bottom area. Individuals with inflated swim bladders were observed in the upper layer 3 days after hatching. No larvae with inflated swim bladders were observed in the bottom area on any day after hatching. Total body length and caudal fin aspect ratio of larvae with both inflated and un-inflated swim bladders were greater in the upper layer than those of larvae in the bottom area. Larvae with un-inflated swim bladders that failed to develop sufficiently for swimming sank to the tank bottom and died. Swim bladder development and caudal fin swimming ability are strongly related to sinking death.  相似文献   

11.
宋利明  任士雨  张敏  隋恒寿 《水产学报》2023,47(4):049306-049306
为提高大西洋大眼金枪鱼渔场预报模型的准确率,实验利用13艘中国延绳钓渔船2013—2019年的渔捞日志数据和对应的海洋环境数据(海表面风速、叶绿素a浓度、涡动能、混合层深度和0~500 m水层的垂直温度、盐度和溶解氧等),以天为时间分辨率、2°×2°为空间分辨率、以数据集的75%为训练数据建立了K最近邻(KNN)、逻辑斯蒂回归(LR)、分类与回归树(CART)、支持向量机(SVM)、人工神经网络(ANN)、随机森林(RF)、梯度提升决策树(GBDT)和Stacking集成(STK)渔情预报模型,以25%的测试数据进行模型性能测试、比较。结果显示,(1) STK (由KNN、RF、GBDT模型集成)模型的大眼金枪鱼渔场预报性能较KNN、LR、CART、SVM、ANN、RF和GBDT模型有所提高且相对稳定,上述模型对应的准确率和ROC曲线下面积(AUC)依次分别为81.62%、0.781,79.44%、0.778,72.81%、0.685,74.84%、0.717,73.67%、0.702,67.70%、0.500,80.96%、0.780和78.13%、0.747;(2) STK模型预测...  相似文献   

12.
Vertical movements related to the thermoregulation were investigated in 12 juvenile bigeye tuna (Thunnus obesus) in Japanese waters using archival tag data. Movements changed with time of day, season, and body size. During daytime, bigeye tuna descended to greater depths, presumably to feed in the deep scattering layer (DSL). Thereafter, they repeatedly ascended to shallower layers, suggesting attempts at behavioral thermoregulation, although the beginning of vertical thermoregulatory ascents might reflect a shift in DSL depth. By the end of such movement, the whole‐body heat‐transfer coefficient might decrease because, although the depth and ambient temperature of the upper layers did not change, the body temperature gradually decreased significantly just after ascent for thermoregulation. Seasonal patterns indicated that the vertical thermal structure of the ocean might influence this ascent behavior. For example, from January to May, bigeye tuna made fewer ascents to less shallow waters, suggesting that they respond to increasing depths of the mixed surface layer by reducing energy expenditure during vertical migration. In addition, as body size increased, fewer thermoregulatory ascents were required to maintain body temperature, and fish remained deeper for longer periods. Thus, vertical thermoregulatory movements might change with body size as bigeye tuna develop better endothermic and thermoregulatory abilities. We hypothesize that bigeye might also increase cold tolerance as they grow, possibly due to ontogenetic shifts in cardiac function.  相似文献   

13.
Bigeye tuna Thunnus obesus is considered an important fishery species around the world. There is no adequate genetic data available for the T. obesus population. Polymorphism of sequence variations in mitochondrial Cytb genes were assessed to explore the level of genetic variability and differentiation among eight populations of T. obesus sampled from the central Pacific Ocean. Overall, a total of 44 mtDNA haplotypes and 26 variable sites were detected in the 686 bp segment of mtDNA Cytb gene. Nucleotide diversity ranged from 0.17 to 0.27 % and the haplotype diversity ranged from 0.604 to 0.793. An analysis of molecular variance (AMOVA) test of bigeye tuna revealed that 99.38 % of the genetic variation occurred within populations. Both the maximum likelihood tree and the haplotype network indicated that two lineages of bigeye tuna coexisted in the central Pacific Ocean. Hierarchical AMOVA tests and pairwise analysis revealed no geographical isolation among haplotypes within the two lineages. High Nm values from this investigation indicated high rates of gene flow between the two sampling regions. Furthermore, tests of neutrality and mismatch distribution suggested that T. obesus might have experienced a population expansion, one that possibly occurred 110,000 years ago. Our study firstly unraveled the population genetic structure of the T. obesus in the central Pacific Ocean, and addressed the related fishery management issues including fishery stock identification, management, and conservation.  相似文献   

14.
大眼金枪鱼渔场与环境关系的研究进展   总被引:2,自引:0,他引:2  
大眼金枪鱼是金枪鱼远洋渔业的主要捕捞对象。本文从大眼金枪鱼适宜环境因子、大眼金枪鱼渔场变动、资源丰度及其与环境因子间关系的研究方法等几方面总结了大眼金枪鱼渔场与环境关系的研究进展。大眼金枪鱼种群资源丰度的指标主要是CPUE和标准化后的CPUE,CPUE标准化的方法主要是GLM模型和GLM/HBM模型;目前,分析大眼金枪鱼资源变化与环境间关系的研究方法主要有聚类分析法、G IS软件定性分析法和栖息地指数模型。其中,聚类分析适用于研究大眼金枪鱼的渔场变动,包括系统聚类分析法、动态聚类分析法和灰色星座分析法,利用G IS软件定性分析适用于分析单个环境因子对渔场产生的影响;而栖息地指数模型能综合多个环境因子,分析它们共同对渔场产生的影响。  相似文献   

15.
Movement patterns of 17 bigeye tuna (Thunnus obesus) near the Azores Islands were analyzed between April and May 2001 and 2002 using pop‐up satellite archival tags. Despite short attachment durations (1 to 21 days, 8.2 days on average), their vertical movements revealed much shallower distribution of bigeye tuna in comparison with previous studies in the tropical Pacific and tropical Atlantic. Depth and temperature histograms were unimodal, although overall depth distribution during the day was deeper than during the night due to daily incursions in deeper waters. Although generalized additive models showed significant non‐linear relationships with weight of the fish and sea level anomaly (as a proxy for variability of thermocline depth), the effect of these variables on bigeye depth appeared minor, suggesting that vertical movements of bigeye in the Azores during the spring migration may be influenced by food availability in upper water layers.  相似文献   

16.
中国金枪鱼延绳钓渔业观察员于2018年9-12月在北太平洋亚热带水域(150°W-164°W,30°N-37°N)采集了146尾大眼金枪鱼(Thunnus obesus)样品,并对其胃含物组成进行了研究。结果表明,大眼金枪鱼胃含物中共鉴别出36种饵料种类,隶属于28科,优势饵料为帆蜥鱼(Alepisaurus ferox)、发光柔鱼(Eucleoteuthis luminosa)、魣蜥鱼(Lestidium prolixum)和眶灯鱼(Diaphus sp.),其相对重要性指数百分比(IRI%)分别为25.65%、14.48%、7.56%和6.77%。大眼金枪鱼在叉长为100~110 cm范围内的摄食强度最高,在性腺成熟度Ⅲ期的摄食强度也最高,而Ⅴ期的摄食强度最低,此外,在150~250 m水层中的摄食强度较高。研究结果有助于提高对大眼金枪鱼生物学特征和摄食习性的认识,及进一步了解其在生态系统和食物网结构中所扮演的重要角色。  相似文献   

17.
The behavior of bigeye tuna (Thunnus obesus) in the northwestern Pacific Ocean was investigated using archival tag data for 28 fish [49–72 cm fork length (FL) at release, 3–503 days] released in Japanese waters around the Nansei Islands (24–29°N, 122–132°E) and east of central Honshu (Offshore central Honshu, 32–36°N, 142–148°E). Vertical behavior was classified into three types based on past studies: ‘characteristic’ (non‐associative), ‘associative’ (associated with floating objects) and ‘other’ (behavior not fitting into these two categories). The proportion of fish showing associative behavior decreased and that of characteristic behavior increased as fish grew, and this shift was pronounced at 60–70 cm FL. The fish usually stayed above the 20°C isotherm during the daytime and nighttime when showing associative behavior and below the 20°C isotherm during daytime for characteristic behavior. A higher proportion of characteristic behavior was seen between December and April around the Nansei Islands, and between September and December for offshore central Honshu. Seasonal changes in vertical position were also observed in conjunction with changes in water temperature. In this study, ‘other’ behavior was further classified into five types, of which ‘afternoon dive’ behavior, characterized by deep dives between around noon and evening, was the most frequent. The present study indicated that in the northwestern Pacific Ocean, the vertical behavior of bigeye tuna changes with size, as well as between seasons and regions.  相似文献   

18.
《水生生物资源》2000,13(4):213-223
In Hawaii, a variety of small- and medium-scale pelagic fisheries target fishing effort on a network of coastal moored FADs, natural inshore tuna aggregation points, offshore seamounts and offshore weather monitoring buoys. Large-scale longline vessels also operate in the Hawaii exclusive economic zone (EEZ) and beyond. These circumstances provide an ideal setting for tag-and-release experiments designed to elucidate the movement patterns, residence times, exchange rates and vulnerability of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) within the Hawaiian EEZ. Preliminary recapture data indicate that FADs, island reef ledges and seamounts exert an overwhelming influence on the catchability of tuna. Recapture rates from these locations vastly outweigh tag returns from open water areas. As of August 31, 1999, a total of l5 387 bigeye and, yellowfin tuna ranging in size from 29 to 133 cm fork length (FL) and from 26 to143 cm FL respectively (mean 59.8 ± 14.1 cm; 58.4 ± 17.3 cm) have been tagged and released throughout the Hawaii EEZ. Recapture rates for both species have been similar with an overall recapture rate of l0.3 %. The location of tag releases reflects the importance of associative behavior and schooling to the vulnerability of tuna; seamounts and FADs accounted for 72.4 % and 23.5 % of all tag releases. Within the main Hawaiian Island group (excluding the offshore seamounts and buoys), 83.1 % of all recaptures have been made on anchored FADs and 11.9 % of recaptures have come from ledges or tuna aggregation areas close to the islands where bigeye and yellowfin tuna become vulnerable to hook and line gear. As these studies continue, additional and longer-term recaptures will provide increasingly detailed information on the movement patterns and vulnerability of bigeye and yellowfin tuna as they grow, move and recruit to different fisheries.  相似文献   

19.
西北印度洋大眼金枪鱼渔场预报模型建立与模块开发   总被引:1,自引:0,他引:1  
根据1990—2003年印度洋大眼金枪鱼延绳钓渔业数据和美国国家海洋和大气管理局提供的海表温度、叶绿素-a历史环境数据,应用环境因子叠加方法,构建了西印度洋大眼金枪鱼渔场预报模型,用于金枪鱼渔场预报。分析得出各月适宜海表温度、叶绿素-a浓度范围和历史高产区空间位置;导入实时海表温度、叶绿素-a等遥感栅格数据,分别提取适宜海表温度、适宜叶绿素-a浓度和历史高产区的空间栅格数据集,最后在空间上对3种栅格数据进行空间叠加并取交集。交集所指空间区域即为大眼金枪鱼潜在渔场位置。通过精度检验,表明该模型渔场预报精度为60.5%。并以VC++6.0工具为开发平台,对此模型进行了设计开发,实现了模块预报西北印度洋大眼金枪鱼渔场。  相似文献   

20.
中西太平洋金枪鱼围网渔获物组成分析   总被引:7,自引:6,他引:1  
根据 2 0 0 4年 7月 2 8日至 9月 1日在中西太平洋海域的金枪鱼围网生产调查结果 ,以及“金汇 2号”2 0 0 3年全年的生产数据 ,对中西太平洋金枪鱼围网渔获物组成进行了初步分析。结果显示 ,渔获物种类有鲣鱼 (Katsuwonuspelamis)、黄鳍金枪鱼 (Thunnusalbacares)和大眼金枪鱼 (Thunnusobesus)等 19种 ;渔获物重量组成中鲣鱼占 70 .5 1% ,黄鳍金枪鱼占 2 6 .92 % ,其它鱼类占 2 .5 6 % ;鲣鱼的叉长范围为 2 7~ 81cm ,优势叉长组为 4 0~ 5 0cm ,占 4 1% ;黄鳍金枪鱼叉长范围为 32~ 16 5cm ,优势叉长组为 5 0~ 70cm ,占 33% ,另一优势叉长组为 110~ 130cm ,占 2 0 % ;渔获物重量组成存在海域差异 ,在 16 2°E以东海域鲣鱼比例高于以西海域 ,黄鳍金枪鱼则是在 16 2°E以西海域的比例较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号