首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
试验旨在获得牦牛HOXA1基因序列并进行生物信息学分析,同时分析其组织表达谱和时序表达谱,为进一步研究多脊椎骨形成的原因及其机制奠定基础。通过RT-PCR技术克隆多脊椎骨牦牛HOXA1基因,利用半定量RT-PCR技术检测该基因在多脊椎骨牦牛组织中的表达情况,利用实时荧光定量PCR技术检测该基因在多脊椎骨牦牛不同发育时期各组织中的表达情况。RT-PCR结果表明,多脊椎骨牦牛HOXA1基因序列全长为885 bp,其中开放阅读框(ORF)为870 bp,编码290个氨基酸。同源性分析表明,牦牛与普通牛、野牦牛、人、野猪、马、家鼠、黑猩猩、原鸡和野猪的同源性为75.4%~98.1%。组织表达分析表明,HOXA1基因在心脏、肝脏、脾脏、肺脏、肾脏、大肠、小肠、肌肉、胃、卵巢、子宫、输卵管、乳腺、睾丸中均有不同程度的表达;时序表达分析表明,随着年龄的增长HOXA1基因在多数组织中的表达量呈逐渐升高趋势。  相似文献   

2.
牦牛Toll样受体8和9基因克隆及组织表达分析   总被引:1,自引:0,他引:1  
为了解牦牛Toll样受体8(TLR8)和9(TLR9)蛋白的结构特征及其基因的组织表达规律,丰富牦牛TLRs基因研究的理论数据,应用RT-PCR方法克隆牦牛TLR8、TLR9基因,并进行生物信息学分析,采用实时荧光定量PCR技术构建组织表达谱。结果显示,两个基因cDNA全长分别为3 102bp和3 090bp。牦牛TLR8和TLR9基因与野牦牛、黄牛和绵羊之间的同源性都很高,均在95%以上。牦牛TLR8和TLR9蛋白都具有胞外LRRs功能域、胞内区TIR结构域、低复杂度区;另外,TLR8还具有1个C端富集亮氨酸重复序列(LRRCT)和跨膜结构域。两个基因在10个组织中均有不同程度的表达,在肾脏中表达量最高,而在大肠中表达量最低。本研究成功克隆了牦牛TLR8和TLR9基因的完整编码区,并揭示了它们在各组织器官的表达规律,为进一步研究TLRs在牦牛体内的免疫机制奠定了基础。  相似文献   

3.
根据GenBank中已公布牛Toll样受体5(toll-like receptors 5,TLR5)基因序列,设计全长引物,并对所得序列进行生物信息学分析和预测。基因序列分析结果表明,克隆得到牦牛TLR5基因全长2582 bp,开放阅读框2577 bp,编码氨基酸858个,N端含有21个氨基酸组成的信号肽,分子质量为97.981 ku,理论等电点为4.85;蛋白预测结果表明,TLR5编码蛋白整体表现为亲水性;同源性分析结果表明,牦牛与野牦牛、黄牛、绵羊、山羊等物种具有较高的同源性,在系统发育树中距离最近,说明TLR5基因序列具有较高的保守性。牦牛TLR5基因序列的成功克隆为今后深入研究牦牛及高原动物抗病及免疫机制提供非常重要的理论基础。  相似文献   

4.
试验旨在对牦牛催乳素释放激素受体(prolactin releasing hormone receptor,PRLHR)基因进行克隆、序列分析及组织表达研究。采集5头母牦牛和5头母黄牛的下丘脑、脑垂体前叶、卵巢、输卵管和子宫组织,采用RT-PCR技术扩增得到PRLHR基因cDNA全长,通过生物信息学方法分析该基因编码蛋白的生物信息学特征,利用实时荧光定量PCR技术测定PRLHR基因在牦牛及黄牛各组织中的表达量。结果显示,牦牛PRLHR基因序列长1 625 bp,其中CDS区1 113 bp、5′-UTR 22 bp和3′-UTR 490 bp,编码370个氨基酸,与黄牛、水牛、绵羊、猪和人的核苷酸序列有较高的同源性,在进化过程中十分保守;牦牛PRLHR为不稳定疏水蛋白,无信号肽,存在7个跨膜结构域;有13个丝氨酸磷酸化位点、6个苏氨酸磷酸化位点和4个酪氨酸磷酸化位点;有3个N-糖基化位点和10个O-糖基化位点;蛋白二级结构中α-螺旋、无规则卷曲、延伸链和β-转角分别为49.19%、31.89%、15.68%和3.24%;蛋白质三级结构预测显示,牦牛PRLHR蛋白具有GPCRs超级家族中PrRP家族的典型结构域。实时荧光定量PCR结果表明,PRLHR基因在牦牛输卵管组织中的表达量显著高于其他组织(P0.05);在牦牛下丘脑、脑垂体前叶、子宫和输卵管组织中的表达量极显著高于黄牛(P0.01)。试验成功克隆得到牦牛PRLHR基因序列,并对其进行了生物信息学和组织表达特性分析,为进一步研究PRLHR基因在牦牛繁殖活动中的调控作用奠定了基础。  相似文献   

5.
陈莹  夏忆  何向东  字向东 《中国畜牧兽医》2019,46(12):3504-3513
试验旨在对牦牛催乳素释放激素受体(prolactin releasing hormone receptor,PRLHR)基因进行克隆、序列分析及组织表达研究。采集5头母牦牛和5头母黄牛的下丘脑、脑垂体前叶、卵巢、输卵管和子宫组织,采用RT-PCR技术扩增得到PRLHR基因cDNA全长,通过生物信息学方法分析该基因编码蛋白的生物信息学特征,利用实时荧光定量PCR技术测定PRLHR基因在牦牛及黄牛各组织中的表达量。结果显示,牦牛PRLHR基因序列长1 625 bp,其中CDS区1 113 bp、5'-UTR 22 bp和3'-UTR 490 bp,编码370个氨基酸,与黄牛、水牛、绵羊、猪和人的核苷酸序列有较高的同源性,在进化过程中十分保守;牦牛PRLHR为不稳定疏水蛋白,无信号肽,存在7个跨膜结构域;有13个丝氨酸磷酸化位点、6个苏氨酸磷酸化位点和4个酪氨酸磷酸化位点;有3个N-糖基化位点和10个O-糖基化位点;蛋白二级结构中α-螺旋、无规则卷曲、延伸链和β-转角分别为49.19%、31.89%、15.68%和3.24%;蛋白质三级结构预测显示,牦牛PRLHR蛋白具有GPCRs超级家族中PrRP家族的典型结构域。实时荧光定量PCR结果表明,PRLHR基因在牦牛输卵管组织中的表达量显著高于其他组织(P<0.05);在牦牛下丘脑、脑垂体前叶、子宫和输卵管组织中的表达量极显著高于黄牛(P<0.01)。试验成功克隆得到牦牛PRLHR基因序列,并对其进行了生物信息学和组织表达特性分析,为进一步研究PRLHR基因在牦牛繁殖活动中的调控作用奠定了基础。  相似文献   

6.
本研究克隆了麦洼牦牛天然免疫受体1~10基因的编码区,利用生物信息学工具分析基因特点,荧光定量PCR测定TLRs基因在不同组织中的表达量。序列比较分析结果表明,麦洼牦牛TLR基因与其他物种在核苷酸水平及氨基酸水平上均表现出很高的保守性。遗传进化方面,麦洼牦牛TLRs与牛和绵羊TLRs遗传进化距离最近,并与人、马、鼠TLRs等形成哺乳动物的一个分支,与鸡则形成遗传距离较远的一个分支。同时我们在进行系统发育分析时发现,TLR1、TLR6先聚为一小支,再与TLR10又聚为更紧密的一支,然后TLR1、2、6、10和TLR7、8、9分别聚集在两个单个的分支上,TLR其他成员各自成为一支。荧光定量结果表明,TLRs在麦洼牦牛各组织均有表达,但不同成员在不同组织的表达存在较大的差异。其中TLR2、TLR4和TLR6在脾表达量最高,在卵巢、小肠、肾、肝中有高表达,TLR1、TLR5、TLR7、TLR8、TLR9和TLR10在肾表达量最高,在肝、肾、脾等组织中高表达。综上所述,本研究的开展能为以后揭示TLRs在牦牛等高原模式动物分子免疫机制以及牦牛抗病育种奠定基础。  相似文献   

7.
试验旨在分析Bcl-2与Bax基因的序列特性,并分析其在母牦牛生殖轴上的表达特点,为探讨其在牦牛繁殖活动中的调控作用奠定基础。试验采集健康母牦牛与母黄牛下丘脑、垂体、卵巢、输卵管及子宫组织样品,通过RT-PCR扩增并克隆Bcl-2与Bax基因,并采用生物信息学软件进行序列分析;利用实时荧光定量PCR法检测Bcl-2与Bax基因在牦牛与黄牛不同组织中的表达差异。结果表明,牦牛Bcl-2编码区全长690 bp,编码229个氨基酸;与黄牛Bcl-2基因核苷酸序列同源性最高,为99.86%,其次是山羊、绵羊,同源性分别为98.41%、97.97%;系统进化树表明,牦牛与黄牛亲缘关系最近。牦牛Bax基因编码区全长579 bp,编码192个氨基酸,与黄牛、藏山羊和金堂黑山羊同源性较高,分别为99.83%、99.48%和99.48%,其次是绵羊、马、人,同源性分别为99.14%、95.34%、94.30%;系统进化树表明,牦牛与黄牛亲缘关系最近。Bcl-2和Bax蛋白不存在信号肽,均为酸性不稳定的疏水蛋白。Bcl-2与Bax基因在黄牛及牦牛下丘脑、垂体、卵巢、输卵管和子宫组织中均有表达,其中牦牛卵巢、子宫中Bcl-2基因表达量分别显著和极显著高于黄牛(P0.05;P0.01);牦牛子宫、输卵管中Bax基因表达量显著高于黄牛(P0.05),牦牛卵巢中Bcl-2/Bax比值极显著高于黄牛(P0.01),子宫和垂体中显著高于黄牛(P0.05)。表明Bcl-2与Bax在动物进化中非常保守且在繁殖活动中起重要作用,牦牛卵巢、子宫、输卵管和垂体中的高表达量可能与牦牛处于极端恶劣环境的细胞抗凋亡作用有关。  相似文献   

8.
绵羊MC4R基因的半定量RT-PCR及生物信息学分析   总被引:1,自引:0,他引:1  
本研究旨在对绵羊MC4R基因进行组织表达谱和生物信息学分析。参考牛MC4R基因序列设计引物,采用PCR技术克隆绵羊MC4R基因序列,并利用半定量RT-PCR进行组织表达谱分析;同时对其进行生物信息学分析。结果表明,克隆的绵羊MC4R基因全长1 919 bp,含有999 bp的完整CDS编码区,编码332个氨基酸。其CDS编码区的核苷酸序列与牛、人、猪、大鼠、小鼠MC4R基因对应序列的同源性分别为95.2%、68.8%、82.7%、76.6%、77.1%,预测的氨基酸序列同源性分别为97.0%、92.8%、93.7%、92.2%、91.6%。组织表达谱分析表明MC4R基因在各组织均不同程度的表达,其中在大脑表达量很高,其他组织较低。生物信息学预测MC4R蛋白功能发现,绵羊的MC4R蛋白存在7个跨膜螺旋结构域,同时预测MC4R存在10个磷酸化位点和1个特异性蛋白激酶磷酸化位点。结果表明,MC4R是一个非常保守的蛋白,在绵羊的生长发育中起着重要作用。  相似文献   

9.
本研究旨在阐明牦牛RGS1基因的表达特性及其在牦牛发情周期中卵巢组织的表达。通过采集不同发情周期的牦牛卵巢及肌肉、脾、心、肾、胃、小肠、小脑、肝和肺组织,以GenBank上已发布的黄牛RGS1基因序列设计引物,利用RT-PCR方法扩增克隆牦牛RGS1基因及检测其在牦牛各组织中的表达谱,并使用相关生物信息学软件分析RGS1基因的结构和功能。采用实时荧光定量PCR法检测RGS1基因在牦牛发情周期卵巢中mRNA的表达水平。结果表明,本试验克隆得到牦牛RGS1基因718bp的cDNA序列。同源性与进化树分析表明,牦牛RGS1核苷酸序列与黄牛、野牦牛等大多数哺乳动物的遗传距离较近,其在进化进程中相对较保守。牦牛RGS1基因CDS区为591bp,编码196个氨基酸残基,相对分子质量为22.48ku,不含跨膜结构和信号肽,为亲水性蛋白和非分泌蛋白。蛋白二级结构和三级结构以α-螺旋和自由卷曲结构为主。RGS1基因在所选牦牛组织样品中均有表达,其中在小肠、小脑、心和胃中表达量最高。荧光定量PCR结果显示,牦牛黄体期卵巢中RGS1mRNA的表达量极显著高于卵泡期和红体期(P0.01),卵泡期中RGS1mRNA表达水平高于红体期,但差异不显著(P0.05)。本研究成功克隆了RGS1基因及其在牦牛卵巢3个时期中mRNA的差异性,表明该基因参与发情周期卵巢的内分泌活动调控。  相似文献   

10.
为获得版纳微型猪近交系(Banna Mini-pig inbred line,BMI)TSATG7基因序列并分析组织表达情况,本研究以GenBank中猪及近缘物种的TSARG7基因mRNA序列为参考序列,设计特异引物扩增BMI TSARG7基因,半定量分析10个重要组织的表达谱,并对蛋白质序列进行功能生物信息学分析。结果显示,获得了BMI TSARG7基因1 371 bp的编码区序列(GenBank登录号:KU950831,对应的氨基酸登录号:AMY60405),编码456个氨基酸,蛋白质分子质量为52.05 ku,等电点(pI)为9.28。多组织表达分析表明,TSARG7基因在睾丸中高表达,在其他组织中呈中、低表达。功能生物信息学分析表明,TSARG7蛋白质存在1个保守结构域,有3个跨膜螺旋结构,无信号肽序列;N末端疏水,C末端亲水;有5类功能活性位点,位于细胞质的概率是94.1%。本试验结果为进一步研究TSARG7基因在猪精子发生和性成熟方面的作用及功能奠定基础。  相似文献   

11.
为了测定牦牛DDAH1和DDAH2基因序列并比较其在牦牛和雄性不育犏牛睾丸中的表达,以探究该基因与犏牛雄性不育的联系,试验从牦牛睾丸中提取总RNA,采用RT-PCR技术克隆并测序获得牦牛DDAH1和DDAH2基因的c DNA序列;利用实时荧光定量RT-PCR技术检测这两个基因在牦牛与犏牛睾丸中的表达。结果表明:克隆获得的牦牛DDAH1和DDAH2基因序列分别长959 bp及1 091 bp,均包含858 bp的CDS区。DDAH1基因序列与普通牛相比有4个碱基差异,序列同源性为99.58%,而推导的氨基酸序列仅存在1个氨基酸残基差异;DDAH2基因序列与普通牛比较相差1个碱基,序列同源性为99.91%,推导的氨基酸序列存在1个氨基酸残基差异。DDAH1和DDAH2基因在牦牛和犏牛睾丸组织中均有表达,DDAH1基因在犏牛睾丸组织中的表达量显著高于牦牛(P0.05),是牦牛睾丸组织中表达量的1.5倍;DDAH2基因在犏牛睾丸中的表达量与牦牛相比差异不显著。说明DDAH基因表达在犏牛睾丸中上调可能与其雄性不育有关。  相似文献   

12.
本研究旨在对三黄鸡ST3Gal6基因进行组织表达谱和生物信息学分析。参考三黄鸡ST3Gal6基因序列设计引物,采用PCR技术克隆三黄鸡ST3Gal6基因序列,并利用半定量RT-PCR进行组织表达谱分析;同时对其进行生物信息学分析。结果表明,克隆的三黄鸡ST3Gal6基因全长1169 bp,含有1059 bp的完整CDS编码区,编码352个氨基酸。其CDS编码区的核苷酸序列与人、黑猩猩、牛、大鼠、蟾ST3Gal6基因对应序列的同源性分别为62%、62%、61.9%、59%、54.4%。组织表达谱分析表明,ST3Gal6基因在各组织均不同程度地表达,其中在大脑表达量很高,肺脏中最低。生物信息学预测ST3Gal6蛋白结构发现,三黄鸡的ST3Gal6蛋白存在2个跨膜螺旋结构域,同时预测ST3Gal6存在22个磷酸化位点和1个特异性蛋白激酶磷酸化位点。  相似文献   

13.
试验旨在分析Bcl-2与Bax基因的序列特性,并分析其在母牦牛生殖轴上的表达特点,为探讨其在牦牛繁殖活动中的调控作用奠定基础。试验采集健康母牦牛与母黄牛下丘脑、垂体、卵巢、输卵管及子宫组织样品,通过RT-PCR扩增并克隆Bcl-2与Bax基因,并采用生物信息学软件进行序列分析;利用实时荧光定量PCR法检测Bcl-2与Bax基因在牦牛与黄牛不同组织中的表达差异。结果表明,牦牛Bcl-2编码区全长690 bp,编码229个氨基酸;与黄牛Bcl-2基因核苷酸序列同源性最高,为99.86%,其次是山羊、绵羊,同源性分别为98.41%、97.97%;系统进化树表明,牦牛与黄牛亲缘关系最近。牦牛Bax基因编码区全长579 bp,编码192个氨基酸,与黄牛、藏山羊和金堂黑山羊同源性较高,分别为99.83%、99.48%和99.48%,其次是绵羊、马、人,同源性分别为99.14%、95.34%、94.30%;系统进化树表明,牦牛与黄牛亲缘关系最近。Bcl-2和Bax蛋白不存在信号肽,均为酸性不稳定的疏水蛋白。Bcl-2与Bax基因在黄牛及牦牛下丘脑、垂体、卵巢、输卵管和子宫组织中均有表达,其中牦牛卵巢、子宫中Bcl-2基因表达量分别显著和极显著高于黄牛(P<0.05;P<0.01);牦牛子宫、输卵管中Bax基因表达量显著高于黄牛(P<0.05),牦牛卵巢中Bcl-2/Bax比值极显著高于黄牛(P<0.01),子宫和垂体中显著高于黄牛(P<0.05)。表明Bcl-2与Bax在动物进化中非常保守且在繁殖活动中起重要作用,牦牛卵巢、子宫、输卵管和垂体中的高表达量可能与牦牛处于极端恶劣环境的细胞抗凋亡作用有关。  相似文献   

14.
谷胱甘肽S-转移酶Mu 3(GSTM3)是一种必需的抗氧化酶,其在精子中的存在与精子的耐冷性、质量和生育能力有关。为研究GSTM3的表达与雄性牦牛繁殖功能的关系,本研究对牦牛附睾GSTM3基因进行克隆、生物信息学分析,并应用实时荧光定量PCR分析GSTM3基因在牦牛和犏牛附睾以及睾丸组织中的表达情况。结果表明,牦牛GSTM3基因CDS区序列长度为678 bp,编码225个氨基酸;GSTM3基因编码蛋白为弱酸性且不具有跨膜结构,分子式为C1204H1857N319O340S19,分子量和等电点分别为26.85 ku和7.29;牦牛GSTM3核苷酸序列与普通牛和瘤牛有较高的种间同源性,分别为99.26%和98.53%;GSTM3基因在牦牛和犏牛附睾以及睾丸组织中均有不同程度的表达,牦牛附睾和睾丸的GSTM3表达量显著高于犏牛。  相似文献   

15.
为了获得牦牛KLF10基因序列及分析其序列生物学特征,并阐明其组织表达规律,试验采用RT-PCR方法克隆麦洼牦牛KLF10基因序列,荧光定量PCR(Quantitativereal-time PCR,q PCR)方法检测该基因在几种器官组织中的表达情况。结果表明:获得牦牛KLF10基因序列(Gen Bank登录号为KX395177),长度为1 460 bp,其中CDS为1 452 bp,编码483个氨基酸。KLF10基因在牦牛的肝脏和肺脏中存在高水平表达,极显著高于其他器官组织(P0.01)。  相似文献   

16.
为了解牦牛NOBOX基因的特点,根据GenBank中公布的牛NOBOX基因序列设计2对引物,分两段扩增麦洼牦牛的NOBOX基因,然后测序并拼接。序列分析表明,扩增的牦牛NOBOX基因大小为1 975bp,其中开放阅读框全长1 500bp,编码499个氨基酸,分子质量为53.12ku。核苷酸序列同源性分析表明,NOBOX基因具有相对较高的保守性,牦牛与牛的NOBOX基因核苷酸序列同源性很高,为97%。在此基础上,借助Mega 5.0软件,采用N-J算法构建了NOBOX氨基酸的系统进化树,分析了不同物种间的进化关系。牦牛NOBOX基因序列的成功克隆,为麦洼牦牛卵母细胞成熟及早期胚胎发育分子机制的研究及麦洼牦牛的遗传资源保护和育种提供了理论基础。  相似文献   

17.
为了研究MyoG基因在鸡生长发育与肉质形成中的作用,试验以泸宁鸡为研究对象,采用RT-PCR技术克隆MyoG基因序列,并利用生物信息学的方法对其理化性质、氨基酸同源性等进行预测和分析,同时采用半定量方法检测MyoG基因在泸宁鸡不同组织中的表达水平。结果表明:泸宁鸡MyoG基因序列长度为741bp,其中开放阅读框(ORF)长度为684 bp,编码227个氨基酸,具有碱性螺旋-环-螺旋结构(bHLH),与哺乳动物的同源性为70%~71%,与原鸡、火鸡、绿头鸭、游隼的同源性为91%~99%。组织表达谱结果表明,MyoG基因在泸宁鸡腿肌、胸肌、肝脏、肾脏、脑、脾脏、心脏中均有表达,在腿肌、胸肌、心脏中表达水平较高,在肝脏、肾脏和脑中表达水平较低,说明Myo G基因的表达主要集中于肌肉组织。  相似文献   

18.
旨在克隆奶山羊GPR41(G protein-coupled receptor 41)基因并分析其组织表达谱,为进一步探讨其功能奠定基础.根据GenBank上已登录的牛、人和鼠的GPR41基因序列设计1对特异性引物,采用RT-PCR方法克隆奶山羊GPR41基因,利用实时荧光定量PCR方法分析奶山羊GPR41 mRNA表达的组织特异性.测序结果表明奶山羊GPR41基因的CDS区为978 bp,共编码325个氨基酸.奶山羊GPR41基因序列同源性分析表明:其与牛、人和鼠的核苷酸序列同源性分别为96%、78%和74%,与牛、人和鼠的氨基酸序列同源性分别为97%、76%和74%.实时荧光定量PCR分析结果表明:奶山羊GPR41基因在小肠组织中表达量最高,其次是乳腺组织,在心脏和肾脏中表达量极低.试验结果表明GPR41可能在小肠和乳腺组织中发挥着重要的生理作用.  相似文献   

19.
为了对牦牛egl-9家族缺氧诱导因子1 (EGLN1)基因的CDS区核苷酸序列进行克隆,预测其编码的蛋白结构和功能,并分析其在牦牛和黄牛心脏、肺脏、肝脏及大脑等器官中的表达差异,试验根据GenBank中公布的黄牛EGLN1基因mRNA序列设计特异性引物,运用RT-PCR技术获取牦牛EGLN1基因的cDNA序列,对牦牛EGLN1基因CDS区核苷酸序列与蛋白质结构进行生物信息学分析,并构建系统进化树,利用荧光定量PCR技术检测黄牛和牦牛心脏、肺脏、肝脏、大脑中EGLN1基因的相对表达水平。结果表明:牦牛EGLN1基因CDS区序列长度为1 263 bp,编码420个氨基酸;EGLN1的半衰期为30 h,属于碱性蛋白,表现为亲水性,无信号肽及跨膜结构;磷酸化位点共30个,存在3个低复杂区域和1个P4Hc结构功能域;二级结构以无规则卷曲为主,三级结构由无规则卷曲、α-螺旋、延伸链和β-转角构成。牦牛和其他9种动物EGLN1基因序列构建系统进化树中,牦牛与水牛亲缘关系最近,同源性高达99.3%,与褐家鼠亲缘关系较远。EGLN1基因在黄牛和牦牛肝脏、大脑、心脏、肺脏4个器官中均有表达,表达量依次递减;EGLN1基因在牦牛各器官中的相对表达量均显著高于黄牛(P0.05),其中牦牛肝脏中的相对表达量约为黄牛的5.5倍。说明EGLN1基因可作为牦牛低氧适应性研究的重要基因之一。  相似文献   

20.
试验旨在研究Toll 样受体(Toll-like receptors,TLRs)在水貂抗病毒免疫中的作用机制,并为抗病育种积累可供选择的基因素材。本试验以雪貂TLRs基因为参考序列设计4对引物对水貂TLR4、TLR6、TLR7及TLR8进行分子克隆,并对所得序列进行生物信息学分析,进一步利用半定量RT-PCR技术分析TLR4和TLR7基因mRNA在不同年龄水貂各组织中的表达情况。结果表明,水貂TLRs与食肉目动物(雪貂、北极熊、大熊猫、海象、海豹、犬、老虎和猫)具有较高的同源性,在系统发育树中距离最近;组织表达分析表明TLR4和TLR7在检测的组织中广泛表达且表达量存在差异,相比成年水貂,仔貂各组织中TLR4或TLR7基因表达量更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号