首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Canada Western Amber Durum wheat cultivars (4), Canada Western Red Spring (1), and Canada Western Hard White Spring (1) wheat were grown at three sites in 2007 to evaluate the effect of genotype (G) and environment (E) on the quality of yellow alkaline noodles (YAN). YAN were evaluated for color, appearance, and cooked texture. Brightness (L*) and yellowness (b*) of YAN made from durum cultivars were significantly higher than common wheat. Durum flour yellow pigment content was approximately fourfold greater than common wheat while noodle speckiness was approximately half of CWRS at 2 hr with environment accounting for >75% of the variance for each parameter. Resistance to compression (RTC) and recovery (REC) of cooked durum alkaline noodles were equivalent or superior to common wheat noodles even when lower grade durum wheat flour was used. In conclusion, cooked durum noodle texture parameters were all significantly influenced by genotype and environment, with environment accounting for 66–71% of their variance.  相似文献   

2.
A commercial gluten and glutens isolated from four soft and four hard wheat flours were incorporated into a hard and a soft white flour by replacement to directly determine the quantitative and qualitative role of gluten proteins in making noodles. Gluten incorporation (6%) decreased water absorption of noodle dough by 3%, shortened the length of the dough sheet by 15 and 18%, and increased the thickness of the dough sheet by 18 and 20% in soft and hard wheat flour, respectively. Noodles imbibed less water and imbibed water more slowly during cooking with gluten incorporation, which resulted in a 3‐min increase in cooking time for both soft and hard wheat noodles. Despite the extended cooking time of 3 min, noodles incorporated with 6% gluten exhibited decreases in cooking loss by 15% in soft wheat. In hard wheat flour, cooking loss of noodles was lowest with 2% incorporation of gluten. Tensile strength of fresh and cooked noodles, as well as hardness of cooked noodles, increased linearly with increase in gluten incorporation, regardless of cooking time and storage time after cooking. While hardness of cooked noodles either increased or showed no changes during storage for 4 hr, tensile strength of noodles decreased. There were large variations in hardness and tensile strength of cooked noodles incorporated with glutens isolated from eight different flours. Noodles incorporated with soft wheat glutens exhibited greater hardness and tensile strength than noodles with hard wheat glutens. Tensile strength of cooked noodles incorporated with eight different glutens negatively correlated with SDS sedimentation volume of wheat flours from which the glutens were isolated.  相似文献   

3.
A hard white spring wheat was milled to yield three patent flours with different starch damage levels by manipulating reduction grinding conditions, and each flour was sieved to give three different particle sizes (85–110, 110–132, 132–183 μm). Raw alkaline noodles were prepared using either 1% w/w kansui (sodium and potassium carbonates in 9:1 ratio) or 1% w/w sodium hydroxide. Noodles prepared with sodium hydroxide were significantly brighter, less red, and more yellow than those made with kansui. Differences in noodle color among flour treatments were evident but were attributable to differences in flour refinement rather to than particle size or starch damage. Noodles were rested for 1 hr after processing before cooking. Alkaline reagent was the main factor associated with cooking loss, being ≈50% greater for sodium hydroxide noodles because of higher pH compared with kansui noodles. Cooked sodium hydroxide noodles were thicker than kansui noodles, and cooked strands for both noodle types became thicker as starch damage increased and as particle size became coarser. Instrumental assessment of cooked noodle texture showed that maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), stress relaxation time (SRT), chewiness (CHE), and springiness (SPR) were influenced by the type of alkaline reagent. Flour particle size and starch damage also influenced noodle texture but the magnitude of the effects and the trends were dependent on alkaline reagent. MCS of kansui noodles was much greater than for sodium hydroxide noodles. MCS of kansui noodles increased as starch damage increased but, in contrast, MCS of sodium hydroxide noodles decreased with increasing starch damage. REC of kansui noodles increased with increasing starch damage and decreased with larger particle size, whereas for sodium hydroxide noodles REC decreased with increasing starch damage and declined dramatically with larger particle size. Kansui noodles exhibited significantly shorter SRT than sodium hydroxide noodles. SRT of kansui noodles was only moderately affected by starch damage and particle size, whereas for sodium hydroxide noodles, SRT became much shorter as flour became coarser and starch damage became higher. CHE of kansui noodles was greater than for sodium hydroxide noodles. CHE of kansui noodles increased as starch damage increased. In contrast, CHE of sodium hydroxide noodles decreased as starch damage increased and also decreased as flour became coarser. SPR of both noodle types decreased as flour became coarser and starch damage became greater. On the basis of these experiments, flour of smaller particle size is an asset to the cooking quality of sodium hydroxide noodles, but high starch damage is to be avoided. For kansui noodles, the impact of flour particle size on cooked noodle texture was less evident and low starch damage, rather than high starch damage, was an asset.  相似文献   

4.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles.  相似文献   

5.
A high throughput centrifugal mixer capable of using smaller amounts of flour (50 g) was evaluated for the production of oriental alkaline noodles. The unit requires a small footprint on a laboratory bench and offers variable speed mixing (300–3,500 rpm) for 5–60 sec. Three different mixing bowls, plain, pin, and paddle, were evaluated for the small‐scale production of alkaline noodles using straight‐grade flour derived from Canada Western Red Spring (CWRS) and Canada Prairie White Spring (CPSW) wheat. Under optimized mixing conditions (3,000 rpm for 30 sec), the pin and paddle bowls produced noodle dough with crumb size distribution and adhesion characteristics consistent with commercial requirements. The plain bowl produced dough with larger undesirable dough chunks and showed excessive heat buildup. Noodle sheets produced from this dough were not comparable in color characteristics to conventionally produced noodle sheets. Noodles prepared using the paddle mixer also displayed some significantly different color and texture characteristics than conventionally prepared noodles. However, raw noodle sheets or cooked noodles of either wheat class, prepared using the pin bowl mixer, displayed color values (L*, a*, and b*) at 2 and 24 hr and cooked noodle texture characteristics (bite, chewiness, resistance to compression, and recovery) comparable to a conventional laboratory‐scale Hobart type mixer. In addition to the very short mixing time and small equipment footprint for the centrifuge mixer, rapid throughput is enhanced by the ability to rapidly clean or interchange bowls and to potentially vary sample size to as little as 5 g. These attributes should be particularly useful in earlier generation breeder programs where large numbers of samples require rapid screening.  相似文献   

6.
Oat consumption is regarded as having significant health benefits. The enrichment of white salted noodles with oat flour would provide a potential health benefit but may affect the texture and sensory quality. Oat cultivars grown in Western Australia (Yallara, Kojonup, Mitika, Carrolup, and new line SV97181‐8) and a commercial oat variety were milled into flour and added to wheat flour at 10, 20, and 30% to produce oat‐enriched white salted noodles. The purpose of the study was to determine the quality characteristics of the oat flours and to assess the influence the oat flour blends had on noodle texture, color, and sensory characteristics. In addition, another goal was to determine whether the different oat cultivars had similar potential to provide health benefits by measuring the β‐glucan content before and after processing. The results indicated that protein, ash content, and noodle firmness increased with the increased percentage of oat flour in the noodle formulations, whereas the pasting properties of the noodle wheat–oat flour blends did not differ significantly. The color of raw noodle sheets and boiled noodles changed significantly with oat incorporation and resulted in lower lightness/brightness, higher redness, lower yellowness, and lower color stability in comparison to standard wheat white salted noodles. Noodles made with the lowest oat percentage (10%) scored highest for all sensory parameters and were significantly different in appearance, color, and overall acceptability compared with noodles made with 20 and 30% oat flour. The β‐glucan content of the flour blends increased with the increase in the level of oat incorporation but subsequently decreased during processing into noodles. The decrease in the β‐glucan content varied across the different oat cultivars and levels of incorporation into the noodles. A new oat cultivar, SV97181‐8, exhibited the least β‐glucan loss during processing. In this study, the quality characteristics of white salted noodles enriched with oat flour from Western Australian cultivars were determined to provide essential information for the commercial development of healthier noodles.  相似文献   

7.
Flour properties of 25 Australian wheat cultivars were examined for their relationship to alkaline noodle quality. Rapid Visco Analyzer (RVA) analyses of flours showed that RVA breakdown and final viscosity determined in both water and dilute sodium carbonate were significantly related to the alkaline noodle firmness, elasticity, and surface smoothness. Flour swelling volume (FSV) of flours was negatively correlated with alkaline noodle firmness and elasticity, and positively correlated with surface smoothness of cooked noodles. Use of a dilute sodium carbonate solution led to overall increases in both paste viscosity and FSV. High FSV and low RVA final viscosity values were associated with both the softest noodles and with cultivars containing a null allele for granule-bound starch synthase on chromosome 4A. Flour protein content and SDS sedimentation volumes were significantly related to noodle texture. The relationship between protein content and noodle firmness was dependent on the Null4A status of the flours and suggested an interaction between starch and protein in determining noodle texture. Multiple regression analysis using flour protein and FSV accounted for 76% of the variation in alkaline noodle firmness. A speculative model of noodle structure was developed based on a concept of the cooked noodle as a composite material.  相似文献   

8.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

9.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

10.
The effects of wheat protein and starch on yellow‐alkaline noodles have not been fully clarified. Twenty‐four hard winter wheats with varying protein, hot‐water swelling power (SP95), and polyphenol oxidase (PPO) activity were milled into long‐patent and short‐patent flours. Protein, SP95, and PPO activity in the 48 flours were 8.2–12.9%, 16.2–24.1 g/g, and 80–157 ΔA480/mg of protein/min, respectively. Lightness of raw noodles declined with increasing protein and PPO levels but yellowness decreased and then increased. Tensile force to break the cooked noodles was positively correlated with SP95 and protein. Compression (50%) force of noodles made from flour with high SP95 ≈21 g/g, averaged ≈20% below those made from low SP95 ≈17 g/g of flour. Compression force was measured in the long dimension of a single noodle strand using a rectangular probe. The instrumental measurements suggest that alkaline noodles made from a single‐null partial‐waxy wheat with medium SP95 ≈19.9 g/g will have a tender bite and a cohesive texture compared with those from a low SP95 wheat with a hard bite and fracturable texture. Furthermore, alkaline noodles from a double‐null partial‐waxy wheat with high SP95 will have an extra soft bite unless flour protein is above ≈12.5%. Hard‐white, dual‐purpose wheat should have a low level of PPO and, depending on the preferred noodle‐eating texture, a low to medium SP95 level. Such wheats with medium protein levels (11–12%) are well suited for alkaline noodles because of improved color and surface smoothness, whereas the same wheats with 12–13% protein are well suited for bread. Wheats with medium SP95 also reduce cooking loss and increase cooked yield.  相似文献   

11.
Sensory evaluation showed panelists could detect small differences in gloss and translucency in boiled white salted noodles (WSN) but sensory evaluation requires significant resources. Methods for the measurement of noodle gloss and translucency in boiled WSN were developed and the effects of hardness, protein, water addition, and vacuum mixing on these visual sensory characteristics and color (as measured by CIE L*, a*, and b*) were investigated. Noodles derived from hard wheats at low flour protein contents were more translucent than noodles from soft wheat flour at low protein. This trend changed at the highest flour protein contents observed. Translucency of the soft wheat noodles increased to levels equal to or exceeding the translucency of high protein hard wheat noodles. Translucency of all noodle varieties increased as flour protein increased. CIE L* decreased, a* increased, and b* increased when water addition to dough increased from 30 to 35%, but there was no further effect on color when water addition was increased to >35% for raw soft and hard WSN. Boiled noodle translucency was significantly increased when water addition to the dough was increased from 35 to 38% and when noodles made from soft wheat flour were mixed under vacuum. Vacuum mixing significantly increased gloss of boiled noodles made from soft wheat flours.  相似文献   

12.
Asian noodles were prepared by an objective laboratory method that included adding optimum water to the dry ingredients, mixing the ingredients to homogeneous salt distribution, and sheeting of the dough under low shear stress. The lightness (L*) values of alkaline‐ and salt‐noodle doughs made from 65% extraction hard white wheat flours (except KS96HW115 flour at ≈70% extraction) were higher than those from 60% extraction hard red wheat flours (except Karl 92 flour at ≈70% extraction). A hard white spring wheat, ID377s, and a Kansas line of hard white winter wheat, KS96HW115, to be released in 2000, gave the highest L* values for dough sheets stored for 2 and 24 hr at 25°C. Cooking losses were 5–9 percentage points higher for alkaline noodles than salt noodles, but the cooking yields of the two types of Asian noodles were almost the same. Cooked alkaline noodles made from a high‐swelling flour (SP93≈21 g/g) gave higher tensile strength than those made from several low‐swelling flours (SP93 ≈15 g/g) with the same protein contents (≈12.5%). However, the cooked salt noodles gave the same tensile strength.  相似文献   

13.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

14.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

15.
Wheat cultivars, representing three winter and three spring wheats were grown in western Canada with six levels of nitrogen fertilizer and flours were prepared from them with an extraction rate of 65%. Using a chromameter, flour color and the color of uncooked white noodle sheets made from these flours with different resting times were assessed. The cooked noodle sheet color was also assessed. While protein content initially declined with added nitrogen and increased with further nitrogen addition, brightness (L*) of flour decreased and redness (a*) and yellowness (b*) increased. Positive correlation coefficients of flour brightness with particle size index (PSI) were also observed. Flour redness (a*) and yellowness (b*) were also affected by flour moisture content, whereas L* values were not significantly correlated with moisture contents. For the uncooked white noodle sheet, as protein content increased brightness decreased but there was an increase in a* and b* values. Thus, the L* value for noodle sheets was negatively correlated with the a* and b* values. The percentages of monomeric protein and soluble glutenin in flour were equal to or better than protein content in relation to most noodle sheet color characters. Uncooked noodle sheet brightness decreased, while redness and yellowness increased with rest time. In general, uncooked white noodle sheets prepared from different wheat flours can be ranked in terms of brightness and yellowness within each level of nitrogen fertilization.  相似文献   

16.
The compositions and physical properties of Japanese salt and alkaline noodle flours were contrasted and compared to those of flours from U.S. hard white and soft white wheats (HWW and SWW) and from Australian SWW wheats often segregated for salt noodles. The alkaline noodle flours averaged 11.5% protein, which was 3% higher than the salt noodle flours, and they had lower ash content (0.35 vs. 0.41%). Granulation of the salt noodle flours showed the same proportion of small particles (<38 μm) as in soft wheat flours but different levels of intermediate and large particles. The level of small particles was ≈10% greater in salt noodle flours than in the alkaline noodle flours. The alkaline noodle flours had ≈8% more fine particles and 2.5% more damaged starch than the HWW flours, which is consistent with fine grinding of hard wheat flour in the noodle flour. Starch damage also was higher in the salt noodle flours (5.3%) than in the SWW flours. The salt noodle flours had a higher sodium dodecyl sulfate (SDS) sedimentation volume and a higher gluten index than the SWW flours from the United States. The SDS volume and gluten index were lower for the alkaline noodle flours than for the HWW flours, showing the preference for a mellow gluten of low-intermediate strength in alkaline noodle flour. Mixograph data also supported the conclusions of mellow gluten in alkaline noodle flour. The swelling powers (1.7% at 92.5°C) for Australian SWW, salt noodle, U.S. HWW, U.S. SWW, and alkaline noodle flours, were 19.4, 18.1, 17.0, 16.1, and 15.8 g/g, respectively, showing the preferences for high- and low-swelling starch, respectively, in the salt noodle and the alkaline noodle flour. A similar order of flour swelling was indicated by peak viscosity of flours heated at 12% solids in starch paste viscosity analysis. Water holding capacity of flour was correlated highly (r = 0.95, P < 0.01) with swelling power, both measured at 1.7% flour solids at 92.5°C.  相似文献   

17.
Production of common wheat (Triticum aestivum L.) in the Pacific Northwest of the United States specifically for Asian noodle products is a relatively new goal for grain producers. We surveyed commercial fields of the hard white spring wheat cultivar Idaho 377s in two years to determine the variables contributing to Asian noodle quality and to validate previous observations made with small‐plot research. Fields were surveyed in 1998 and 1999 in two areas of the Snake River Plain of southeastern Idaho separated by ≈100 km, with both irrigated fields and rain‐fed fields sampled in both zones. Samples were evaluated for grain characteristics then milled and evaluated for flour quality, alkaline noodle color, and color and texture of nonalkaline Chinese (salted, neutral pH) noodles. Grain from rain‐fed fields produced brighter and more yellow alkaline noodles than grain from irrigated fields. Grain produced in rain‐fed fields also had lower peak flour pasting viscosity than grain produced in irrigated fields. Flour ash was lowest in grain from rain‐fed fields located in a higher elevation district (Upper Valley) and greatest in grain from irrigated fields located in a lower elevation district (Lower Valley). Noodle hardness and chewiness were greater in Chinese noodles made from grain produced in the Upper Valley than grain from the Lower Valley. Chinese noodle color had significant interaction with the location and irrigation management used for producing the grain. However, Chinese noodle brightness was consistently negatively correlated with flour protein concentration. The color and texture of noodles produced from flours milled from on‐farm commercial production was consistent with previous experiment station small‐plot research.  相似文献   

18.
Patent (60% yield) and straight-grade flours of Canada Western Red Spring (CWRS) and Canada Prairie Spring White (CPSW) wheat were used to determine the influence of different ratios of alkaline salts, their concentration, and NaCl on the texture and color characteristics of the yellow alkaline noodles. Addition of 3% (w/w) salt to any formulation resulted in a significant increase in the amount of work required to process the raw noodles, while significantly lower work input was observed for noodles prepared using a 5% (w/w) 9:1 Na-to-K carbonate ratio without salt formula. Wheat class, extraction rate, and alkali formulation had a significant effect on raw noodle brightness with noodles prepared using 5% carbonate being brighter than the 1% carbonate noodles. Maximum cooked noodle thickness was achieved from all flours using a 1% 9:1 Na-to-K carbonate ratio, 3% salt formulation. The inclusion of 3% NaCl into the formula resulted in noodles significantly thicker than the corresponding salt-free formula for all flours. Cooked noodle texture parameters evaluated were maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), and stress relaxation time. In all cases, the presence of 3% salt in the various formulations resulted in a decrease in each parameter relative to the corresponding salt-free formulation. Desirable bite (MCS), chewiness (RTC, REC), and relaxation times were achieved with a 1% concentration of alkali salts, without NaCl, regardless of the Na-to-K carbonate ratio. Use of a 5% concentration of alkali salts resulted in a significant reduction in texture that was most pronounced for the 1:9 Na-to-K carbonate formulation.  相似文献   

19.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

20.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号