首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To determine economic losses associated with an outbreak of avian influenza in flocks in Pennsylvania during 1997 and 1998. SAMPLE POPULATION: 5 premises containing avian influenza-infected layer, pullet, and turkey flocks. PROCEDURE: Losses incurred before depopulation, those incurred at the time of depopulation, and those that were attributable to depopulation (unrealized loss of income) were evaluated. Results were extrapolated to provide values for all infected flocks. RESULTS: Extrapolating the costs determined on the basis of age and number of birds from the 5 sample flocks to all other flocks infected with nonpathogenic avian influenza H7N2 yielded an estimated total cost to the Pennsylvania poultry industry of $3.5 million. CLINICAL IMPLICATIONS: The H7N2 virus is not highly pathogenic. If the pathogenicity of the virus does not change, then the poultry industry and state and federal governments will not have severe economic losses for the 1997-1998 outbreak similar to those for the 1983-1984 avian influenza outbreak in Pennsylvania. To decrease the potential for financial losses that could result from future outbreaks of avian influenza, it is essential that the commercial industry and livebird market system be separated via increased use of biosecurity measures.  相似文献   

2.
An avian influenza (AI) outbreak occurred in meat-type chickens in central Pennsylvania from December 2001 to January 2002. Two broiler breeder flocks were initially infected almost simultaneously in early December. Avian influenza virus (AIV), H7N2 subtype, was isolated from the two premises in our laboratory. The H7N2 isolates were characterized as a low pathogenic strain at the National Veterinary Services Laboratories based on molecular sequencing of the virus hemagglutinin cleavage site and virus challenge studies in specific-pathogen-free leghorn chickens. However, clinical observations and pathologic findings indicated that this H7N2 virus appeared to be significantly pathogenic in meat-type chickens under field conditions. Follow-up investigation indicated that this H7N2 virus spread rapidly within each flock. Within 7 days of the recognized start of the outbreak, over 90% seroconversion was observed in the birds by the hemagglutination inhibition test. A diagnosis of AI was made within 24 hr of bird submission during this outbreak using a combination of virus detection by a same-day dot-enzyme-linked immunosorbent assay and virus isolation in embryonating chicken eggs. Follow-up investigation revealed that heavy virus shedding (90%-100% of birds shedding AIV) occurred between 4 and 7 days after disease onset, and a few birds (15%) continued to shed virus at 13 days post-disease onset, as detected by virus isolation on tracheal and cloacal swabs. AIV was not detected in or on eggs laid by the breeders during the testing phase of the outbreak. The two flocks were depopulated at 14 days after disease onset, and AIV was not detected on the two premises 23 days after depopulation.  相似文献   

3.
An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.  相似文献   

4.
M Brugh  M L Perdue 《Avian diseases》1991,35(4):824-833
The prototype mildly pathogenic A/chicken/Pennsylvania/21525/83 (H5N2) avian influenza virus, which was isolated more than 5 months before the emergence of highly pathogenic virus in the major 1983 Pennsylvania outbreak, was examined for the presence of minority subpopulations of highly pathogenic virus. Selective serial passage of the parental mildly pathogenic virus in leghorn hens did not lead to recovery of highly pathogenic virus. However, several highly pathogenic reisolates were recovered from hens inoculated with either of two mildly pathogenic virus clones selected for their ability to efficiently produce plaques in trypsin-free chicken embryo fibroblasts. Unlike the parental virus, these reisolates caused high mortality in chickens and produced postmortem lesions typical of highly pathogenic avian influenza. Electrophoretic mobilities of the hemagglutinin glycoproteins of the highly pathogenic derivatives resembled those of the prototype highly pathogenic A/chicken/Pennsylvania/1370/83 (H5N2) virus isolated in October 1983. These results suggest that unrecognized subpopulations of highly pathogenic virus may have infected Pennsylvania chickens for several months before emerging as the clinically manifest component of the virus population.  相似文献   

5.
6.
Lu H 《Avian diseases》2003,47(2):361-369
A monoclonal antibody (MAb)-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed that detected the epitopes specifically associated with avian influenza virus (AIV). The dot-ELISA detected the antigens of AIV directly from clinical and field specimens. Data obtained from experimentally AIV-infected specific-pathogen-free chickens and also the 2001/02 AIV outbreak of serotype H7N2 positive flocks in Pennsylvania indicated that the mean sensitivity (Se) of the dot-ELISA ranged between 45% and 68% and the mean specificity (Sp), between 85% and 90%. The values were derived from various clinical and field specimens when compared with virus isolation with embryonating chicken eggs. On routine AIV surveillance samples, the dot-ELISA achieved a 92%-100% Sp on the basis of resting over 1500 AIV surveillance samples that were confirmed negative by virus isolation. The dot-ELISA detected AIV antigens with a 5-microl allantoic fluid sample that contained a concentration of 0.4 hemagglutinating units. Furthermore, the dot-ELISA retained its specificity for AIV because no cross-reactions were obtained with various other avian viruses. The findings in this study indicated that the dot-ELISA was highly sensitive and specific and comparable with the commercial Directigen test in the detection of AIV obtained from clinical and field specimens.  相似文献   

7.
Using an indirect enzyme-linked immunsorbent assay, avian adenoviral antigens were detected in the yolk and albumen of eggs derived from broiler breeder chickens which were known to be infected with a strain of virus capable of causing inclusion body hepatitis. Viral antigens were detected in egg yolk (16/60) more frequently than in the albumen (5/60). Direct detection of viral antigens in eggs strongly supports the hypothesis that transovarian transmission of inclusion body hepatitis virus occurs if infection is present in breeder flocks.  相似文献   

8.
RT-PCR快速诊断禽流感   总被引:18,自引:0,他引:18  
根据禽流感病毒NP基因的序列分析结果,设计了一对NP基因特异的引物。采用该对引物,不经病毒分离,直接从禽流感病毒感染鸡的气管、泄殖腔棉拭子和组织样品中提取核酸, RT~PCR可以扩增出 326bp的 NP基因片段。采用该技术对14个亚型禽流感病毒标准参考株,4个亚型12株国内分离野毒株,RT-PCR检测的结果都呈阳性;对新城疫病毒、传染性法氏囊病毒、传染性支气管炎病毒、传染性喉气管炎病毒以及减蛋综合症病毒,RT-PCR扩增结果都呈阴性。禽流感病毒 A/Goose/Guangdong(H5N1)和 A/African Starling/England(H7N1)实验感染鸡样品 RT-PCR检测与鸡胚病毒分离阳性率分别为34/42、32/42; 24/55、24/55, 二者符合率大于95%。 RT-PCR最少可检测到10pg的病毒核酸。对山东某地发病鸡场样品进行RT-PCR检测,只用6个小时就可得出准确的诊断结果,证明RT-PCR检测方法敏感特异,可用于禽流感的快速诊断。  相似文献   

9.
Seven Canadian layer flocks with Salmonella enteritidis in their environment were investigated to determine the numbers of hens infected with S. enteritidis, the localization of S. enteritidis in organs of infected hens and the numbers of S. enteritidis-infected eggs produced by two affected flocks. By a microagglutination test (MAT) using S. pullorum antigens, these flocks had more seropositive hens (mean 51.9 +/- 16.9%) than two Salmonella-free flocks (mean 13.0 +/- 4.2%). Culture of tissues of 580 hens (433 seropositive) from the seven flocks detected 26 (4.5%) S. enteritidis-infected hens from two flocks. In one flock, 2/150 hens were infected with S. enteritidis phage type (PT) 8, which was confined to the ceca, and no Salmonella spp. were isolated from 2520 eggs (one day's lay). In the second flock, where 24/150 hens were infected with S. enteritidis PT13, extraintestinal infection was found in nine hens and involved the ovaries and/or oviduct in two hens. Salmonella enteritidis PT13 was isolated from one sample of egg contents and from one sample of cracked shells from among 14,040 eggs (one day's lay) from this flock. The overall prevalence of S. enteritidis-contaminated eggs from the two flocks with infected hens was less than 0.06%. Other Salmonella spp. isolated were S. heidelberg from 58 hens (10%), and S. hadar, S. mbandaka and S. typhimurium from one hen (0.2%) each. The MAT with antigens of S. pullorum had a sensitivity of 81% and a specificity of 24% for detecting S. enteritidis-infected hens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ascaridia dissimilis, a roundworm in turkeys, has been noted with increased frequency in commercial turkeys. Because infected turkeys can shed A. dissimilis ova in their feces, the potential exists for the external surface of turkey eggshells to be contaminated with A. dissimilis ova. The objectives of this study were to determine the presence of and recover A. dissimilis ova on the external surface of the turkey egg. In Experiment 1, turkey eggs were collected from naturally infected flocks, and eggs were processed by a sodium hydroxide procedure to recover any A. dissimilis ova on the external egg surface. In Experiment 2, the external surface of the turkey eggs was inoculated with 116 A. dissimilis ova/g feces, and eggshells were sampled every 3 days until 28 days of incubation to assess the recovery of A. dissimilis ova from the eggshell. In Experiment 1, of the 36 eggs examined from a flock naturally infected with A. dissimilis, one egg had an A. dissimilis ovum on its external eggshell surface. Experiment 2 demonstrated that A. dissimilis ova can be recovered from the external egg surface after a 28-day incubation period in the incubator. Ova recovery declined from an average of 62 A. dissimilis ova/turkey egg at day 2 of incubation to an average of 3 A. dissimilis ova/turkey egg at day 28 of incubation.  相似文献   

11.
The California poultry industry experienced an outbreak of H6N2 avian influenza beginning in February 2000. The initial infections were detected in three commercial egg-laying flocks and a single noncommercial backyard flock but later spread to new premises. The vaccination of pullet flocks with a commercially prepared, killed autogenous vaccine prior to their placements on farms with infected or previously infected flocks was used as a part of the eradication programs for some multiage, commercial egg production farms. The purpose of this study was to follow three vaccinated flocks on two commercial farms to track the immune responses to vaccination. The antibody-mediated responses of the three flocks followed in this study were markedly different. One flock achieved 100% seroconversion at 12.5 wk of age, but by 32 wk of age, all of the hens were seronegative by agar gel immunodiffusion (AGID). In contrast, at 32 wk of age, flocks from the other farm (flocks 2A and 2B) were 95% and 72% seropositive by AGID, respectively. Of the differences that were identified between the vaccination protocols on the two farms, the distinction that could explain the level of disparity between responses is the delivery of the second dose of vaccine with a bacterin on the first farm, which may have interfered with the persistence of immunity in this flock. Hens from flocks 2A and 2B were experimentally challenged at 25 wk of age with H6N2 avian influenza virus. Hens from flock 2A did not transmit virus to naive contact-exposed hens, but hens from flock 2B did. At 34 wk of age, hens from flock 2A were again challenged and naive contact-exposed hens were infected in this second trial. These challenge experiments served to demonstrate that despite detectable antibody responses in flocks 2A and 2B, the birds were protected from infection for less than 21 wk after the second vaccination.  相似文献   

12.
Multiple avian influenza viruses’ subtypes are circulating worldwide possessing serious threat to human populations and considered key contributors to the emergence of human influenza pandemics. This study aimed to identify the potential existence of H7 and H9 avian influenza infections circulating among chicken flocks in Egypt. Serum samples were collected from chicken flocks that experienced respiratory distresses and/or variable mortality rates. H7 and H9 virus infections were screened by haemagglutination inhibition assay using chicken erythrocytes. Serum samples were collected from 9 broiler, 12 breeder and 18 layer flocks. Out of 1,225 examined sera, 417 (34 %) from 14 flocks and 605 (49.4 %) from 21 flocks were found positive for H7 and H9, respectively. Prevalence of both H7 and H9 antibodies were higher in layer followed by breeder then broiler flocks. Special consideration should be paid to control influenza viruses in Egypt, as pandemic influenza strains may develop unnoticed given the presence of subclinical infections, and the possibility of re-assortment with the prevailing endemic H5N1 virus strains in Egypt do exist.  相似文献   

13.
14.
Active serologic surveillance programs to detect avian influenza viruses (AIVs) in table egg-laying chickens have been initiated by several states as a response to the economic threat posed by these viruses. Most outbreaks of avian influenza in domestic poultry are caused by mildly pathogenic AIVs. In the study reported here, infection by an H6N2 AIV was used as a model of mildly pathogenic AIV infections in egg-type chickens. The total number of eggs laid by 5 control hens was 619 or 0.904 eggs/day/hen, whereas the total number laid by 10 infected hens was 1,018 or 0.743 eggs/day/hen. The difference in egg production between the 2 groups was not statistically significant (P = 0.38). Anti-influenza antibodies were monitored by use of an agar gel immunodiffusion test and an ELISA for a period of 20 weeks after inoculation. Antibodies in serum developed sooner, peaked at higher levels, and remained at higher levels than did antibodies found in egg yolk, as indicated by ELISA results. For infected chickens, the correlation between serum and egg yolk ratios was 0.66. Serum samples would appear to be preferable to egg yolk samples for surveillance programs intended to identify chicken flocks that may have been infected by an AIV weeks or months before samples are collected.  相似文献   

15.
Eight poultry farms in Nigeria, including chickens from nine breeder, 14 broiler, 28 pullet, 11 layer, and three cockerel flocks, were tested for antibody seroprevalence to the following poultry viruses of potential economic importance: infectious bronchitis virus (IBV), avian reovirus, avian pneumovirus (APV), infectious laryngotracheitis virus (ILTV), avian influenza virus (AIV), and avian leukosis virus (ALV). Serum samples were collected between 1999 and 2004 and were tested for antibodies using commercial enzyme-linked immunosorbent assay (ELISA) kits. Seroprevalence was very high for IBV (84%); intermediate for reovirus (41%), APV (40%), and ILTV (20%); and very low for ALV (<5%) antibodies. By commercial ELISA, the seroprevalence of antibodies against AIV was, in some flocks, up to 63%. However, more specific assays did not confirm AIV antibodies, indicating that all flocks tested were free of avian influenza antibodies. Birds seemed to be first infected by IBV (at about 7 wk of age), then by reovirus at 12 wk, before they became infected by APV (week 25) and ILTV (week 30). This is the first report of serological evidence of the above viruses in West Africa. Further studies are necessary to assess economic losses due to these avian viruses and the costs and benefits of countermeasures.  相似文献   

16.
Vertical transmission of reticuloendotheliosis virus in breeder turkeys   总被引:1,自引:0,他引:1  
Epizootiological studies were conducted on a commercial turkey breeder flock naturally infected with nondefective reticuloendotheliosis (RE) virus. Although RE virus was isolated from 27 (46%) of the 59 hens studied, only 4 of the 45 hens tested transmitted RE virus to progeny during a 6-week observation period and the overall transmission rate was 1.8%. The transmitter hens were of two types: three hens were consistently viremic and antigenemic and lacked antibody; one hen was viremic but lacked detectable viral antigen and possessed antibody. Toms appeared to play no role in vertical transmission of the infection. Of several tests evaluated for detection of transmitter hens, the direct enzyme-linked immunosorbent assay on albumen was probably best, since it detected three of four transmitter hens, detected relatively few nontransmitter hens, and had the best consistency of any test. No significant differences in hatchability were found between eggs from viremic and non-viremic hens. These findings can be utilized in the development of programs for eradication of RE virus from turkey breeding flocks.  相似文献   

17.
Current knowledge does not allow the prediction of when low pathogenic avian influenza virus (LPAIV) of the H5 and H7 subtypes infecting poultry will mutate to their highly pathogenic phenotype (HPAIV). This mutation may already take place in the first infected flock; hence early detection of LPAIV outbreaks will reduce the likelihood of pathogenicity mutations and large epidemics. The objective of this study was the development of a model for the design and evaluation of serological-surveillance programmes, with a particular focus on early detection of LPAIV infections in layer chicken flocks. Early detection is defined as the detection of an infected flock before it infects on average more than one other flock (between-flock reproduction ratio Rf < 1), hence a LPAI introduction will be detected when only one or a few other flocks are infected. We used a mathematical model that investigates the required sample size and sampling frequency for early detection by taking into account the LPAIV within- and between-flock infection dynamics as well as the diagnostic performance of the serological test used. Since layer flocks are the target of the surveillance, we also explored whether the use of eggs, is a good alternative to sera, as sample commodity. The model was used to refine the current Dutch serological-surveillance programme. LPAIV transmission-risk maps were constructed and used to target a risk-based surveillance strategy. In conclusion, we present a model that can be used to explore different sampling strategies, which combined with a cost-benefit analysis would enhance surveillance programmes for low pathogenic avian influenza.  相似文献   

18.
Host range of A/Chicken/Pennsylvania/83 (H5N2) influenza virus   总被引:1,自引:0,他引:1  
The highly pathogenic A/Chicken/Penn./1370/83 (H5N2) avian influenza virus, which caused 80% mortality in chickens in Pennsylvania, produced only mild transient illness in experimentally infected pheasants, little or no clinical signs in ring-billed gulls and pigs, and no clinical signs in pekin ducks. Virus could be recovered from only the upper respiratory tract of gulls and pigs for 1-2 days. Infection in ducks resulted in intestinal replication of virus in only 1 out of 12 ducks. By contrast, pheasants shed virus in feces (10(4.7) EID50) for at least 15 days. These studies reinforce wildlife surveillance findings indicating that gulls and ducks are unlikely to have transmitted virus between chicken farms during the 1983 outbreak. Although experimental data suggest that wild gallinaceous birds such as pheasants are potentially capable of virus transmission, there has been no evidence of this from wildlife surveillance in Pennsylvania. Experimental infection of chickens with H5N2 virus isolated from wild ducks one year before the Pennsylvania outbreak or a gull virus (H5N1) isolated in the quarantine area in 1983 resulted in asymptomatic infections and virus replication occurring only in the upper respiratory tract. These studies suggest that if the first H5N2 virus infecting chickens in Pennsylvania originated from waterbirds, changes in host specificity and pathogenicity for chickens and other gallinaceous birds probably occurred during emergence of the Chicken/Penn./83 virus. It is recommended that attention be given in the future to the isolation of domestic poultry from contact with wild aquatic birds.  相似文献   

19.
Isolation of H13N2 influenza A virus from turkeys and surface water.   总被引:1,自引:0,他引:1  
This is the first report of the isolation of H13N2 avian influenza virus (AIV) subtype from domestic turkeys. This subtype was also isolated from nearby surface water. The observation of large numbers of gulls in close association with turkeys on range before the virus isolations suggests that this virus subtype was transmitted from gulls to range turkeys. Turkey flocks infected by this virus subtype did not show any clinical signs of the disease, although seroconversion did occur. The H13N2 isolates were found to be non-pathogenic in chickens.  相似文献   

20.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号