首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在河北衡水潮土上进行田间试验,以当地习惯高氮用量(小麦季施N 300 kg/hm2,玉米季施N 240 kg/hm2)为对照,研究冬小麦-夏玉米轮作体系中减少氮肥用量对玉米季植株生长、氮素吸收及根际土壤中无机氮与微生物量氮的影响。结果表明,两季作物氮肥施用量减少25%和40%,对玉米产量、生物量及植株体内氮累积量未产生明显影响,氮肥利用率提高。不同氮肥施用量对根际和非根际土壤铵态氮含量的影响不显著;减少氮肥施用量,对玉米根际土壤硝态氮含量也没有明显影响。在玉米苗期、抽雄期和成熟期,习惯高施氮量处理的非根际土壤硝态氮含量较高,其中抽雄期,非根际土壤硝态氮含量较氮肥减施40%用量处理高出近一倍,但非根际土壤微生物量氮水平含量明显降低。氮肥减施未影响根际土壤微生物量碳、氮含量,反而增加了非根际土壤微生物量碳、氮水平。在高肥力的潮土上,冬小麦/夏玉米轮作体系中适当减施氮肥并未影响玉米根际土壤氮素水平,可保证玉米稳产,实现减氮增效。  相似文献   

2.
The in situ net nitrogen mineralization (Nnet) was estimated in five agricultural soils under different durations of organic farming by incubating soil samples in buried bags. Simultaneously, soil microbial C and N was determined in buried bags and in bulk soil under winter wheat and after harvest. The aim was to check for variations in soil microbial biomass contents and microbial C:N ratios during the incubation period, and their importance for Nnet rates. Microbial C and N contents were highest in soils that had been organically farmed for 41 years, whereas Nnet rates were highest in a short‐term organically managed soil that had been under grassland use until 36 years ago. The mean coefficient of variation in the bulk soil for microbial C estimates ranged from 5 to 12 %. Microbial N contents were similar inside buried bags and in the bulk soil at the end of the incubation periods. Under winter wheat during the incubation period until harvest, microbial C contents and microbial C:N ratios (in 10—27 cm depth only) decreased more strongly inside buried bags than in the bulk soil. Following harvest of winter wheat and ploughing, microbial biomass increased while in situ Nnet decreased, presumably due to N immobilization. The Nnet rates were not correlated with microbial N contents or changes in microbial N contents inside buried bags. At the end of the vegetation period of winter wheat, Nnet rates were negatively correlated with microbial C:N ratios. Because these ratios concurrently decreased more inside buried bags than in the bulk soil, the Nnet estimates of the buried bag method may differ from the Nnet rates in the bulk soil at that time.  相似文献   

3.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

4.
Intensive greenhouse vegetable‐production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic‐matter contents were greater in the intensive greenhouse tomato soils than the open‐field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic‐matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.  相似文献   

5.
In a mesocosm experiment, we studied decomposition rates as CO2 efflux and changes in plant mass, nutrient accumulation and soil pools of nitrogen (N) and phosphorus (P), in soils from a sub-arctic heath. The soil was incubated at 10 °C and 12 °C, with or without leaf litter and with or without plants present. The purpose of the experiment was to analyse decomposition and nutrient transformations under simulated, realistic conditions in a future warmer Arctic.Both temperature enhancement and litter addition increased respiration rates. Temperature enhancement and surprisingly also litter addition decreased microbial biomass carbon (C) content, resulting in a pronounced increase of specific respiration. Microbial P content increased progressively with temperature enhancement and litter addition, concomitant with increasing P mineralisation, whereas microbial N increased only in the litter treatment, at the same time as net N mineralisation decreased. In contrast, microbial biomass N decreased as temperature increased, resulting in a high mobilisation of inorganic N.Plant responses were closely coupled to the balance of microbial mineralisation and immobilisation. Plant growth and N accumulation was low after litter addition because of high N immobilisation in microbes and low net mineralisation, resulting in plant N limitation. Growth increased in the temperature-enhanced treatments, but was eventually limited by low supply of P, reflected in a low plant P concentration and high N-to-P ratio. Hence, the different microbial responses caused plant N limitation after litter addition and P limitation after temperature enhancement. Although microbial processes determined the main responses in plants, the plants themselves influenced nutrient turnover. With plants present, P mobilisation to the plant plus soil inorganic pools increased significantly, and N mobilisation non-significantly, when litter was added. This was presumably due to increased mineralisation in the rhizosphere, or because the nutrients in addition to being immobilised by microbes also could be absorbed by plants. This suggests that the common method of measuring nutrient mineralisation in soils incubated without plants may underestimate the rates of nutrient mobilisation, which probably contributes to a commonly observed discrepancy of measured lower rates of net nutrient mineralisation than uptake rates in arctic soils.  相似文献   

6.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

7.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

8.
 Gross rates of soil processes and microbial activity were measured in two grazed permanent pasture soils which had recently been amended with N fertilizer or dung. 15N studies of rates of soil organic matter turnover showed gross N mineralization was higher, and gross N immobilization was lower, in a long-term fertilized soil than in a soil which had never received fertilizer N. Net mineralization was also found to be higher in the fertilized soil: a consequence of the difference between the opposing N turnover processes of N mineralization and immobilization. In both soils without amendments the soil microbial biomass contents were similar, but biomass activity (specific respiration) was higher in the fertilized soil. Short-term manipulation of fertilizer N input, i.e. adding N to unfertilized soil, or witholding N from previously fertilized soil, for one growing season, did not affect gross mineralization, immobilization or biomass size and activity. Amendments of dung had little effect on gross mineralization, but there was an increase in immobilization in both soils. Total biomass also increased under dung in the unfertilized soil, but specific respiration was reduced, suggesting changes in the composition of the biomass. Dung had a direct effect on the microbial biomass by temporarily increasing available soil C. Prolonged input of fertilizer N increases soil C indirectly as a result of enhanced plant growth, the effect of which may not become evident within one seasonal cycle. Received: 18 December 1998  相似文献   

9.
The application of biochar in soils has been hypothesised to improve soil quality whilst enhancing carbon (C) sequestration. However, its effect on nitrogen (N) dynamics in the soil–plant system is still not fully understood. In the present work, N isotope composition (δ15N) was used to facilitate the understanding of the processes involved in the N cycling when biochar is applied. We evaluated, through a wheat pot trial, the effect of different application rates of two types of biochar produced from jarrah and pine woodchips on the wheat biomass at harvest and on the soil and plant C and N contents and δ15N. In addition, the potential benefit of using nutrient-saturated biochar for the soil–plant system was also investigated. Whilst biochar produced from different feedstocks had similar effects on soil and plant nutrient contents, they induced differences in wheat grain biomass and plant δ15N. The effect of the biochar application rate was more pronounced, and at rates higher than 29 t ha?1, the application of biochar decreased grain biomass by up to 39 % and potentially increased N losses. Isotopic analyses indicated that this acceleration of N dynamics had probably occurred before the stage of wheat grain formation. The application of nutrient-enriched biochar resulted in an improved wheat grain production, most likely due to the enhanced nutrient availability, and in reduced N cycling rates in the plant–soil system, which could offset the competition between biochar and plants for nutrients and could decrease adverse environmental impacts due to N losses.  相似文献   

10.
黄淮海平原典型潮土上小麦和玉米收获后的秸秆往往直接还田,但驱动它们在不同质地潮土(砂质、壤质、黏质)中分解的微生物是否与残留秸秆养分含量有关尚不清楚.本研究基于尼龙网袋法,通过10个月的田间培育试验,监测秸秆分解率、残留秸秆养分含量及微生物群落组成,评估各指标在秸秆类型和土壤质地之间的差异,探究残留秸秆养分与微生物群落...  相似文献   

11.
张斯梅  段增强  顾克军  张传辉  许博 《土壤》2023,55(4):749-755
为了探讨不同水稻灌溉模式和氮肥减量对还田小麦秸秆腐解特性及土壤养分的影响,通过田间试验,设置了水稻灌溉模式(常规灌溉,W1;干湿交替灌溉,W2)和施氮水平(不施氮,N0;常量施氮,N1;减量20%施氮,N2)处理,采用尼龙网袋法研究了不同处理下小麦秸秆腐解动态、养分释放规律及土壤养分含量。结果表明,干湿交替灌溉和氮肥施用均可促进还田小麦秸秆的腐解,减量20%施氮处理小麦秸秆累积腐解率低于常量施氮处理。相同施氮水平下,干湿交替灌溉模式小麦秸秆碳与氮磷钾累积释放率高于常规灌溉模式;与常量施氮相比,减量20%施氮处理小麦秸秆碳与氮磷钾累积释放率降低。干湿交替灌溉和施氮使土壤有机质、全氮、碱解氮和有效磷含量提高,而减量20%施氮对土壤养分含量的影响较小。综上可见,干湿交替灌溉和氮肥施用促进了还田小麦秸秆腐解和养分释放,有利于土壤养分提升;而减量20%施氮对小麦秸秆腐解与养分释放以及土壤养分无明显影响。  相似文献   

12.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

13.
The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (>doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.  相似文献   

14.
Root activity and carbon metabolism in soils   总被引:4,自引:0,他引:4  
Summary Two different soils were amended with 14C-labelled plant material and incubated under controlled laboratory conditions for 2 years. Half the samples were cropped with wheat (Triticum aestivum) 10 times in succession. At flowering, the wheat was harvested and the old roots removed from the soil, so that the soil was continuously occupied by predominantly active root systems. The remaining samples were maintained without plants under the same conditions. During the initial stages of high microbial activity, due to decomposition of the labile compounds, the size of the total microbial biomass was comparable for both treatments, and the metabolic quotient (qCO2-C = mg CO2-C·mg–1 Biomass C·h–1) was increased by the plants. During the subsequent low-activity decomposition stages, after the labile compounds had been progressively mineralized, the biomass was multiplied by a factor of 2–4 in the presence of plants compared to the bare soils. Nevertheless, qCO2-C tended to reach similar low values with both treatments. The 14C-labelled biomass was reduced by the presence of roots and qCO2-14C was increased. The significance of these results obtained from a model experiment is discussed in terms of (1) the variation in the substrate originating from the roots and controlled by the plant physiology, (2) nutrient availability for plants and microorganisms, (3) soil biotic capacities and (4) increased microbial turnover rates induced by the roots.  相似文献   

15.
Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4–20 °C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (CLOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, CLOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a “negative priming effect”, which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil.  相似文献   

16.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

17.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

18.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   

19.
The soil microbial biomass is important such as pool of plant nutrients and is also driving force of the cycling of C, N, P and S in soil. However, the microbial biomass in acid soil has not been fully investigated due to the limitation of methods, i.e. chloroform-fumigation incubation or substrate-induced respiration because of decreased basal mineralization in chloroform-fumigated soil under acid conditions. This paper reviews improvement and application of these methods and vertical distribution of microbial biomass in two kinds of acid soils; namely, Andisols as dominant upland soils in Japan and tropical peat soils as potentially important lowland soils for agriculture, and also discuss on C and N turnover of microbial biomass in Andisols. Microbial succession in acid soil has also not been investigated so much, but, some studies in another important acid soil, i.e. acid sulfate soil, were also reviewed briefly.  相似文献   

20.
《Applied soil ecology》1999,11(2-3):135-146
Most studies of nutrient cycling in arctic ecosystems have either addressed questions of plant nutrient acquisition or of decomposition and mineralization processes, while few studies have integrated processes in both the soil and plant compartments. Here, we synthesize information on nutrient cycling within, and between, the soil/microbial and the plant compartments of the ecosystems and integrate the cycling of nutrients with the turnover of organic matter and the carbon balance in tundra ecosystems. Based on this compilation and integration, we discuss implications for ecosystem function in response to predicted climatic changes.Many arctic ecosystems have high amounts of nutrients in the microbial biomass compared to the pools in the plant biomass both due to large nutrient-containing organic deposits in the soil and low plant biomass. The microbial pools of N and P, which are the most commonly limiting nutrients for plant production, may approach (N) or even exceed (P) the plant pools. Net nutrient mineralization is low, the residence time of nutrients in the soil is long and the nutrients are strongly immobilized in the soil microorganisms. This contributes to pronounced nutrient limitation for plant productivity, implies that the microbial sink strength for nutrients is strong and that the microbes may compete with plants for nutrients, but also that they are a potential source of plant nutrients during periods of declining microbial populations. The extent of this competition is poorly explored and it is uncertain whether plants mainly take up nutrients continuously during the summer when the microbial activity and, presumably, also the microbial sink strength is high, or whether the main nutrient uptake occurs during pulses of nutrient release when the microbial sink strength declines.Improved knowledge of mechanisms for plant-microbial interactions in these nutrient-limited systems is important, because it will form a basis also for our understanding of the C exchange between the ecosystems and the atmosphere under the predicted, future climatic change. High microbial nutrient immobilization, i.e. low release of plant-available nutrients, paired with high microbial decomposition of soil organic matter will lead to a loss of C from the soil to the atmosphere, which may not be compensated fully by increased plant C fixation. Hence, the system will be a net source of atmospheric C. Conversely, if plants are able to sequester extra nutrients efficiently, their productivity will increase and the systems may accumulate more C and turn into a C sink, particularly if nutrients are allocated to woody tissues of low nutrient concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号