首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some physicochemical properties and molecular structures of starches from millet (Pennisetum typhoides, Doro and Gero) and sorghum (Sorghum bicolor, red and white) in Nigeria were examined. Starch granules of millet and sorghum were 3–14 μm and 4–26 μm in diameter, respectively. Millet cultivars had similar peak viscosities (204–205 RVU) on pasting, while sorghum showed similar minimum viscosities (155–156 RVU). The actual amylose content (%) calculated from iodine affinity (IA, g/100 g) was 20.1 and 21.4 for sorghum and 21.3 for millet. The IA of amylopectin was high (1.27–1.42) and its average chain lengths were 20–21 with β‐amylolysis limit of 56%. Amylopectins showed a polymodal molecular weight distribution on a molar basis. The distributions differed among the samples with a higher amount of larger molecules in Doro and red sorghum. Weight‐ and molar‐based distributions of debranched amylopectins on HPSEC were polymodal with weight‐based distribution showing presence of long chains. Peak DP values for A+B1 and B2+B3 chain fractions were 13–16 and 42–43, respectively. The (A+B1)/(B2+B3) ratio on molar basis (9.0–11.5) was similar to maize and rice amylopectins. Peak DP on molar‐based distribution for white sorghum and millet amyloses were similar (490–540) and the DPn range was narrow (1,060–1,300), but weight‐based distribution profiles differed. The average chain lengths were 260–270 with 3.9–4.8 chains per molecule.  相似文献   

2.
The molecular structure and some physicochemical properties of starches from two high‐amylose cultivars of barley, high‐amylose Glacier A (HAG‐A) and N (HAG‐N), were examined and compared with those of a normal cultivar, Normal Glacier (NG). The true amylose contents of HAG‐A, HAG‐N, and NG were 41.0, 33.4, and 23.0%, respectively. Iodine affinities before and after defatting of starch, and thermograms of differential scanning calorimetry, indicated that HAG‐A and HAG‐N starches had a higher proportion of amylose‐lipid complex than did NG starch. The amylopectins from HAG‐A and HAG‐N were similar to NG amylopectin in average chain length (18–19), β‐amylolysis limit (β‐AL 56–57%), number‐average degrees of polymerization (DPn 6,000–7,500) and chain length distribution. Very long chains (1–2%) were found in amylopectins from all cultivars. HAG‐A amylopectin had a larger amount of phosphorus (214 ppm) than the others. The amyloses from HAG‐A and HAG‐N resembled NG amylose in DPn (950–1,080) and β‐AL (70–74%). However, HAG‐A and HAG‐N had a larger number of chains per molecule (NC 2.4–2.7) than NG amylose (1.8) and contained the branched amylose with a higher NC (9.5–10.6) than that of NG amylose (5.8), although molar fractions of the branched amylose (15–20%) were similar.  相似文献   

3.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

4.
Structures and physicochemical properties of six wild rice starches   总被引:2,自引:0,他引:2  
Starches from six wild rice cultivars were studied for their chemical structures and physicochemical properties and compared with a long-grain rice starch. The six wild rice starches were similar in morphological appearance, X-ray diffraction patterns, swelling power, and water solubility index but different in amylose content, beta-amylolysis limit, branch chain length distribution, thermal properties, and pasting properties. The structure of the wild rice amylopectins was close to that of waxy rice amylopectin with more branching and a larger proportion of short branch chains of degree of polymerization 6-12 as compared with that of amylopectin from rice starch with a similar amylose content. The differences in branch chain length distribution of amylopectin and amylose content were assumed to contribute to the differences in physicochemical properties among the six wild rice starches as well as to the differences between the wild rice starches and the rice starch.  相似文献   

5.
Amylose and amylopectin were prepared from large, medium, and small granule starches of classified waxy barley flour, and their fine structures were investigated. The amylose content had a wide distribution range (≈1.4–9.4%). Number‐average degrees of polymerization (DPn) of the amyloses were similar among the samples (≈1,200–1,300). But number of chains per molecule (NC) decreased from the surface to the center (≈6–10 chains). DPn of the amylopectins varied from 4,657 to 14,604; decreased in the order of large, medium, and small granules in same fractions of the grain; and increased from the surface layer to the center. Longest chains (LC) were not found in any of the amylopectin molecules. The large amylopectin molecule had more long chains and fewer A chains than the small molecule. The amylose content had definite effects on the transition temperature range and crystal formation of the starch granules. There were positive correlations between DPn of the amylopectin and relative crystallinity (γ = +0.69) and enthalpy value (γ = +0.80), respectively. These findings may help to elucidate biosynthesis mechanism of starch.  相似文献   

6.
The starch properties of five low‐amylose rice cultivars, Yawarakomachi, Soft 158, Hanabusa, Aya, and Snow Pearl, were compared with those of two normal amylose rice cultivars, Nipponbare and Hinohikari. There were no large differences in the distributions of the amylopectin chain length determined by high‐performance anion‐exchange chromatography, and the starch gelatinization properties determined by differential scanning calorimetry, between normal and low‐amylose rice cultivars. Results obtained using rapid viscosity analysis indicated that low‐amylose rice starches had lower peak viscosity, breakdown, and setback values than normal amylose rice starches. Starch granules from low‐amylose rice cultivars had a higher susceptibility to glucoamylase than those from normal amylose rice cultivars. The results of this study showed some differences between normal and low‐amylose rice starches in pasting properties and enzymatic digestibility.  相似文献   

7.
This work compared the molecular structures and physicochemical properties of starches obtained from chalky and translucent kernels of six rice cultivars. Starch samples were prepared according to a modified alkali steeping method. Crystallinity, pasting characteristics, and thermal properties were studied by X-ray diffraction, rapid viscosity analysis, and differential scanning calorimetry, respectively. Starch molecular size fractions (amylopectin, amylose, and intermediate material) were estimated by high-performance size exclusion chromatography, and the chain length profiles of isoamylase-debranched amylopectin were evaluated by high-performance anion-exchange chromatography with pulsed amperometric detection. Starches from chalky kernels contained less amylose (more amylopectin) and more short branch-chain amylopectin (less long branch-chain amylopectin) compared with the translucent kernel starches. Differences in starch structural features significantly correlated with observed variation in grain translucency, starch X-ray diffraction patterns, thermal properties, and pasting characteristics. Starch synthesis in chalky kernels may slightly favor glucan chain branching over chain elongation.  相似文献   

8.
Starches from eight soft wheat samples (two parent lines and six offspring) were isolated; relationships between their structures and properties were examined. Branch chain‐length distributions of amylopectins were determined by using high‐performance anion exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector (HPAEC‐ENZ‐PAD). Results showed that the average chain length of the eight samples varied at DP 25.6–26.9. Starch samples of lines 02, 60, 63, 95, and 114 consisted of amylopectins with more long chains (DP ≥ 37) and longer average chain length (DP 26.2–26.9) than that of other samples. These starch samples of longer branch chain length displayed higher gelatinization temperatures (55.3–56.5°C) than that of other samples (54.4–54.9°C) and higher peak viscosity (110–131 RVU) and lower pasting temperature (86.3–87.6°C) than others (83–100 RVU and 88.2–88.9°C, respectively). The Mw of amylopectins, determined by using high‐performance size exclusion chromatography equipped with multiangle laser‐light scattering and refractive index detectors (HPSEC‐MALLS‐RI), were similar for all samples (6.17 × 108 to 6.97 × 108). There were no significant differences in amylose and phosphorus contents between samples. These results indicated that physical properties of wheat starch were affected by the branch‐chain length of amylopectin.  相似文献   

9.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

10.
In this study, the functional properties of A‐ and B‐type wheat starch granules from two commercial wheat flours were investigated for digestibility in vitro, chemical composition (e.g., amylose, protein, and ash content), gelatinization, retrogradation, and pasting properties. The branch chain length and chain length distribution of these A‐ and B‐type wheat starch granules were also determined using high‐performance anion exchange chromatography (HPAEC). Wheat starches with different granular sizes not only had different degrees of enzymatic hydrolysis and thermal and pasting properties, but also different molecular characteristics. Different amylose content, protein content, and branch chain length of amylopectin in A‐ and B‐type wheat starch granules could also be the major factors besides granular size for different digestibility and other functional properties of starch. The data indicate that different wheat cultivars with different proportion of A‐ and B‐type granular starch could result in different digestibility in wheat products.  相似文献   

11.
The unit chain compositions of debranched foxtail, proso, pearl, and finger millet amylopectins and their ϕ,β‐limit dextrins were analyzed by high‐performance anion‐exchange chromatography. The ϕ,β‐limit dextrins reflected amylopectin internal chain profiles. The amylopectins had average chain lengths ranging from 17.94 to 18.12. The ranges of external chain length, internal chain length, and total internal chain length of the millet amylopectins were 11.85–12.33, 4.75–5.09, and 11.64–12.28, respectively. The relative molar concentration of B‐chains in the amylopectins was close to 50% in all samples. Significant differences were, however, observed in the proportions of very short “fingerprint” B‐chains (Bfp, degree of polymerization 3–7) and the major group of short B‐chains (BSmajor): foxtail and proso millets possessed high amounts of Bfp‐chains, whereas finger and pearl millets had higher amounts of BSmajor‐chains, suggesting possible differences in the fine structure of the clusters and building blocks of the amylopectins. Millet amylopectin can be classified structurally as type 2.  相似文献   

12.
Chemical composition, molecular structure and organization, and thermal and pasting properties of maize and potato starches fractionated on the basis of granule size were investigated to understand heterogeneity within granule populations. For both starches, lipid, protein, and mineral contents decreased and apparent amylose contents increased with granule size. Fully branched (whole) and debranched molecular size distributions in maize starch fractions were invariant with granule size. Higher amylose contents and amylopectin hydrodynamic sizes were found for larger potato starch granules, although debranched molecular size distributions did not vary. Larger granules had higher degrees of crystallinity and greater amounts of double and single helical structures. Systematic differences in pasting and thermal properties were observed with granule size. Results suggest that branch length distributions in both amylose and amylopectin fractions are under tighter biosynthetic control in potato starch than either molecular size or amylose/amylopectin ratio, whereas all three parameters are controlled during the biosynthesis of maize starch.  相似文献   

13.
Fourteen varieties of rice from Taiwan, including five Indica, five Japonica, and four waxy cultivars, were used in this study for the examination of fine structure and physicochemical properties of amylopectin. The results indicated that the amylopectin of Indica rice had lower molecular weight, lower average degree of polymerization (DP), and lower average chain number when compared to Japonica and waxy varieties. The shortest average DP was 6 glucose units for all 14 rice varieties. The average chain lengths (CL) of amylopectin were 18–22, 15–18, and 17–20 for Indica, Japonica, and waxy rice, respectively. Indica varieties with high amylose content had amylopectin that comprised a few extra long chains (DP >100). The CL distribution profiles of amylopectins for these 14 varieties could be divided into two factions: CL 10–15 and CL 40–44. Amylopectin of the Indica rice had a relatively high blue value and λmax, implying that a high proportion existed as long branches. The amylopectin of three Indica varieties with lower DP exhibited higher intrinsic viscosity, which might be attributed to the more elongated rod conformation of the few extra long chain amylopectins. The proportion of short chains with DP 6–9 glucose units seemed to influence the rate of the retrogradation of amylopectins.  相似文献   

14.
Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.  相似文献   

15.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

16.
The differences in pasting properties involving gelatinization and retrogradation of rice starches from IR24 and Sinandomeng cultivars during heating‐cooling processes were investigated using a Rapid Visco Analyser (RVA)and a dynamic rheometer. The results were discussed in relation to the molecular structure, actual amylose content (AC), and concentration of the starches. Generally, both starches possessed a comparable AC (≈11 wt%), amylose average chain length (CL), iodine absorption properties, and dynamic rheological parameters on heating to 95°C at 10 wt% and on cooling to 10°C at higher concentrations. In contrast to Sinandomeng, IR24 amylose had a greater proportion of high molecular weight species and number‐average degree of polymerization (DPn). IR24 amylopectin possessed a lower DPn and greater CL, exterior CL (ECL), and interior CL (ICL). Comparing the results of RVA analysis and dynamic rheology, the gelatinization properties and higher retrogradation tendencies of IR24 starch can be related to the structural properties and depend on starch concentration. In addition, the exponent n of starch concentration for storage moduli at 25°C (G25Cn) increased linearly with increasing AC.  相似文献   

17.
Pulse starches were isolated from different cultivars of pea, lentil, and chickpea grown in Canada under identical environmental conditions. The in vitro digestibility and physicochemical properties were investigated and the correlations between the physicochemical properties and starch digestibility were determined. Pulse starch granules were irregularly shaped, ranging from oval to round. The amylose content was 34.9–39.0%. The amount of short A chains (DP 6‐12) of chickpea starch was much higher than the other pulse starches, but the proportions of B1 and B2 chains (DP 13‐24 and DP 25‐36, respectively) were lower. The X‐ray pattern of all starches was of the C type. The relative crystallinity of lentil (26.2–28.3%) was higher than that of pea (24.4–25.5%) and chickpea starches (23.0–24.8%). The swelling factor (SF) in the temperature range 60–90°C followed the order of lentil ≈ chickpea > pea. The extent of amylose leaching (AML) at 60°C followed the order of pea ≈ chickpea > lentil. However, in the temperature range 70–90°C, AML followed the order of lentil > pea > chickpea. The gelatinization temperatures followed the order of lentil > pea > chickpea. The peak viscosity, setback, and final viscosity of pea starch were lower than those of the other starches. Lentil starch exhibited lower rapidly digestible starch (RDS) content, hydrolysis rate, and expected glycemic index (eGI). The resistant starch (RS) content of both lentil cultivars was nearly similar. However, pea and chickpea cultivars exhibited wide variations in their RS content. Digestibility of the pulse starches were significantly correlated (P < 0.05) with swelling factor (60°C), amylose leaching (60°C), gelatinization temperature, gelatinization enthalpy, relative crystallinity, and chain length distribution of amylopectin (A, B1, and B2 chains).  相似文献   

18.
《Cereal Chemistry》2017,94(2):262-269
The molecular size distribution of maize starch nanoparticles (SNP) prepared by acid hydrolysis (3.16M H2SO4) and their amylase‐resistant counterparts, before and after debranching, was investigated. The weight average molecular weight (Mw) and linear chain length distribution were determined by high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography (HPAEC), respectively. The objective was to understand the role of amylose involvement in the formation of SNP showing different crystalline structures (A‐ and B‐types). The HPSEC profiles of SNP before debranching from waxy, normal, and high‐amylose maize starches showed broad monomodal peaks. Debranched SNP from waxy maize eluted in a single narrow peak, whereas those from nonwaxy starches showed a multimodal distribution. Similar trends were also observed for the chain length distribution patterns, for which the longest detectable chains (degree of polymerization [DP] 31) in waxy maize were significantly lower than those of nonwaxy maize starches (DP 55–59). This indicated the potential amylose involvement in the SNP structure of normal and high‐amylose starches. Further evidence of amylose involvement was ascribed to the resistance of SNP toward amylolysis (Hylon VII > Hylon V > normal > waxy). The amylase‐resistant residues of SNP from high‐amylose maize starches were composed of both low Mw linear and branched chains.  相似文献   

19.
冻结-高压湿热解冻对多种淀粉中支链淀粉断裂的影响   总被引:2,自引:2,他引:0  
冻结和高压湿热解冻是含淀粉面团在食品加工过程的必要工艺,在此过程中淀粉球破裂、部分支链淀粉断裂成为直链淀粉,给面团和食品的物理性状控制带来许多不可预见的结果。该文通过研究加热时间、加热温度、冷冻时间和解冻时间对糊化后的小麦、甘薯、马铃薯和玉米淀粉中直链淀粉含量的影响,间接反映支链淀粉断裂情况,结合冻结解冻前后淀粉分子量分布、链长分布、光学和电子显微镜图谱提出了冻结-解冻过程不同淀粉中支链淀粉可能断裂方式。结果表明,4种淀粉中的直链淀粉含量先升高后下降,直链淀粉含量在4种淀粉的中达到峰值的时间分别为48,48,48,72 h。光学显微照片观察表明,冻融处理会导致更多凝胶化淀粉球的破裂。对于小麦支链淀粉,冻融解冻过程支链淀粉中侧链长度为5、6、7个葡萄糖残基的侧链对应3种可能的断裂方式:2+2+1、2+2+2及2+2+2+1;对于甘薯支链淀粉,支链淀粉中侧链长度为10、11和13个葡萄糖残基的侧链对应3种可能的断裂方式:3+3+4、2+2+3+4及2+2+2+3+4;对于马铃薯支链淀粉,支链淀粉中侧链长度为5和6个葡萄糖残基的侧链对应3种可能的断裂方式:2+3、2+4、3+3;而玉米支链淀粉中,支链淀粉中侧链长度为7、8、9个葡萄糖残基的侧链对应3种可能的断裂方式:2+5,3+5,和3+3+3(其中1表示1个葡萄糖;2表示含2个葡萄糖的麦芽糖、3表示含3个葡萄糖的麦芽多糖、4表示含4个葡萄糖的麦芽多糖和5表示含5个葡萄糖的麦芽多糖)。该论文结果为培育具有冻融稳定性的淀粉种子提供一种全新的思路,即通过基因方法控制植物减少容易断裂淀粉侧链的合成。  相似文献   

20.
甘薯淀粉性质与其粉丝品质的关系   总被引:6,自引:2,他引:4  
为了弄清不同品种甘薯淀粉所制粉丝品质差异的原因,该研究通过对各种甘薯淀粉的理化性质、热力学特性、分子结构与甘薯粉丝品质的测定,并以绿豆淀粉做对照,对三者与其粉丝品质进行了相关性分析。结果表明:淀粉理化性质对粉丝品质影响较大,按相关系数大小依次是:膨润力>溶解度>表观直链淀粉含量>蛋白质含量>颗粒大小。回生对粉丝品质的影响远远大于糊化对其的影响。快速黏度分析参数与粉丝品质有显著的相关性,可作为预测其相应的粉丝品质的重要手段之一。淀粉分子结构对粉丝品质影响更大,按显著程度依次是:直链淀粉(A m )含量>支链淀粉(A P )短链量>AP长链量>Am分支数>AP短链长度>Am链长>AP长链长度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号